• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defect physics of the quasi-two-dimensional photovoltaic semiconductor GeSe

    2022-11-21 09:40:08SaichaoYan閆賽超JinchenWei魏金宸ShanshanWang王珊珊MenglinHuang黃夢(mèng)麟YuNingWu吳宇寧andShiyouChen陳時(shí)友
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王珊

    Saichao Yan(閆賽超) Jinchen Wei(魏金宸) Shanshan Wang(王珊珊) Menglin Huang(黃夢(mèng)麟)Yu-Ning Wu(吳宇寧) and Shiyou Chen(陳時(shí)友)

    1Key Laboratory of Polar Materials and Devices(MOE)and Department of Electronics,East China Normal University,Shanghai 200241,China

    2State Key Laboratory of ASIC and System,School of Microelectronics,Fudan University,Shanghai 200433,China

    GeSe has recently emerged as a photovoltaic absorber material due to its attractive optical and electrical properties as well as earth abundancy and low toxicity. However, the efficiency of GeSe thin-film solar cells (TFSCs) is still low compared to the Shockley–Queisser limit. Point defects are believed to play important roles in the electrical and optical properties of GeSe thin films. Here, we perform first-principles calculations to study the defect characteristics of GeSe.Our results demonstrate that no matter under the Ge-rich or Se-rich condition, the Fermi level is always located near the valence band edge,leading to the p-type conductivity of undoped samples. Under Se-rich condition,the Ge vacancy(VGe)has the lowest formation energy, with a (0/2–) charge-state transition level at 0.22 eV above the valence band edge. The high density(above 1017 cm-3)and shallow level of VGe imply that it is the p-type origin of GeSe. Under Se-rich growth condition, Sei has a low formation energy in the neutral state, but it does not introduce any defect level in the band gap,suggesting that it neither contributes to electrical conductivity nor induces non-radiative recombination. In addition, Gei introduces a deep charge-state transition level, making it a possible recombination center. Therefore, we propose that the Se-rich condition should be adopted to fabricate high-efficiency GeSe solar cells.

    Keywords: GeSe bulk,point defect,concentration,photovoltaic

    1. Introduction

    As potential alternatives to silicon-based photovoltaic systems,thin-film solar cells(TFSCs)have attracted considerable attention due to the advantages of low-cost constituents,high stability, high efficiency and device flexibility.[1–7]Statistically, the power conversion efficiencies (PCEs) of copper indium gallium selenide (CIGS) and cadmium telluride(CdTe)have reached 23.4%and 22.1%,respectively.[8,9]Nevertheless, In and Te are relatively rare elements, and Cd is toxic. These shortcomings limit the development of these TFSCs. Therefore, there is a great need to discover a new material with non-toxic and earth-abundant elements. In the past decade, many absorber materials have been investigated, such as CZTSSe,[10]SnS,[11–15]Sb2(S,Se)3,[16–22]Cu2O,[23–25]CuSbSe2[26,27]and GeSe.[28–36]Among these materials, GeSe has received increasing attention in recent years.

    GeSe can be used as a new and durable photovoltaic absorber for the following reasons: (1) The element Ge and Se are abundant on earth and low-toxic in nature, making it preferable compared to classic CdTe and CIGS.[28](2) GeSe has a low melting point of 670 °C, which makes it ideal for producing high-quality films at low temperatures.[29](3)GeSe has sublimation properties, allowing simultaneous thin film deposition andin-situraw material purification, and can also be limited by impurities in the sublimation source. The sublimation feature can also prevent the formation of unfavorable Ge and Se interstitials.[30,31](4) GeSe has an acceptable band gap of 1.1–1.2 eV, which is within the optimal bandgap value for a single junction solar cell, according to both experimental and theoretical analysis.[32,33]In the visible light range, it also possesses a high optical absorption coefficient of over 104cm-1, allowing full light absorption within a one-millimeter-thick layer.[34](5) GeSe crystallizes in layered structures with few and weak dangling bonds between the layers,resulting in great chemical stability and low surface defect density,as demonstrated by theoretical and experimental researches.[35](6)GeSe has the cation–anion antibonding states-derived valence band maximum, like the case of CuSbSe2.[26]

    Despite the aforementioned advantages and significant attempts to optimize GeSe solar cells,[36–42]their performance remains subpar compared to the Shockley–Queisser efficiency limit of up to 30%. Hence, it is in great need to propose new optimizing approaches and break through the bottleneck.Among different aspects that can affect the photovoltaic performance of GeSe, the defect properties should be one of the priorities. Although the lone pair existing in the VBM has been regarded as the advantage of GeSe to be defecttolerant,[36]the influence of defects on the electrical properties of GeSe is not well explored. What are the possible recombination centers in GeSe? How are the conductivity and defect density changed using different growth conditions? To gain a comprehensive understanding of the defect physics in GeSe,we calculate the defect properties of GeSe and the pinning Fermi level under different growth environments via the firstprinciples calculations.The results show that VGehas the lowest formation energy under Se-rich condition, with a (0/2-)charge-state transition level lying 0.22 eV above the VBM.The shallow level and high density (over 1017cm-3) of VGesuggest that it is the p-type origin of GeSe. Seiin neutral state also has low formation energy under Se-rich growth condition,consistent with the layered structure of GeSe that can easily hold interstitial Se atoms. Only neutral state can be found for Sei, indicating that it neither contributes to the conductivity,nor causes the recombination. Besides, it is also noted that changing the growth condition from Se-rich to Se-poor will not affect the p-type conductivity because of the Fermi level pinning close to the VBM, but the Se-poor condition favors the formation of Gei, which is a possible recombination center due to its deep charge-state transition levels. Therefore,we propose that better GeSe photovoltaic thin film should be grown under the Se-rich condition.

