• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron delocalization enhances the thermoelectric performance of misfit layer compound(Sn1-xBixS)1.2(TiS2)2

    2022-11-21 09:40:26XinZhao趙昕XuanweiZhao趙軒為LiweiLin林黎蔚DingRen任丁BoLiu劉波andRanAng昂然
    Chinese Physics B 2022年11期
    關(guān)鍵詞:劉波

    Xin Zhao(趙昕) Xuanwei Zhao(趙軒為) Liwei Lin(林黎蔚) Ding Ren(任丁)Bo Liu(劉波) and Ran Ang(昂然)

    1Key Laboratory of Radiation Physics and Technology,Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China

    2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China

    The misfit layer compound(SnS)1.2(TiS2)2 is a promising low-cost thermoelectric material because of its low thermal conductivity derived from the superlattice-like structure. However,the strong covalent bonds within each constituent layer highly localize the electrons thereby it is highly challenging to optimize the power factor by doping or alloying. Here,we show that Bi doping at the Sn site markedly breaks the covalent bonds networks and highly delocalizes the electrons. This results in a high charge carrier concentration and enhanced power factor throughout the whole temperature range.It is highly remarkable that Bi doping also significantly reduces the thermal conductivity by suppressing the heat conduction carried by phonons,indicating that it independently modulates phonon and charge transport properties. These effects collectively give rise to a maximum ZT of 0.3 at 720 K.In addition, we apply the single Kane band model and the Debye–Callaway model to clarify the electron and phonon transport mechanisms in the misfit layer compound(SnS)1.2(TiS2)2.

    Keywords: misfit layer sulfide,electron delocalization,carrier mobility,chemical bond

    1. Introduction

    Over 60%fossil fuels input for power generation is being rejected as low-grade heat annually.[1]Thermoelectric materials are able to directly convert such a huge amount of heat into utilizable electricity[2]without releasing any chemical residuals, showing great potential to contribute to solving the energy problem at present.[3,4]The efficiency of a thermoelectric device primary depends on the figure of merit, namely,ZT, of the thermoelectric materials used, which is defined asZT=S2σT/κtot,[4]whereSrepresents Seebeck coefficient,σdenotes electrical conductivity, their productS2σis called power factor,Tis the absolute temperature,andκtotis the total thermal conductivity with contribution from both charge carriers(κele)and phonons(κlat).

    In the past decades, theZTvalues of representative thermoelectric compounds have been considerably improved by applying innovative strategies, such as optimizing electrical transport properties[5–10]or suppressingκlat.[11,12]However, the majority thermoelectric materials contain toxic or expensive elements. For extensive application, thermoelectric community currently puts interest on searching economically-viable, environmentally benign thermoelectric materials.[13–15]The surprising and promising examples are the discovery of Mg3Sb2[8,16–18]and SnSe[19–22]based compounds with intrinsically low thermal conductivity. The former shows exceptionally highZTvalue of~1.5 around room temperature,exceeded conventional expensive Bi2Te3.[8,16,17]The latter exhibits extraordinary performance over a broad temperature window. Besides, the study of the physical mechanisms of novel materials is also very important. The single crystal 1T-TaS2sample exhibits strong coupling between phonon excitation and commensurate charge-densitywave lattice,which provides a deep insight into close association between electronic correlation and dynamical motions of phonons.[23]These findings unambiguously highlight the importance of discovering new compounds.

    (SnS)1.2(TiS2)2is an n-type misfit layer semiconductor built by alternately stacking two atomically thin TiS2slabs with a van der Waals (vdW) gap and SnS monolayer along theccrystallographic direction. Given the abundant interface formed between the TiS2and SnS layer,it shows intrinsically low thermal conductivity compared with other thermoelectric sulfides.[24,25]However, it is highly challenging to optimize its power factor because the metal cation easily forms covalent bonds with sulfur, highly localizing the electrons. For example, (Sn0.96Sb0.04S)1.2(TiS2)2shows carrier concentration nearly the same to the pristine one.[26]Here, we reveal that Bi doping can effectively improve the carrier concentration without degrading the carrier mobility by delocalizing the surrounding electrons. This gives rise to an enhanced power factor over the entire temperature investigated. Remarkably,the heavy Bi atom also significantly decreases the lattice thermal conductivity by generating point defects.[27]As a result,(Sn0.96Bi0.04S)1.2(TiS2)2shows aZTvalue of 0.3 at 723 K,one of the highest values reported in this compound.

