郭瑜冰, 徐 丹△, 孫野青, 趙 斌
(1大連海事大學(xué), 環(huán)境科學(xué)與工程學(xué)院, 環(huán)境系統(tǒng)生物學(xué)研究所, 遼寧 大連 116026; 2中國(guó)科學(xué)院生態(tài)研究環(huán)境中心, 環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100085)
·綜述·
PTP4A3基因?qū)δ[瘤生長(zhǎng)及轉(zhuǎn)移的影響*
郭瑜冰1, 徐 丹1△, 孫野青1, 趙 斌2
(1大連海事大學(xué), 環(huán)境科學(xué)與工程學(xué)院, 環(huán)境系統(tǒng)生物學(xué)研究所, 遼寧 大連 116026;2中國(guó)科學(xué)院生態(tài)研究環(huán)境中心, 環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100085)
PTP4A3基因; 細(xì)胞增殖; 細(xì)胞運(yùn)動(dòng); 腫瘤侵襲; 腫瘤轉(zhuǎn)移; 上皮-間充質(zhì)轉(zhuǎn)化
1PTP4A3基因的概述
PTP4A3基因編碼一種屬于蛋白酪氨酸磷酸酶(protein tyrosine phosphatases, PTPs)家族的蛋白,其相對(duì)分子質(zhì)量大約為22 kD[1]。目前發(fā)現(xiàn)編碼促肝細(xì)胞再生磷酸酶(phosphatases of regenerating livers,PRL)家族的基因包括PTP4A1、PTP4A2和PTP4A3,它們分別位于染色體6q12、1q35.2和8q24.3位置[2](圖1),編碼的蛋白即肝細(xì)胞再生磷酸酶1(phosphatase of regenerating liver-1,PRL-1)、PRL-2和PRL-3。PRL-1是第一個(gè)被發(fā)現(xiàn)在有絲分裂原刺激的細(xì)胞和再生的肝組織中表達(dá)的蛋白[3]。PRL-3主要存在于人類的心肌、平滑肌和骨骼肌中,而在腦、肺、肝和胃腸的正常組織中基本不表達(dá)[2]。PRL-2和PRL-3在惡性腫瘤中表達(dá)升高,包括胰腺癌、前列腺癌、乳腺癌和白血病等[4]。PRL-3是第一個(gè)被發(fā)現(xiàn)與癌癥的發(fā)生發(fā)展相關(guān)的蛋白,作為潛在的癌基因而參與細(xì)胞增殖、細(xì)胞運(yùn)動(dòng)、腫瘤侵襲和腫瘤轉(zhuǎn)移,被認(rèn)為是腫瘤轉(zhuǎn)移的分子標(biāo)志物[5-9]。因此,針對(duì)PTP4A3基因作用機(jī)制的深入研究,將為腫瘤轉(zhuǎn)移的診治提供新的思路。
2PTP4A3在不同癌癥中的表達(dá)
Zhou等[10]利用基因表達(dá)數(shù)據(jù)庫(kù)E-MTAB-37發(fā)現(xiàn),在950個(gè)人類癌癥細(xì)胞系包括32類不同的癌癥中,PTP4A3基因表達(dá)升高的前5位癌癥是慢性髓性白血病(chronic myelogenous leukemia,CML)、急變期-慢性髓性白血病(blastic phase-chronic myelogenous leukemia,BP-CML)、肺小細(xì)胞癌、結(jié)腸癌和乳腺癌(圖2)。隨后發(fā)現(xiàn)在胃癌、卵巢癌、肝癌、口腔癌、子宮頸癌、食道癌、肺癌、多發(fā)性骨髓瘤、急性髓性白血病和鼻咽癌中均有PTP4A3基因表達(dá)上調(diào)的現(xiàn)象[6](表1)。因此,PTP4A3基因的表達(dá)上調(diào)提示其可能與癌癥發(fā)生發(fā)展密切相關(guān)。
Figure 1. Position ofPTP4A1,PTP4A2 andPTP4A3 genes on the chromosomes.
圖1PTP4A1、PTP4A2和PTP4A3基因在染色體上的位置
Figure 2. The expression of PRL-3 in 32 types of cancer.