    2. Methods

    The Viennaab initiosimulation software (VASP) with a plane wave basis set was used for all first-principles calculation.[43,44]Frozen-core projector augmented-wave(PAW) pseudopotentials with an energy cutoff of 350 eV were employed, with a 10×8×4Γcenteredk-point mesh included in the Brillouin zone integration for the primitive cell. In the calculations of defect properties, we built a 128-atom supercell with a singleΓpoint to reduce the correlation between defects.[45]For the crystal structure optimization, the exchange–correlation functional that we used was the generalized gradient approximation (GGA)of Perdew–Burke–Ernzerhof (PBE).[46]Meanwhile, the hybrid exchange–correlation functional (HSE) with a fractionα=17% of Hartree–Fock exchange was used for the static calculation of the total energy.[47,48]Since GGA usually underestimates the band gap for these compounds,the HSE functional predicted the band gaps with better agreement with experimental results for GeSe. Both methods included the D3 dispersion correction of Grimmeet al.[49]It has been demonstrated that including such a dispersion correction improves the structural description of layered and low-dimensional posttransition metal chalcogenides: PBE+D3 has recently been utilized to compute the Sn(S,Se) solid solution,[50]while HSE+D3 has been demonstrated to mimic the experimental structure and electrical characteristics of the pseudo-1D chalcogenide Sb2Se3.[51–53]

    The defect calculation is performed by using defect and dopantab-initiosimulation package (DASP).[54]The neutral formation energies can be calculated with the expression

    Here,E(α)is the calculated total energy of the supercell with a defectα,E(host)is the total energy of the pure GeSe supercell,niis the number of atoms of elementiadded into (niis negative) or removed from (niis positive) the supercell,μiis the elemental chemical potential andE(i)is the total energy of pure elemental phase.μi=0 means that the element is so rich that even its pure elemental phases can form. We also calculate the formation energy of GeSe in the ionized charge stateq,and the formula of formation energies is[55]

    whereEFis the Fermi energy referenced to the VBM level,andEVBMis the energy of the VBM level of host.

    The equilibrium densityn(α,q) of a defect in its charge stateqis a function of its formation energy,which can be given by[56]

    where ΔEf(α,q) is the defect formation energy,Nsitesis the number of defect sites per unit volume,gqis the degeneracy factor, which reflects the number of possible configurations for electrons occupying the defect level and changing with the charge stateq,KBis the Boltzmann constant,andTis the temperature. Because ionized defects create carriers and become charged,we can calculate the charge density of all ionized acceptor defects (N-A) and all ionized donor defects (N+D). The density of carriers follows

    whereNvandNcare the effective densities of states for the valence band and conduction band edges, respectively. The Fermi level (EF), carrier density and density of all point defects in different charge states under different chemical potential conditions can be determined by solving self-consistently the charge-neutrality condition[57–59]

    It is assumed that defects are generated at high temperatures, and the densities in different charge states are redistributed when the temperature cools down to working temperatures. Accordingly, we first solve Eq.(5)at a higher growth temperature and then determine the Fermi level and density of each defect for different charge statesq. Then Eq. (5) is solved again at a lower working temperature, but the defect density in different charge states will redistribute according to the Fermi–Dirac occupation. The Fermi level at the working temperature can then be obtained,from which the redistributed defect density and carrier density can be calculated.