    2. Experimental details

    2.1. Synthesis and sample preparation

    The appropriate molar ratio of high purity elements of tin (99.99%, aladdin), titanium (99.99%, aladdin), sulfur (99.99%, aladdin) and bismuth (99.999%, aladdin) corresponding to (Sn1-xBixS)1.2(TiS2)2(x= 0,0.02,0.04,0.06)was sealed in a quartz tube under a high vacuum(~10-4Pa).To minimize the risk of explosion, the sealed tubes were slowly heated to 773 K and dwelled for 12 h, afterward the temperature was raised to 1073 K and allowed to react for 48 h,and naturally cooled down to ambient temperature. The obtained ingots were hand-ground into fine powders in air using an agate and pestle. The resulting fine powder was loaded into a graphite die mold and hot pressed at 923 K for 45 min under an axial pressure of 50 MPa in a dynamic vacuum. The density of the sample was determined by the geometrical dimensions and masses, showing all the samples have density higher than 97.3%of the theoretical value.

    2.2. Powder x-ray diffraction

    The pulverized samples were used for powder x-ray diffraction (XRD). The powder diffraction patterns were recorded with CuKα(λ=1.5418 ?A) radiation in a reflection geometry on an Inel diffractometer operating at 40 kV and 20 mA (DX-2700 x-ray diffractometer). All measured samples are single phase within the detection limit of our laboratory XRD instrument,showing none of detectable secondary phases and unreacted elements.

    2.3. Charge carrier transport

    The densified samples were cut into different shapes using a wire saw for charge and thermal transport properties measurement respectively. The rectangular bar with the dimension of 2×3×8 mm3was used for simultaneously measuring the electrical conductivity and Seebeck coefficient employing a CTApro instrument under a low-pressure helium atmosphere from 320 K to 720 K.The Hall charge carrier concentration and mobility were measured from 320 K to 720 K by a home-built apparatus with a unidirectional 1.5 T magnetic field under a high vacuum.

    2.4. Thermal conductivity

    Thermal diffusivities with respect to temperature were measured using disks with a diameter of 6 mm or 8 mm and a thickness of 1.5 mm using the laser flash diffusivity method on a Netzsch LFA 467 instrument. The surface of the disks was protected by a thin layer of graphite to minimize the thermal radiation at elevate temperature. The thermal conductivity was calculated by the equationκtot=ρ·D·Cp,whereρis the mass density,Dis the measured thermal diffusivity, andCprepresents the temperature-dependent heat capacity that can be determined byCp= [0.17078+(2.64876×10-5)×T]J·g-1·K-1,whereTis the absolute temperature. The electrical contribution to the total thermal conductivity was calculated based on the relationκele=LσT,whereLis the Lorenz number estimated using a single parabolic band(see supporting information for the details),σis the electrical conductivity,andTis the absolute temperature. Lattice thermal conductivityκlatwas calculated by the relationκlat=κtot-κele.

    2.5. Electronic structure calculation

    The first-principles calculations were performed by utilizing the Perdew–Burke–Ernzerhof (PBE)[28]formalism and generalized gradient approximation (GGA)[29,30]implemented in Viennaab initiosimulation package (VASP)[31,32]code. The plane-wave basis was truncated at the energy cutoff of 600 eV. To reduce the computational load, we only sampled the momentum space at theΓ-point and a 4×1×1 mesh.All geometry structures were fully relaxed until the calculated Hellmann–Feynman force on every atom were less than 0.03 eV·?A-1under the convergence condition of 10-4eV.

    3. Results and discussion

    Covalent bonds in(SnS)1.2(TiS2)2strongly trap the electrons so that softening these bonds may release the localized electrons. Note that, the bond dissociation energy for Bi–S is 315 kJ·mol-1, much lower than 467 kJ·mol-1for Sn–S and 387 kJ·mol-1for Sb–S.[33]This indicates Bi doping can weaken the covalent bonds and give rise to a higher carrier concentration than the Sb doped system. To verify our hypothesis,we synthesized samples with the composition of (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) using hightemperature solid-state reaction.All the phases can be fully indexed as the misfit layer structure,showing neither detectable impurity phases nor unreacted residual within the resolution limit of lab XRD measurements (Fig. 1(a) and Fig. S1). To accurately determine the lattice parameter, we performed Rietveld refinement on the recorded XRD patterns(Fig.S2 and Table S1). The refined unit cell dimensions gradually shrink as the Bi content increases, suggesting that Bi atoms are homogenously dissolved over the matrix apparently (Fig. 1(b)).This finding agrees well with the microscopic elemental map collected by scanning electron microscopy equipped with an energy dispersive spectroscopy(SEM-EDS,Fig.S3).

    Fig. 1. (a) Powder XRD patterns of (Sn1-xBixS)1.2(TiS2) samples (x =0,0.02,0.04,0.06). (b)Lattice parameters with respect to the Bi content.