圖2PRL-3在32種腫瘤中的表達(dá)情況
Saha等[2]在基因表達(dá)系列分析(serial analysis of gene expression,SAGE)文庫(kù)中選出了38個(gè)在結(jié)腸癌轉(zhuǎn)移中上調(diào)的基因,通過(guò)RT-qPCR比較了幾種轉(zhuǎn)移性腫瘤與原發(fā)性腫瘤、惡性腫瘤組織與正常上皮組織中PTP4A3基因轉(zhuǎn)錄產(chǎn)物的表達(dá)。結(jié)果發(fā)現(xiàn),PTP4A3基因在惡性腫瘤組織中比在正常組織中表達(dá)水平高,其在轉(zhuǎn)移性腫瘤中比在原發(fā)性腫瘤中的表達(dá)水平高,而在篩選出的38個(gè)基因中,只有PTP4A3基因在結(jié)腸癌轉(zhuǎn)移中有持續(xù)過(guò)表達(dá)情況,提示PTP4A3基因在結(jié)腸癌轉(zhuǎn)移的過(guò)程中起著重要的作用,是癌癥發(fā)生發(fā)展過(guò)程中的一個(gè)重要的基因,可以考慮作為腫瘤轉(zhuǎn)移的分子標(biāo)志物。
表1 PTP4A3基因在多種癌癥中的表達(dá)變化及涉及的信號(hào)通路
3PTP4A3基因表達(dá)的調(diào)控機(jī)制
目前研究發(fā)現(xiàn),PTP4A3基因表達(dá)的調(diào)控主要包括在轉(zhuǎn)錄水平、翻譯水平和翻譯后水平的調(diào)控(圖3[1])。
3.1轉(zhuǎn)錄水平調(diào)控 在轉(zhuǎn)錄水平上,受到多種轉(zhuǎn)錄因子和小分子RNA的調(diào)控。其中,已發(fā)現(xiàn)的轉(zhuǎn)錄因子p53、Snail、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(signal transducer activator of transcription 3,STAT3)和miR-495能夠促進(jìn)PTP4A3基因表達(dá),而轉(zhuǎn)化生長(zhǎng)因子-β (transforming growth factor-β,TGF-β)則能夠抑制PTP4A3基因表達(dá)[1]。
Figure 3. Differernt ways of regulation forPTP4A3 gene at transcriptional, translational, and post-translational levels.
圖3PTP4A3基因在轉(zhuǎn)錄、翻譯和翻譯后水平的不同調(diào)控方式
PTP4A3是p53的直接靶基因,通過(guò)磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/Akt信號(hào)通路誘導(dǎo)細(xì)胞周期G1期阻滯,PTP4A3基因表達(dá)降低可激活PI3K/Akt信號(hào)通路,而PTP4A3基因表達(dá)升高可導(dǎo)致Akt表達(dá)降低,PI3K信號(hào)激活發(fā)生負(fù)反饋機(jī)制,抑制PTP4A3基因表達(dá)升高,導(dǎo)致PI3K/Akt信號(hào)通路失活使周期阻滯[11]。在結(jié)腸癌中,Snail是調(diào)控PTP4A3基因的重要轉(zhuǎn)錄因子,而PTP4A3基因的過(guò)表達(dá)能夠明顯地引起Snail的表達(dá)升高,是一個(gè)正反饋機(jī)制[12]。在血管內(nèi)皮細(xì)胞中,血管內(nèi)皮生長(zhǎng)因子通過(guò)轉(zhuǎn)錄因子肌細(xì)胞增強(qiáng)因子2C (myocyte enhancer factor 2C,MEF2C)誘導(dǎo)PTP4A3基因的轉(zhuǎn)錄過(guò)程[13]。在急性髓性白血病中,STAT3能夠在轉(zhuǎn)錄水平上激活PTP4A3基因的表達(dá)[14]。在胃癌中,miR-495的下調(diào)導(dǎo)致PTP4A3基因的mRNA和蛋白水平過(guò)表達(dá)[15]。在結(jié)腸癌中,TGF-β能夠抑制PTP4A3基因的過(guò)表達(dá)[9]。