    3. Results and Discussion

    3.1. The progress of GeSe thin-film solar cells

    We first review the experimental progress of GeSe TFSCs and the corresponding performance parameters of GeSe TFSCs are summarized in Table 1. The first GeSe solar cell was reported by Wan’s group in 2017.[31]They used self-regulated fast thermal sublimation to create high-quality GeSe thin films on a CdS buffer layer, and built a superstrate ITO/CdS/GeSe/Au solar cell with a power conversion efficiency (PCE) of 1.48%, fill factor (FF) of 42.6%, shortcircuit current density (JSC) of 14.48 mA/cm2and an opencircuit voltage (VOC) of 240 mV.[31]In 2018, Huanget al.reported the GeSe films fabricated by magnetron sputtering and constructed a prototypical FTO/CdS/GeSe/carbon/Ag device with a PCE of 0.05%,FF of 26.5%,JSCof 0.85 mA/cm2andVOCof 220 mV.[60]Moreover, Chenet al. preparedα-GeSe precursor thin films using thermal evaporation and p-GeSe thin films using a sandwiching post-annealing process. They also prepared a superstrate cell with FTO/TiO2/p-GeSe/carbon/Ag configuration demonstrated an amazingVOCof 340 mV, efficiency of 0.27%, FF of 25.15% andJSCof 3.19 mA/cm2.[61]In addition, Ziet al. applied thermal evaporation to create GeSe films and FTO/CdS/GeSe/Au devices with a PCE of 0.65%, FF of 38.2%,VOCof 135 mV,andJSCof 12.6 mA/cm2.[62]Despite significant attempts to produce GeSe solar cells, their performance remains subpar, with a Shockley–Queisser efficiency limit of up to 30%. Recently,Liuet al. demonstrated that surface defects in GeSe photovoltaics had a significant impact on the device performance and created surface-passivated GeSe solar cell.[36]The PCE of the surface-passivated GeSe solar cells is 5.2% and is higher 3.7 times than the best previously-reported GeSe results.For other performance,the FF is 56%,theVOCcan reach 380 mV, and theJSCis 24.6 mA/cm2. Hu’s group proposed that this can be caused by the superstrate device structure,and they fabricated two GeSe solar cells with superstrate and substrate configurations.[63]For the superstrate configurations(glass/ITO/CdS/GeSe/Au),the PCE is 1.4%,the FF is 39.2%,theVOCis 230 mV and theJSCis 15 mA/cm2. Compared with the superstrate configurations,the pristine substrate configuration(glass/Mo/GeSe/CdS/iZO/ITO/Ag)exhibits PCE of 2.7%,FF of 41.3%,VOCof 330 mV andJSCof 19.8 mA/cm2.To improve the PCE of GeSe solar cells with substrate configurations,they optimized the annealing temperature of complete devices via a self-developed high-throughput method. By annealing the pristine substrate solar cell at 150 °C, they found the PCE of the substrate solar cell is 3.1%, FF is 47.1%,VOCis 330 mV andJSCis 20.1 mA/cm2. The PCE is twice that of the best previously reported superstrate GeSe solar cell.

    Table 1. The performance of GeSe thin-film solar cells.

    Given the high theoretical efficiency limit of~30% for GeSe solar cells,there is still a lot of potential to enhance the efficiency of GeSe thin-film solar cells compared to other popular thin-film photovoltaics like CdTe and CIGS. In terms of experiments, Liuet al. proposed multiple strategies to improve the efficiency of GeSe TFSCs:[31](1) exploring preparation methods that can improve the quality of GeSe thin films, (2) controlling the orientation of GeSe film, (3) finding a more suitable buffer layer, (4) using hole transport materials (HTM), and (5) constructing a solar cell with a substrate structure. Besides,Yanget al.also proposed some improvement strategies:[64](1)developing more facile and effective deposition techniques,(2)developing solution processing method suitable for simple binary GeSe thin film preparation,(3) exploring proper partner materials, such as n-type buffer and hole transport layer by computational. In terms of theoretical research,Lvet al.[38]found that the PCE for AB-stacked GeSe/SnS heterostructures TFSC can be as high as~18%by using first-principles calculations. Meanwhile, Maoet al.[39]predicted that the PCE of the GeSe/SnSe heterostructure TFSC can reach 21.47% based on first-principles calculations. Although there are many theoretical studies on the photoelectric properties of GeSe, there are few reports on the effect of defect characteristics on the photoelectric properties of GeSe. In fact,the defects properties are critical to the photovoltaic performance of GeSe. For example, shallow-level defects can control semiconductor conductivity, while deep-level defects can promote the recombination of the non-equilibrium carriers in an excited state, thereby reducing the efficiency of the solar cells. Therefore, we will study the defect properties of GeSe in the next part.

    3.2. The properties of GeSe defect

    The GeSe has a layer-type orthorhombic structure with space groupPnma, as shown in Fig. 1. The unit cell contains eight atoms,and each Ge or Se is three-fold coordinated.Table 2 presents the optimized lattice constants, along with the experimental and other theoretical results for comparison.The relaxed lattice parametersa=3.88 ?A,b=4.50 ?A, andc=10.99 ?A,which are slightly larger than those experimental values ofa=3.81–3.85 ?A,b=4.37–4.41 ?A,andc=10.78–10.84 ?A[30,64–66]due to the overestimation lattice constants using the GGA method. For other calculations,the calculated lattice constants range from 3.83 ?A to 3.91 ?A,4.33 ?A to 4.49 ?A,and 10.85 ?A to 11.31 ?A fora,b,andc,[67–70]respectively. Our results are in reasonable agreement with others’results.

    Fig.1. Crystal structure of GeSe bulk from different view angles. Ge atoms are represented in gray,Se atoms are represented in orange,and each small rectangle represents a primitive cell.

    Fig.2. Calculated band structure,density of states(DOS),and partial DOS projected on different elements of GeSe.

    Table 2. The calculated lattice constants of GeSe. The experimental and theoretical results in the literatures are listed for comparison.

    Due to the fact that the electronic properties of point defects depend sensitively on the electronic structure, we calculate the band structure, density of states (DOS), and partial DOS of GeSe, as shown in Fig. 2. The direct band gap is 1.33 eV, and the conduction band minimum (CBM) and valence band maximum (VBM) are located at theΓhighsymmetry point. From the DOS, the CBM of GeSe is dominated by the Ge p orbital, with significant coupling with the Se p orbital and negligible coupling with the Se s orbital while the VBM of GeSe is mainly contributed by the Ge s and p orbitals.