    Trivalent Bi3+substituting divalent Sn2+could increase charge carrier properties significantly. In accordance,we measured the temperature-dependent Hall carrier concentration and mobility for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06) samples. Note that although we measured all properties along both parallel and perpendicular to the hot press direction, we will mainly concentrate on those perpendicular to the press direction because it shows higherZT. The transport properties collected parallel to the press direction are shown in Fig.S4.As the concentration of Bi doping increases,we can see an enhancement of the electrical properties. This is consistent with the results observed in the in-plane, which also can confirm our hypothesis.

    All samples show nearly constant Hall carrier concentration (nH) over the entire temperature range investigated, and their values monotonously increase with higher Bi concentration (Fig. 2(a)). It should be noted that the electron doping efficiency,namely,the number of electrons per Bi atom to the matrix is markedly higher than previously reported values for other dopants in(SnS)1.2(TiS2)-based materials. For example,x=0.04 sample showsnHof 1.8×1021cm-3at 300 K, indicating its electron doping efficiency amounts to 0.63 e-. In sharp contrast,(Sn0.96Sb0.04S)1.2(TiS2)exhibits annHclose to the matrix at 300 K as indicated by the green dashed line,[26]revealing Sb has negligible electron doping efficiency. These verify that Bi atom acts as an efficient electron donor to the(SnS)1.2(TiS2)lattice.

    Fig.2. Charge transport properties of the(Sn1-xBixS)1.2(TiS2)2 samples(x=0,0.02,0.04,0.06). (a)Temperature-dependent Hall carrier concentration nH. The experimental data of(Sn0.96Sb0.04S)1.2(TiS2)2 from previously report is included for comparison(green dashed line).[26] (b)Temperature dependent Hall mobility μH, (c) conductivity σ and (d) Seebeck coefficient. (e) Carrier concentration-dependent Seebeck coefficient at 320 K and 720 K.(f)Temperature-dependent power factor.

    Although Bi doping considerably increases thenH, it marginally reduces the charge carrier mobility (μH). In fact,all samples exhibit nearly identicalμHover the entire temperature range (Fig. 2(b)). Their values rapidly drop with the raising temperature, following the same power law trend of~T-1.5over the entire temperature range, which evident the phonon scattering dominates the charge carrier scattering.This observation confirms Bi uniformly spreading over the crystalline matrix,rather than forming secondary phases or aggregate at the grain boundary,otherwise theμHwould be significantly decreased. Indeed,it contrasts with the general understanding that increasing charge carrier concentration usually decreases with raisingnHbecause of enhanced carrier–carrier scattering, implying Bi doping marginally affects the charge carrier transport.

    Figure 2(c) shows the electrical conductivity (σ) with respect to temperature for the (Sn1-xBixS)1.2(TiS2)2(x=0,0.02,0.04,0.06)samples. Because Bi doping markedly improves thenHwith negligible degradingμHin the full temperature range,it gives rise to higherσat every single temperature point compared to the pristine sample. For example,theσof the title compound(Sn0.96Bi0.04S)1.2(TiS2)is~1100 S·cm-1and~300 S·cm-1at 300 K and 723 K, respectively, much higher than~900 S·cm-1and 250 S·cm-1at the same temperature for the pristine sample.

    The Seebeck coefficient(S)of all samples is negative over the entire temperature range, demonstrating they are n-type semiconductor(Fig.2(d)).Note that Bi doping marginally impacts the magnitude of Seebeck among samples because all the samples have very highnHon the order of~1021cm-3. To examine any possible modulation in electron effective massm*, we calculated the theoretical Pisarenko relation betweenSandnHfor undoped (SnS)1.2(TiS2) in the frame of single Kane band model by assuming that the phonon scattering governs the charge carrier scattering. The black and red lines denotem*=4meat 320 K andm*=5meat 720 K,respectively(Fig.2(e)).TheSvalues for all the samples in this work match well on the lines, suggesting that doped Bi does not alter the band structure in the vicinity of the Fermi level.

    Due to the doped Bi considerably increasesσwithout significantly reducingS,it optimizes the power factor particularly for the best composition(Sn0.96Bi0.04S)1.2(TiS2)(Fig.2(f)).In fact,the(Sn0.96Bi0.04S)1.2(TiS2)sample shows a power factor higher than the pristine one over the entire temperature range.Note that it is challenging to improve the power factor of misfit layer compounds because the highly distorted interface derived from the constituent layers typically leads to a very low electrical conductivity and thereby a low power factor.

    To better understand the enhanced charge transport properties in the (Sn1-xBixS)1.2(TiS2)2compounds, we carried out first-principles calculation within density functional theory regime. Given the high electron doping efficiency as we discussed earlier,the doped Bi atom was placed at the Sn site to mimic the experimental observation. We first analyzed the charge transfer in Bi doped (SnS)1.2(TiS2) for examining the possible charge transfer between Bi and the matrix. For clarity,we only display the charge transfer between one TiS2layer and its neighboring SnS slab(Fig.3(a)). The result shows that the electrons of Bi flow toward the nearest sulfur atom in the adjunct TiS2layer as indicated by the blue ellipsoid, forming electronic bridge to connect large van der Waals gap and facilitate the charge transfer over the matrix. For comparison,we also similarly calculated the Sb doped (SnS)1.2(TiS2). It reveals that the electrons from Sb atom are isolated between the van der Waals gap.

    Fig.3. The charge transfer analysis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). The Sn,Ti,S,Bi and Sb atoms are depicted by grey,blue,yellow,violet, and orange spheres, respectively. Blue ellipsoids surrounding the atoms denote a loss of electrons. Electron localization function (ELF)contour mapped along the〈100〉z(mì)one axis for(a)Bi and(b)Sb doped(SnS)1.2(TiS2). ELF values ranging from 0 to 1 are depicted by the color bar shown in(c), where blue color denotes the electrons with almost no localization or no electrons, and the red color corresponds to the perfect localization of electrons. The red arrow in (c) indicates Bi substituting Sn delocalized electrons. The black arrow in (d) points out the Sb atom forms covalent bond with adjunct sulfur atom,which heavily localized the electrons.

    It is worth noting that quantitative Bader charge transfer analysis shows that Bi donates 1.27 e-to the interacting S atom,coincidentally to the value of 1.28 e-of Sb transferred to the system. This supports our hypothesis that Bi doping weakly localized the electrons. We calculated the electron localization function(ELF)for both Bi and Sb doped systems(Figs.3(c)and 3(d)). This measures the electron localization in atomic and molecular systems, directly evaluating the chemical interaction between the adjunct atoms.[34]The magnitude of ELF increases from 0 to 1 which denotes the electron transiting from no localization to perfect localization and is visualized by the color code varying from blue to red color. The ELF contour mapped along the〈100〉z(mì)one axis of Bi doped system reveals the ELF value between Bi and S atoms smaller than 0.5 (Fig. 3(c)). This indicates that electrons surrounding Bi are highly mobile,consistent with our observation that incorporating Bi atom negligibly affectsμH.By contrast,electron localization domains are clearly observed between Sb and S atoms in Sb doped(SnS)1.2(TiS2)as indicated by the black arrow. This suggests that the Sb atom is prone to form covalent bond with nearby sulfur atom,trapping the free electrons and reducing the electron doping efficiency. In fact, the EFL results agree well with the fact that the Bi–S bond has lower enthalpy and dissociation energy than the Sb–S bond as we discussed in the previously section, confirming that the weak bond contributes to the exceptionally charge transfer of Bi.

    Figure 4(a)presents temperature-dependent total thermal conductivity(κtot)for the(Sn1-xBixS)1.2(TiS2)2samples(x=0,0.02,0.04,0.06). It is highly remarkable that all Bi-doped samples show suppressedκtotcompared with the pristine sample despite they exhibit much higherσthan the latter.This observation implies that the Bi doping significantly impedes heat conduction by phonons. As a result, we extracted the lattice thermal conductivityκlatby invoking the Widemann–Franz law to subtract electronic thermal conductivityκelefromκtot(see Appendix A for details). All doped samples show much lowerκlatthan the undoped one(Fig.4(b)). For example,theκlatat 320 K markedly decreases from~1.7 W·m-1·K-1for thex=0 sample to~1.2 W·m-1·K-1for thex=0.04 sample. To better understand the effect of Bi doping on thermal conductivity,we calculated the temperature-dependentκlatby the Debye–Callaway model. The black line represents the calculatedκlatfor the pristine sample (Fig. 4(b)), which only considers Umklapp (U) and normal (N) processes. The calculated results fit well with the experimental value, reflecting that the U and N processes dominate the phonon scattering. Since neither secondary phase nor element aggregation is present in the Bi doped samples, we further introduced point defects to the Bi doped system as indicated by the red dash line. The calculated value for thex= 0.04 sample lies far below the pristine one, supporting that the point defect contributes significantly to reducingκlat. In fact, the title compound (Sn0.96Bi0.04S)1.2(TiS2)2shows much lowerκlatthan that of previously reported thermoelectric sulfides(Fig.4(c)).Similarly,the out-of-planeκtotis reached 0.7 W·m-1·K-1for thex=0.04 sample at 723 K,as shown in Fig.S4(e).It should be noted that these data are close to our previous work about(Sn1-xSbxS)1.2(TiS2)2and reflect the good reproducibility of the series of works.[26]

    Fig. 4. Temperature-dependent (a) total thermal conductivity κtot and (b) lattice thermal conductivity κlat for (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06). The black and red dashed lines correspond to the calculated temperature-dependent κlat for the pristine and x=0.04 samples using the Debye–Callaway model. (c)A κlat comparison with typical thermoelectric sulfides including TiS2[25] and PbS.[24]

    Fig. 5. Temperature-dependent ZT of (Sn1-xBixS)1.2(TiS2)2 (x =0,0.02,0.04,0.06)samples. The ZT values of pristine TiS2[25] and SnS[35]are given for comparison.