    Because most of previous calculations only considered defects with neutral charge state,for comparison,we first calculate the formation energies of neutral defects in GeSe.There are six common types of intrinsic point defects in GeSe:cation vacancy (VGe), anion vacancy (VSe), cation interstitial (Gei),anion interstitial (Sei), cation-on-anion antisite (GeSe), and anion-on-cation antisite (SeGe). Table 3 presents the neutral formation energies of GeSe defects under both Se-rich and Gerich conditions calculated by us and others. For GeSe under Ge-rich condition,the formation energies are 1.37 eV,1.71 eV,1.92 eV, 1.26 eV, 1.45 eV and 1.90 eV for VGe, VSe, Gei,Sei, GeSeand SeGe, respectively. These values are comparable to the results of Liuet al.[36]under Ge-rich condition,the formation energies of VGe, VSe, Gei, Sei, GeSeand SeGeare 1.34 eV, 1.59 eV, 2.19 eV, 2.32 eV, 1.54 eV and 2.29 eV,respectively. Under Se-rich condition,the formation energies are decided to be 0.83 eV,2.24 eV,2.46 eV,0.72 eV,2.52 eV and 0.83 eV for VGe, VSe, Gei, Sei, GeSeand SeGe, respectively,which are also consistent with the corresponding values of 1.25 eV, 1.66 eV, 2.28 eV, 2.24 eV, 1.71 eV and 2.12 eV reported by Liuet al. Our results indicate that both VGeand Seimay have important influences on the electrical and optical properties of GeSe, since their formation energies of neutral defects are lower than 1 eV under Se-rich condition,meaning that their concentrations are high. However, different results have been obtained by other groups,[36,71–73]who carried out GGA-PBE calculations on GeSe by using different supercells,and found Seihas a higher formation energy than our results under both Se-rich and Ge-rich conditions. For the Sei, we consider multiple interstitial sites by using DASP,from which we search for the low-energy configurations after performing calculations for all sites. The Seistructure with the lowest energy is shown in Fig. S1 of the supplementary material. It is noted that the formation energy of Seiis lower than that of other defects under both Ge-rich and Se-rich growth conditions, consistent with the layered structure of GeSe that can easily hold interstitial atoms.

    Table 3. The neutral formation energies(in eV)of the defects in GeSe under both Se-rich and Ge-rich conditions calculated in this work and by others.

    To further explore the defect properties of ionization,we also calculate the formation energy and transition level of the above six defectsαin different ionized charge states. The formation energies of all defects (VGe, VSe, Gei, Sei, GeSe, and SeGe) in the most stable charge states are plotted as a function of the Fermi level, as shown in Fig.3. Obviously, under both Se-rich and Ge-rich conditions,Seiand SeGeare most stable in neutral state, and their formation energies are constant in the whole Fermi level range. Under the Ge-rich condition(Fig.3(a)),if the Fermi level sits at VBM,VGeis in the neutral state,and the formation energy of Ge2-i is lower than those of other defects. VGestays neutral until the Fermi level rises to 0.22 eV above VBM. VGebecomes-2 charged and its formation energy decreases as the Fermi level rises from 0.22 eV above VBM to CBM. It eventually becomes the defect with lowest formation energy. Geiis in +2 state and its formation energy keeps increasing between VBM and 0.54 eV below CBM. For the Fermi level between 0.54 eV below CBM and CBM, Geibecomes neutral and the formation energy keeps unchanged. This causes the Fermi level to be pinned near the VBM,indicating that GeSe is a p-type semiconductor. Under the Se-rich condition (Fig. 3(b)), a similar pattern can be observed as the Fermi level raises from VBM to CBM, except that the lowest formation energy of Geiis always higher than the highest formation energy of VGe. In addition,there are no intrinsic defects to compensate with VGe,so the Fermi level is also located near VBM.Therefore,the conductivity of GeSe is always p-type under different growth conditions, because the Fermi level is pinned near the VBM. The result is consistent with the experimental results that GeSe is an intrinsic p-type semiconductor.[30,31,74,75]

    Fig.3.The formation energies of intrinsic defects in GeSe under(a)Ge-rich and(b)Se-rich conditions as functions of the Fermi energy.

    The calculated transition levels of the intrinsic defects in the band gap of GeSe are summarized in Fig. 4. The transition level of SeGeis 0.04 eV below VBM,and Seialso has no transition level in the band gap. Hence,it is worth noting that although Seihas a lower formation energy, it does not affect the conductivity and cause the recombination due to the lack of charge state.VGehas a defect level of(0/2–),which is 0.22 eV from VBM,indicating that VGeis a shallow accepter and the p-type origin of GeSe. In contrast,(0/2+)defect level of Geiis deep in the bandgap,or 0.54 eV below CBM.For GeSeand VSe, they both have two transition levels. The (0/2+) level of GeSeis located at 0.07 eV above the VBM,and the(0/2–)level is located at 0.42 eV below the CBM,that is,the acceptor defect level is shallower than the donor defect level. On the contrary, for VSe, the donor defect level is shallower than the acceptor defect level. Specifically,the(0/2+)defect level of is 0.47 eV higher than VBM,and the(0/2–)defect level is 0.17 eV lower than CBM.

    Fig. 4. The calculated charge-state transition levels of the intrinsic defects in the bandgap of GeSe. The blue bars show the acceptor levels, and the pink bars represent the donor levels. The initial and final charge states are labeled in parentheses.

    Fig. 5. Calculated density of all intrinsic points defects, Fermi levels, and hole-carrier density at room temperature(300 K)in GeSe crystals grown at a high temperature(800 K)under different chemical conditions.

    The calculated density of all intrinsic point defects in different charge states, Fermi level, and hole-carrier density changing with the chemical condition are shown in Fig.5.The concentrations of VGe, Sei, and SeGeincrease as the growth condition changes from Ge-rich to Se-rich, whereas the concentrations of Geiand GeSedecrease. This is consistent with the calculated formation energies. The concentrations of VGeand Seiunder Se-rich condition are in the order of 1017cm-3and 1014cm-3under Ge-rich condition, respectively. However,Seistays at neutral state and does not affect conductivity or recombination, so VGeis the dominate defect. Therefore,the high concentration of VGeis the reason why GeSe is the p-type semiconductor. Furthermore, the concentration of Geiis higher than 1014cm-3under Ge-rich condition, indicating that Ge-rich condition favors the Geigeneration. Owing to its deeper charge-state transition level probably being the recombination centers, we propose growing GeSe thin film under Se-rich condition to prevent the formation of deep-level defect Gei.

    4. Conclusion

    In summary, we systematically investigate the point defects of GeSe using first-principles calculations under different growth conditions. The results show that VGehas the lowest formation energy under Se-rich condition, with a (0/2–)charge-state transition level lying 0.22 eV above the VBM.Hence,the p-type origin of GeSe mainly contributes from the shallow level and high density(over 1017cm-3)of VGe. Under Se-rich growth condition,Seihas a low formation energy in the neutral state,which is consistent with the layered structure of GeSe,which can easily hold interstitial atoms. Seihas no charge state, implying that it neither contributes to conductivity nor is responsible for recombination. Furthermore,because the Fermi level is pinned near VBM, adjusting the growth condition from Se-rich to Se-poor has little effect on the p-type conductivity. However, Ge-rich condition favors the formation of Gei,which is a probable recombination center because of its deep charge-state transition levels. Therefore, we recommend that better GeSe thin film can be grown under Se-rich condition.

    Acknowledgments

    This work was supported by Shanghai Academic/Technology Research Leader(Grant No.19XD1421300),the National Natural Science Foundation of China (Grant No. 12174060), Program for Professor of Special Appointment (Eastern Scholar TP2019019), the National Key Research and Development Program of China (Grant No. 2019YFE0118100), State Key Laboratory of ASIC &System (Grant No. 2021MS006) and Young Scientist Project of MOE Innovation Platform.