    Figure 5 shows the temperature-dependent dimensionless figure of merit,ZT, for the (Sn1-xBixS)1.2(TiS2)2samples (x= 0,0.02,0.04,0.06). The (Sn0.96Bi0.04S)1.2(TiS2)2exhibits higherZTvalues over the entire temperature range with a maximum reaching to 0.3 at 720 K. It is one of the highest among misfit layer compounds. The achieved performance out-performs previously reported TiS2and state-of-theart polycrystalline SnS,indicating its great potential as a lowcost thermoelectric material for power generation.

    4. Conclusions

    Misfit layer compounds emerge as promising low-cost thermoelectric sulfides. However, it is challenging to optimize its carrier concentration because dopants tend to form covalent bond with sulfur. We demonstrated that Bi weakly bonded with sulfur, delocalized the charge carrier and facilitated the charge transfer. Highly mobile electrons significantly enhanced electrical conductivity and power factor of(Sn0.96Bi0.04S)1.2(TiS2)2over the entire temperature range.The heavy Bi atom also exceptionally reducedκlatby introducing mass fluctuation. By virtue of the Bi doping on charge and thermal transport properties,(Sn0.96Bi0.04S)1.2(TiS2)2shows a maximumZTof 0.3 at 720 K,excelling many state-of-the-art thermoelectric sulfides including SnS and PbS.

    Appendix A

    Density of state mass calculation

    The density of state mass(m*)is calculated according to the following equations[36,37]using the Seebeck coefficient(S)and carrier concentration(nH):

    whereμis the reduced Fermi level,Fj(μ) is the Fermi integral,kBis the Boltzmann constant,his the Planck constant,andλ=0 is the scattering parameter corresponding to acoustic phonon scattering.

    Lorenz number calculation

    The Lorenz numberLwas obtained by single parabolic band(SPB)model with acoustic scattering(λ=0 for acoustic phonon scattering):

    The disorder scattering parameterΓcalcis calculated by the model of Slack[43]and by Abeles[42]assumingΓcalc=ΓM+ΓS,whereΓMandΓSare mass fluctuations scattering parameter and strain field fluctuations scattering parameter, respectively. The mass and strain fluctuation scattering parameters are determined by[40]

    Acknowledgments

    This work was financially supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China(Grant No.2020SCUNL112).