    猜你喜歡
    王珊
    無(wú)懼殘缺,活出精彩
    王珊珊攝影作品
    大眾文藝(2022年17期)2022-09-27 16:05:50
    “鋼索女孩”的回家路
    “雙減”背景下的小學(xué)生自主管理培養(yǎng)
    民族文匯(2022年17期)2022-05-16 21:01:51
    基于行為轉(zhuǎn)變理論的護(hù)理干預(yù)應(yīng)用于慢性乙型肝炎對(duì)患者心理狀態(tài)的改善探討
    Building Chinese sites out of Lego 樂(lè)高積木中國(guó)風(fēng)
    Building Chinese sites out of Lego
    月移壁 紙本 王珊
    金秋(2020年4期)2020-08-18 02:39:20
    還能回到原點(diǎn)是最幸福的事
    37°女人(2018年8期)2018-08-23 05:59:06
    還能回到原點(diǎn),是最幸運(yùn)的事
    幸福家庭(2018年8期)2018-08-23 05:35:56
    精品国产乱码久久久久久小说| 少妇裸体淫交视频免费看高清| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品古装| 久久婷婷青草| 成人亚洲欧美一区二区av| 男女边摸边吃奶| 欧美精品国产亚洲| 免费观看的影片在线观看| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 欧美日韩精品成人综合77777| 亚洲国产精品一区三区| 久久久久性生活片| 免费人成在线观看视频色| 全区人妻精品视频| 99热网站在线观看| 国产亚洲精品久久久com| 久久精品国产鲁丝片午夜精品| 免费大片黄手机在线观看| 黄片无遮挡物在线观看| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 欧美另类一区| 久久久久国产精品人妻一区二区| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 五月玫瑰六月丁香| 高清欧美精品videossex| 99久久人妻综合| 黄色一级大片看看| 亚洲熟女精品中文字幕| 午夜福利视频精品| 老熟女久久久| 大陆偷拍与自拍| 少妇人妻 视频| 亚洲,一卡二卡三卡| 亚洲成人一二三区av| 亚洲无线观看免费| 国产一区二区三区av在线| 丰满迷人的少妇在线观看| 99热全是精品| 国产探花极品一区二区| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| 欧美丝袜亚洲另类| 亚洲欧美日韩东京热| 欧美日韩视频精品一区| 在线观看免费高清a一片| 中文字幕制服av| 国产成人freesex在线| 中文欧美无线码| 视频中文字幕在线观看| 久热久热在线精品观看| 在线精品无人区一区二区三 | 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| av播播在线观看一区| 中国国产av一级| 99热这里只有是精品在线观看| 亚洲精品一二三| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 久久久久久久久久久丰满| 免费av不卡在线播放| 免费播放大片免费观看视频在线观看| 大片免费播放器 马上看| 欧美成人午夜免费资源| 永久网站在线| 丰满乱子伦码专区| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 女性被躁到高潮视频| 联通29元200g的流量卡| 国产午夜精品久久久久久一区二区三区| 在线观看国产h片| 干丝袜人妻中文字幕| 亚洲国产日韩一区二区| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 欧美极品一区二区三区四区| 亚洲av在线观看美女高潮| 亚洲天堂av无毛| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 国产深夜福利视频在线观看| 国产 一区 欧美 日韩| 欧美+日韩+精品| 22中文网久久字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产成人久久av| 亚洲伊人久久精品综合| 久久ye,这里只有精品| 久久97久久精品| 最近的中文字幕免费完整| 免费观看无遮挡的男女| videos熟女内射| 蜜臀久久99精品久久宅男| 中文字幕av成人在线电影| freevideosex欧美| 国产一区二区三区av在线| 亚洲av.av天堂| 免费av中文字幕在线| 一级毛片我不卡| av女优亚洲男人天堂| 日本wwww免费看| 国产精品人妻久久久影院| 一二三四中文在线观看免费高清| 99热全是精品| 国产日韩欧美在线精品| 另类亚洲欧美激情| 欧美xxⅹ黑人| 狂野欧美激情性xxxx在线观看| 热re99久久精品国产66热6| 国产在线视频一区二区| 日韩三级伦理在线观看| 久久精品国产亚洲网站| 看免费成人av毛片| 亚洲自偷自拍三级| 国产69精品久久久久777片| 国产在线免费精品| 国产一区亚洲一区在线观看| 国产美女午夜福利| 色5月婷婷丁香| 国产一区二区在线观看日韩| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 久久热精品热| 久久国产亚洲av麻豆专区| av黄色大香蕉| 亚洲精品久久久久久婷婷小说| 日本av手机在线免费观看| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 18禁动态无遮挡网站| 免费av不卡在线播放| 亚洲国产欧美在线一区| 国产无遮挡羞羞视频在线观看| 国产黄片美女视频| 国产成人精品婷婷| 晚上一个人看的免费电影| 国产黄片美女视频| 男女边吃奶边做爰视频| 亚洲不卡免费看| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 高清在线视频一区二区三区| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 新久久久久国产一级毛片| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| av一本久久久久| 国产精品久久久久久久久免| 男的添女的下面高潮视频| 少妇裸体淫交视频免费看高清| 高清在线视频一区二区三区| 一区二区三区精品91| 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久| 男女啪啪激烈高潮av片| 18禁在线无遮挡免费观看视频| 伦精品一区二区三区| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 国产一级毛片在线| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 亚洲第一av免费看| 精品久久久久久久久亚洲| 我要看黄色一级片免费的| 秋霞伦理黄片| 日韩精品有码人妻一区| 男人和女人高潮做爰伦理| 亚洲性久久影院| 亚洲怡红院男人天堂| 欧美精品亚洲一区二区| .国产精品久久| 欧美少妇被猛烈插入视频| 欧美成人精品欧美一级黄| 夜夜看夜夜爽夜夜摸| av一本久久久久| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 黄色欧美视频在线观看| 少妇人妻 视频| 人妻少妇偷人精品九色| av天堂中文字幕网| 成人18禁高潮啪啪吃奶动态图 | 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 精品人妻视频免费看| 99久国产av精品国产电影| 国产精品99久久久久久久久| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 男人舔奶头视频| 大片免费播放器 马上看| 免费看不卡的av| 久久久成人免费电影| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 欧美成人一区二区免费高清观看| 尾随美女入室| 日韩av免费高清视频| 香蕉精品网在线| 国产免费福利视频在线观看| 一二三四中文在线观看免费高清| 中文资源天堂在线| 久久久国产一区二区| 中文字幕制服av| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 色5月婷婷丁香| 亚洲精品乱久久久久久| 如何舔出高潮| 久久久午夜欧美精品| 一区二区三区乱码不卡18| 麻豆成人av视频| 国产欧美另类精品又又久久亚洲欧美| 国产深夜福利视频在线观看| 亚洲精品日韩av片在线观看| 国产精品国产三级国产专区5o| 最近中文字幕2019免费版| 亚洲av电影在线观看一区二区三区| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 少妇 在线观看| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 精品亚洲成a人片在线观看 | 免费少妇av软件| 最新中文字幕久久久久| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 亚洲久久久国产精品| 亚洲内射少妇av| 伊人久久国产一区二区| 日韩精品有码人妻一区| 如何舔出高潮| 只有这里有精品99| 欧美精品亚洲一区二区| av.在线天堂| 久久99热这里只频精品6学生| 日韩一区二区视频免费看| 久久久久久伊人网av| 国产精品伦人一区二区| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 高清午夜精品一区二区三区| 天天躁日日操中文字幕| 大香蕉久久网| 日韩成人av中文字幕在线观看| 成人一区二区视频在线观看| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 国产69精品久久久久777片| 欧美精品一区二区大全| 久久久久网色| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 大片电影免费在线观看免费| 新久久久久国产一级毛片| av国产免费在线观看| 少妇人妻精品综合一区二区| 久久人妻熟女aⅴ| 天天躁日日操中文字幕| 看十八女毛片水多多多| 国产免费视频播放在线视频| 国产欧美亚洲国产| av国产精品久久久久影院| av视频免费观看在线观看| 亚洲精品乱久久久久久| 国产久久久一区二区三区| 日本av免费视频播放| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 久久人人爽av亚洲精品天堂 | 91在线精品国自产拍蜜月| 小蜜桃在线观看免费完整版高清| 一边亲一边摸免费视频| 日韩电影二区| 午夜激情久久久久久久| 男人添女人高潮全过程视频| 国产成人精品婷婷| 精品一区二区三卡| xxx大片免费视频| 精品亚洲成a人片在线观看 | 久久久欧美国产精品| 欧美精品国产亚洲| 中文字幕久久专区| 中国三级夫妇交换| 精品亚洲成a人片在线观看 | 亚洲精品一二三| 男女边吃奶边做爰视频| 亚洲av中文字字幕乱码综合| 日本猛色少妇xxxxx猛交久久| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 妹子高潮喷水视频| 亚洲欧美精品专区久久| 热re99久久精品国产66热6| 国产黄色免费在线视频| 日韩一区二区三区影片| 久久久午夜欧美精品| 水蜜桃什么品种好| 久久热精品热| 97精品久久久久久久久久精品| 99精国产麻豆久久婷婷| 成人无遮挡网站| 国产精品.久久久| 久久人人爽av亚洲精品天堂 | 18禁在线无遮挡免费观看视频| www.av在线官网国产| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 中国国产av一级| 97在线人人人人妻| 久久99热这里只有精品18| 亚洲人成网站在线播| 哪个播放器可以免费观看大片| 99热全是精品| 亚洲欧美精品专区久久| 亚洲精品456在线播放app| 久久99精品国语久久久| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 亚洲av不卡在线观看| 免费观看a级毛片全部| 欧美丝袜亚洲另类| 欧美日韩在线观看h| 日韩一区二区三区影片| 午夜日本视频在线| 少妇熟女欧美另类| 在线观看免费日韩欧美大片 | 热99国产精品久久久久久7| 在线天堂最新版资源| 日韩欧美精品免费久久| 欧美xxⅹ黑人| 丝袜脚勾引网站| 三级国产精品欧美在线观看| 成年人午夜在线观看视频| 久久人妻熟女aⅴ| 99久久精品国产国产毛片| 亚洲电影在线观看av| 日韩欧美精品免费久久| 制服丝袜香蕉在线| 在线 av 中文字幕| 91午夜精品亚洲一区二区三区| 狂野欧美激情性bbbbbb| 在线观看av片永久免费下载| 国产成人aa在线观看| 成人毛片a级毛片在线播放| 麻豆成人午夜福利视频| 男人舔奶头视频| 亚洲精品成人av观看孕妇| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 婷婷色综合大香蕉| 亚洲不卡免费看| 久久99热这里只有精品18| 高清在线视频一区二区三区| 黑人高潮一二区| 国产一区有黄有色的免费视频| 亚洲精品色激情综合| 少妇精品久久久久久久| 国产亚洲91精品色在线| 