    猜你喜歡
    劉波
    汪安陽 劉波設(shè)計(jì)作品
    毛紡科技(2023年1期)2023-02-24 00:37:40
    劉波作品
    國(guó)畫家(2023年1期)2023-02-16 07:57:50
    Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100?
    Retrieval of multiple scattering contrast from x-ray analyzer-based imaging*
    晚霞
    赤水源(2018年6期)2018-12-06 08:38:08
    劉波:大海與我作伴
    商周刊(2017年16期)2017-10-10 01:32:47
    千萬別動(dòng)手
    “故事大王”講故事
    大連大學(xué)美術(shù)學(xué)院劉波繪畫作品選
    女人的復(fù)仇
    亚洲av福利一区| 亚洲av福利一区| 一区在线观看完整版| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 国产极品粉嫩免费观看在线| 久久久久精品人妻al黑| 在线精品无人区一区二区三| 你懂的网址亚洲精品在线观看| 一区二区三区精品91| 少妇人妻 视频| 看非洲黑人一级黄片| 国产精品国产三级专区第一集| 超色免费av| 久久久亚洲精品成人影院| 18在线观看网站| 日韩人妻精品一区2区三区| 制服丝袜香蕉在线| 久久99一区二区三区| 在线天堂最新版资源| 午夜福利网站1000一区二区三区| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区91 | 国产精品偷伦视频观看了| 亚洲天堂av无毛| 操美女的视频在线观看| 国产精品三级大全| 大片免费播放器 马上看| 飞空精品影院首页| 精品酒店卫生间| 十八禁人妻一区二区| 多毛熟女@视频| 久久久久网色| 久久婷婷青草| 超色免费av| 制服人妻中文乱码| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 国产97色在线日韩免费| 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 精品国产露脸久久av麻豆| 午夜老司机福利片| 国产1区2区3区精品| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀 | 两个人看的免费小视频| 超碰97精品在线观看| 国产毛片在线视频| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 欧美 亚洲 国产 日韩一| 亚洲成人免费av在线播放| 成人亚洲欧美一区二区av| 国产精品秋霞免费鲁丝片| 久久 成人 亚洲| 久久久久久久国产电影| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 一级a爱视频在线免费观看| 秋霞伦理黄片| 老鸭窝网址在线观看| 亚洲精品国产一区二区精华液| 99久国产av精品国产电影| tube8黄色片| 国产熟女欧美一区二区| 亚洲综合色网址| 老司机亚洲免费影院| 少妇精品久久久久久久| 天天躁夜夜躁狠狠久久av| 国产亚洲午夜精品一区二区久久| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 久久久久网色| 亚洲久久久国产精品| 男人操女人黄网站| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 国产成人精品久久二区二区91 | 国产亚洲av片在线观看秒播厂| 欧美日韩综合久久久久久| 国产成人91sexporn| 欧美乱码精品一区二区三区| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 国产人伦9x9x在线观看| 在线观看www视频免费| 欧美人与善性xxx| 观看av在线不卡| 国产免费视频播放在线视频| 波多野结衣av一区二区av| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 亚洲成人av在线免费| 欧美日韩亚洲高清精品| 国产99久久九九免费精品| 欧美日韩视频高清一区二区三区二| 国产麻豆69| 高清av免费在线| 欧美人与性动交α欧美软件| 99久久人妻综合| 欧美黄色片欧美黄色片| 亚洲激情五月婷婷啪啪| 国产极品粉嫩免费观看在线| 操美女的视频在线观看| 国产精品亚洲av一区麻豆 | 性色av一级| 人人妻,人人澡人人爽秒播 | 欧美 日韩 精品 国产| 国产xxxxx性猛交| 黄片小视频在线播放| 亚洲,欧美,日韩| 免费观看人在逋| 亚洲精品自拍成人| 午夜免费鲁丝| 亚洲成人免费av在线播放| 波多野结衣av一区二区av| 男女免费视频国产| av一本久久久久| 一区二区三区激情视频| 你懂的网址亚洲精品在线观看| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 波野结衣二区三区在线| 久久久精品94久久精品| 免费黄网站久久成人精品| 国产熟女欧美一区二区| 激情五月婷婷亚洲| 免费黄网站久久成人精品| 欧美激情高清一区二区三区 | 国产成人一区二区在线| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 成人免费观看视频高清| 女人精品久久久久毛片| 欧美日韩av久久| 一本一本久久a久久精品综合妖精| 日本一区二区免费在线视频| 亚洲四区av| 伊人久久大香线蕉亚洲五| 国产精品 欧美亚洲| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 亚洲国产欧美网| 亚洲av综合色区一区| 老熟女久久久| 男女无遮挡免费网站观看| 精品一区二区三卡| 久久鲁丝午夜福利片| 叶爱在线成人免费视频播放| 成人手机av| 欧美中文综合在线视频| 一级毛片我不卡| 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 一级毛片黄色毛片免费观看视频| 精品久久久久久电影网| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 男女午夜视频在线观看| 久久毛片免费看一区二区三区| 中文字幕人妻丝袜制服| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 亚洲精品,欧美精品| 男男h啪啪无遮挡| 男女无遮挡免费网站观看| 欧美精品一区二区免费开放| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看 | 一级毛片 在线播放| 一边摸一边抽搐一进一出视频| 