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 激情五月婷婷亚洲| 亚洲性久久影院| 日本av手机在线免费观看| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 性高湖久久久久久久久免费观看| 一级毛片我不卡| 亚洲电影在线观看av| 大香蕉97超碰在线| 中文字幕av成人在线电影| 韩国av在线不卡| 久久99蜜桃精品久久| 欧美丝袜亚洲另类| 久久精品久久久久久噜噜老黄| 亚洲美女搞黄在线观看| 我的女老师完整版在线观看| 欧美97在线视频| 九色成人免费人妻av| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 一个人看的www免费观看视频| 性色avwww在线观看| 亚洲欧美一区二区三区黑人 | 久热这里只有精品99| 激情 狠狠 欧美| 亚洲在久久综合| 亚洲,一卡二卡三卡| av福利片在线观看| 成年人午夜在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 欧美bdsm另类| videos熟女内射| 国产亚洲91精品色在线| 在线播放无遮挡| av国产精品久久久久影院| 久久女婷五月综合色啪小说| 99久久精品国产国产毛片| 欧美精品人与动牲交sv欧美| 日本黄色片子视频| 搡女人真爽免费视频火全软件| 国产乱人偷精品视频| 各种免费的搞黄视频| 男人添女人高潮全过程视频| 国产精品精品国产色婷婷| 黄色一级大片看看| 久久国内精品自在自线图片| 中文字幕av成人在线电影| 美女高潮的动态| 久久精品国产自在天天线| 涩涩av久久男人的天堂| 国国产精品蜜臀av免费| 十八禁网站网址无遮挡 | 丝瓜视频免费看黄片| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 夜夜看夜夜爽夜夜摸| 国产精品99久久99久久久不卡 | 在线观看av片永久免费下载| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 免费少妇av软件| 国产精品爽爽va在线观看网站| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 大陆偷拍与自拍| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 丝瓜视频免费看黄片| 国产男人的电影天堂91| 亚洲精品一二三| 91久久精品国产一区二区成人| 欧美区成人在线视频| 熟女人妻精品中文字幕| 日本午夜av视频| 直男gayav资源| 久久久国产一区二区| 国产毛片在线视频| 成人无遮挡网站| 22中文网久久字幕| 久久久久久久大尺度免费视频| 日本vs欧美在线观看视频 | 国产乱人视频| 国产精品蜜桃在线观看| 亚洲自偷自拍三级| 欧美人与善性xxx| 六月丁香七月| 久久久久久九九精品二区国产| 啦啦啦啦在线视频资源| 国产成人91sexporn| 午夜免费观看性视频| 精品少妇久久久久久888优播| 国产av码专区亚洲av| 欧美精品亚洲一区二区| 久久精品久久久久久噜噜老黄| 国产成人精品一,二区| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 在线观看一区二区三区| 成年女人在线观看亚洲视频| 天美传媒精品一区二区| 久久人妻熟女aⅴ| 建设人人有责人人尽责人人享有的 | 欧美国产精品一级二级三级 | 看非洲黑人一级黄片| 国产成人a区在线观看| 丰满迷人的少妇在线观看| 国产男女超爽视频在线观看| 少妇 在线观看| 亚洲欧洲国产日韩| 人妻 亚洲 视频| 91在线精品国自产拍蜜月| 天堂中文最新版在线下载| 性色av一级| 久久久久久久久大av| 日韩欧美一区视频在线观看 | 女的被弄到高潮叫床怎么办| 欧美精品国产亚洲| 亚洲欧美日韩东京热| 热99国产精品久久久久久7| 中文欧美无线码| 在线观看人妻少妇| 免费大片18禁| 免费观看av网站的网址| 麻豆乱淫一区二区| 国产精品一及| 亚洲欧美成人精品一区二区| 一级毛片我不卡| 亚洲精品自拍成人| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 日本与韩国留学比较| 国产乱人偷精品视频| 亚洲精品国产色婷婷电影| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 男女边摸边吃奶| 国产在线一区二区三区精| 亚洲精品国产色婷婷电影| 久久国产精品大桥未久av | 亚洲精华国产精华液的使用体验| 六月丁香七月| freevideosex欧美| 国产精品蜜桃在线观看| 国产成人精品婷婷| 黄色一级大片看看| 亚洲欧美一区二区三区国产| 视频区图区小说| 小蜜桃在线观看免费完整版高清| videossex国产| 免费高清在线观看视频在线观看| 国产亚洲av片在线观看秒播厂| 国产精品女同一区二区软件| 五月开心婷婷网| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 精品久久久久久久久亚洲| 成人一区二区视频在线观看| 在线观看免费高清a一片| 男女边摸边吃奶| av在线app专区| 久久综合国产亚洲精品| 在线看a的网站| 狠狠精品人妻久久久久久综合| 免费av中文字幕在线| 亚洲成人av在线免费| 久久久久性生活片| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 国产美女午夜福利| 亚洲av男天堂| 亚洲在久久综合| 简卡轻食公司| 一区二区av电影网| 国产伦理片在线播放av一区| 国内精品宾馆在线| 欧美bdsm另类| 人人妻人人看人人澡| 婷婷色综合www| 五月伊人婷婷丁香| 国产午夜精品一二区理论片| 国模一区二区三区四区视频| 亚洲美女黄色视频免费看| 联通29元200g的流量卡| 亚洲高清免费不卡视频| 久久99蜜桃精品久久| 美女中出高潮动态图| 亚洲高清免费不卡视频| 久久99蜜桃精品久久| 美女中出高潮动态图| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 青春草视频在线免费观看| 亚洲高清免费不卡视频| 国产精品成人在线| 一级毛片aaaaaa免费看小| 国模一区二区三区四区视频| 国产真实伦视频高清在线观看| 一级毛片aaaaaa免费看小| 欧美日韩国产mv在线观看视频 | 又黄又爽又刺激的免费视频.| 亚洲欧美日韩卡通动漫| 久久久午夜欧美精品| 欧美一级a爱片免费观看看| 欧美成人a在线观看| 久久精品人妻少妇| 亚洲国产毛片av蜜桃av| 久久97久久精品| 汤姆久久久久久久影院中文字幕| 亚洲av成人精品一区久久| 91精品伊人久久大香线蕉| 只有这里有精品99| 久久精品熟女亚洲av麻豆精品| 一区二区三区免费毛片|