男女床上黄色一级片免费看| 亚洲av福利一区| 国产无遮挡羞羞视频在线观看| 国产高清不卡午夜福利| 久久久精品94久久精品| 午夜福利视频在线观看免费| 国产精品国产三级专区第一集| 99久久综合免费| 美女中出高潮动态图| 日本av免费视频播放| 最近手机中文字幕大全| 亚洲男人天堂网一区| 精品一区二区三区四区五区乱码 | 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 日韩成人av中文字幕在线观看| 精品亚洲成a人片在线观看| 亚洲激情五月婷婷啪啪| 老司机深夜福利视频在线观看 | 一个人免费看片子| 免费观看a级毛片全部| 日本欧美国产在线视频| 一本一本久久a久久精品综合妖精| 日日撸夜夜添| 国产精品久久久久久久久免| 天天操日日干夜夜撸| av国产精品久久久久影院| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 免费看av在线观看网站| 国产精品 国内视频| 亚洲,一卡二卡三卡| 精品一区二区三卡| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 不卡av一区二区三区| 高清视频免费观看一区二区| 国产激情久久老熟女| 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 国产在视频线精品| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| 亚洲伊人色综图| 国产免费现黄频在线看| 老鸭窝网址在线观看| 成人国产麻豆网| 色播在线永久视频| 婷婷色av中文字幕| 亚洲国产精品999| 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 精品国产国语对白av| 男女午夜视频在线观看| 久久人妻熟女aⅴ| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 秋霞伦理黄片| 亚洲av中文av极速乱| 中国国产av一级| 国产成人欧美| 久久久久久久久久久免费av| 操美女的视频在线观看| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| 老鸭窝网址在线观看| 王馨瑶露胸无遮挡在线观看| 国产在线免费精品| 中文字幕最新亚洲高清| 青春草视频在线免费观看| 在线观看免费日韩欧美大片| 色综合欧美亚洲国产小说| 一级毛片我不卡| 在线观看一区二区三区激情| 亚洲七黄色美女视频| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 日本一区二区免费在线视频| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 日本欧美国产在线视频| 一区福利在线观看| 亚洲av国产av综合av卡| 在线观看国产h片| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 久久性视频一级片| 韩国av在线不卡| 久久人妻熟女aⅴ| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 亚洲国产中文字幕在线视频| 精品国产一区二区三区四区第35| 桃花免费在线播放| 久久精品国产a三级三级三级| 香蕉国产在线看| 国产精品久久久久久精品电影小说| 成人亚洲欧美一区二区av| 一区二区三区四区激情视频| 亚洲精品美女久久久久99蜜臀 | 不卡av一区二区三区| 久久久国产精品麻豆| 成人影院久久| 亚洲专区中文字幕在线 | 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 亚洲av中文av极速乱| 亚洲综合色网址| 国产精品嫩草影院av在线观看| 国产精品香港三级国产av潘金莲 | 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区| 色综合欧美亚洲国产小说| 日日啪夜夜爽| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲三区欧美一区| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 国产成人精品在线电影| 观看美女的网站| 亚洲人成网站在线观看播放| 多毛熟女@视频| 国产又爽黄色视频| 在线观看三级黄色| 巨乳人妻的诱惑在线观看| 日日撸夜夜添| 日本91视频免费播放| 99热国产这里只有精品6| 妹子高潮喷水视频| 国产黄频视频在线观看| 建设人人有责人人尽责人人享有的| 欧美在线一区亚洲| 亚洲综合精品二区| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 高清视频免费观看一区二区| 观看美女的网站| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 国产精品久久久人人做人人爽| 中文精品一卡2卡3卡4更新| 午夜福利视频在线观看免费| 可以免费在线观看a视频的电影网站 | 波野结衣二区三区在线| 丝袜美足系列| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 欧美乱码精品一区二区三区| 午夜福利免费观看在线| 亚洲成人手机| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| 久久99热这里只频精品6学生| 免费在线观看完整版高清| 男女国产视频网站| 欧美激情 高清一区二区三区| 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区| 国产亚洲午夜精品一区二区久久| 热99久久久久精品小说推荐| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 一区二区三区四区激情视频| 色94色欧美一区二区| 91精品国产国语对白视频| 捣出白浆h1v1| 亚洲,一卡二卡三卡| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 老司机影院成人| 国产成人精品久久二区二区91 | 国产高清不卡午夜福利| 我要看黄色一级片免费的| 国产高清不卡午夜福利| 欧美 亚洲 国产 日韩一| 亚洲欧美精品自产自拍| 丝袜脚勾引网站| 电影成人av| 丝袜脚勾引网站| 一级片免费观看大全| 欧美日韩av久久| 电影成人av| 少妇 在线观看| 国产极品天堂在线| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 大码成人一级视频| 精品人妻在线不人妻| 男女国产视频网站| 99国产精品免费福利视频| 久久青草综合色| 看免费成人av毛片| 亚洲欧美一区二区三区久久| 国产免费福利视频在线观看| 午夜激情av网站| 亚洲精品日韩在线中文字幕| 亚洲精品国产区一区二| 国产极品粉嫩免费观看在线| videos熟女内射| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 国产男人的电影天堂91| 人妻 亚洲 视频| 久久久久人妻精品一区果冻| 赤兔流量卡办理| 777米奇影视久久| 高清在线视频一区二区三区| 又大又爽又粗| 2021少妇久久久久久久久久久| avwww免费| 99热网站在线观看| 亚洲成人一二三区av| 久久av网站| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| 国产成人欧美在线观看 | 一边亲一边摸免费视频| 中文字幕亚洲精品专区| 国产有黄有色有爽视频| 国产av国产精品国产| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看 | 亚洲精品国产av成人精品| 国产成人精品久久久久久| 777久久人妻少妇嫩草av网站| 成人毛片60女人毛片免费| 久久久久国产精品人妻一区二区| 一级,二级,三级黄色视频| 少妇 在线观看| 国产精品无大码| 久久久久久人妻| 十分钟在线观看高清视频www| 免费观看a级毛片全部| 欧美日韩av久久| 超色免费av| 女人被躁到高潮嗷嗷叫费观| 亚洲av男天堂| 精品人妻在线不人妻| 国产一区二区 视频在线| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 99精国产麻豆久久婷婷| 欧美日韩精品网址| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 久久性视频一级片| 亚洲伊人色综图| 国产男人的电影天堂91| 亚洲国产精品999| 久久国产亚洲av麻豆专区| 国产熟女欧美一区二区| 久久久久国产精品人妻一区二区| 别揉我奶头~嗯~啊~动态视频 | 成人影院久久| 亚洲精品中文字幕在线视频| 精品一区二区免费观看| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 大陆偷拍与自拍| 亚洲欧美中文字幕日韩二区| 青草久久国产| 丝瓜视频免费看黄片| 亚洲成国产人片在线观看| 两个人免费观看高清视频| 欧美久久黑人一区二区| 久久国产精品大桥未久av| 在线 av 中文字幕| 亚洲精品,欧美精品| 自线自在国产av| 精品久久蜜臀av无| 熟女av电影| 中文字幕高清在线视频| 交换朋友夫妻互换小说| 国产精品久久久久久久久免| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 可以免费在线观看a视频的电影网站 | av片东京热男人的天堂| 国产av一区二区精品久久| 制服人妻中文乱码| 国产高清不卡午夜福利| 国产精品免费视频内射| 日本一区二区免费在线视频| 日韩视频在线欧美| 亚洲成国产人片在线观看| 免费看不卡的av| 少妇猛男粗大的猛烈进出视频| 日韩,欧美,国产一区二区三区| 亚洲欧美清纯卡通| 十八禁人妻一区二区| 九九爱精品视频在线观看| 大片电影免费在线观看免费| 午夜免费观看性视频| 在线观看国产h片| 亚洲av日韩精品久久久久久密 | 热re99久久精品国产66热6| 日韩精品有码人妻一区| 日韩电影二区| av在线播放精品| 亚洲欧美一区二区三区黑人| 亚洲成人一二三区av| 色吧在线观看| 亚洲第一青青草原| 少妇猛男粗大的猛烈进出视频| 肉色欧美久久久久久久蜜桃| 人妻人人澡人人爽人人| 亚洲第一区二区三区不卡| 操出白浆在线播放| 亚洲av福利一区| 精品亚洲成a人片在线观看| 国产成人91sexporn| 伊人久久国产一区二区| e午夜精品久久久久久久| 亚洲av电影在线进入| 精品国产露脸久久av麻豆| 一级毛片我不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产最新在线播放| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 欧美激情高清一区二区三区 | 亚洲欧美成人精品一区二区| 亚洲欧洲精品一区二区精品久久久 | 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 欧美变态另类bdsm刘玥| 久久影院123| 国产伦理片在线播放av一区| 人人澡人人妻人| 91精品三级在线观看| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 久久女婷五月综合色啪小说| 女人爽到高潮嗷嗷叫在线视频| 欧美xxⅹ黑人| 下体分泌物呈黄色| 久久久久久久久久久久大奶| av女优亚洲男人天堂| 久久国产精品大桥未久av| 日本一区二区免费在线视频| 女的被弄到高潮叫床怎么办| 欧美人与性动交α欧美精品济南到| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| 亚洲欧洲国产日韩| av线在线观看网站| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 在线观看三级黄色| 精品一品国产午夜福利视频| 亚洲欧洲日产国产| 免费在线观看完整版高清| xxxhd国产人妻xxx| 九草在线视频观看| 嫩草影院入口| 男女之事视频高清在线观看 | www.熟女人妻精品国产| 午夜福利,免费看| 啦啦啦视频在线资源免费观看| 欧美日韩一区二区视频在线观看视频在线| 妹子高潮喷水视频| 成人三级做爰电影| 九草在线视频观看| 97精品久久久久久久久久精品| 精品久久久久久电影网| 亚洲,欧美精品.| av国产精品久久久久影院| 国产精品.久久久| 视频区图区小说| 在线观看免费高清a一片| 国产探花极品一区二区| 91老司机精品| 国产在线视频一区二区| 丰满少妇做爰视频| 永久免费av网站大全| a级毛片黄视频| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 日本午夜av视频| 亚洲伊人色综图| 日韩av免费高清视频| 国产成人一区二区在线| 嫩草影院入口| 国产福利在线免费观看视频| 建设人人有责人人尽责人人享有的| 男人操女人黄网站| 熟妇人妻不卡中文字幕| 男女高潮啪啪啪动态图| 叶爱在线成人免费视频播放| 如何舔出高潮| 欧美少妇被猛烈插入视频| 欧美日韩综合久久久久久| 亚洲精品国产区一区二| 男女边吃奶边做爰视频| 欧美日韩亚洲综合一区二区三区_| 丝袜在线中文字幕| 男女高潮啪啪啪动态图| 中文字幕人妻丝袜制服| 中文字幕亚洲精品专区| 国产高清国产精品国产三级| 制服丝袜香蕉在线| 丝瓜视频免费看黄片| 精品一区二区三区av网在线观看 | av又黄又爽大尺度在线免费看| 捣出白浆h1v1| 亚洲五月色婷婷综合| 777米奇影视久久| 亚洲成色77777| 性色av一级|