3.2翻譯水平調(diào)控 在翻譯水平上,多聚胞嘧啶結(jié)合蛋白1[poly (C)-binding protein 1,PCBP1]過(guò)表達(dá)能夠使Akt蛋白失活,抑制PRL-3蛋白水平的表達(dá)[1]。
3.3翻譯后水平調(diào)控 硫氧還原蛋白相關(guān)蛋白32(thioredoxin-related protein 32,TRP32)、Src和泛素化特異性蛋白酶4(ubiquitin-specific protease 4,USP4)能夠促進(jìn)PRL-3表達(dá),F(xiàn)K506結(jié)合蛋白38(FK506-binding protein 38,F(xiàn)KBP38)能夠抑制PRL-3表達(dá)[1]。
已有研究發(fā)現(xiàn)翻譯后水平調(diào)控分為以下方面:(1)PRL-3催化半胱氨酸的氧化還原:TRP32能夠與PRL家族蛋白特異性結(jié)合,減少PRL-3的氧化反應(yīng),保持PRL-3的蛋白活性[16];(2)PRL-3的磷酸化:Src可以直接使PRL-3磷酸化,磷酸化位點(diǎn)為Tyr53,磷酸化后的PRL-3也能夠促進(jìn)癌細(xì)胞的運(yùn)動(dòng)和浸潤(rùn)[17];(3)PRL-3的異戊稀基化:PRL-3主要是攜帶異戊稀基化中的法尼基團(tuán)(farnesyltransferase enzyme,F(xiàn)T),進(jìn)而調(diào)節(jié)自身活性[18-19];(4)PRL-3的泛素化:在結(jié)腸癌中,PRL-3是USP4調(diào)節(jié)癌細(xì)胞活動(dòng)必不可缺的蛋白,USP4通過(guò)脫泛素化與PRL-3相互作用,在蛋白水平上使PRL-3更穩(wěn)定[20];FKBP38的N’端能夠與PRL-3相互連接,F(xiàn)KBP38的過(guò)表達(dá)通過(guò)蛋白酶體途徑降低PRL-3表達(dá)[21]。
4PTP4A3基因在癌癥發(fā)生發(fā)展中的作用
近年來(lái)的研究發(fā)現(xiàn),PTP4A3基因在細(xì)胞增殖、細(xì)胞運(yùn)動(dòng)、腫瘤侵襲[1]和上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)[22]等方面發(fā)揮了重要的作用,與腫瘤轉(zhuǎn)移過(guò)程關(guān)系密切(表2)。
表2 PTP4A3基因在癌細(xì)胞中的功能
4.1細(xì)胞增殖 腫瘤細(xì)胞的異常增殖最重要的特點(diǎn)就是能夠無(wú)限增殖,擴(kuò)大病灶的面積。PTP4A3基因能夠促進(jìn)癌細(xì)胞增殖,促使瘤體體積增加,導(dǎo)致腫瘤惡性進(jìn)展。Chu等[23]探討了PTP4A3基因?qū)Y(jié)腸癌LoVo細(xì)胞增殖的影響,與對(duì)照組相比,轉(zhuǎn)染了PTP4A3基因的LoVo-PRL-3細(xì)胞在培養(yǎng)了24 h、48 h和72 h后,細(xì)胞的存活率均顯著升高,提示PTP4A3基因能夠促進(jìn)結(jié)腸癌細(xì)胞的增殖。Matsukawa等[24]探討了PTP4A3基因?qū)ξ赴㏒H101-P4細(xì)胞增殖的影響,與對(duì)照組相比,轉(zhuǎn)染了PRL-3 siRNA的SH101-P4細(xì)胞在培養(yǎng)了25 h和50 h后,細(xì)胞存活率均明顯降低,尤其在50 h時(shí)降低更明顯,提示抑制PTP4A3基因的表達(dá)能夠減少胃癌細(xì)胞的增殖。在分子機(jī)制方面,PRL-3能夠促進(jìn)Ca2+激活K+通道蛋白基因或表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)信號(hào)通路的激活,誘導(dǎo)結(jié)腸癌細(xì)胞增殖[8]。
4.2細(xì)胞運(yùn)動(dòng) 細(xì)胞運(yùn)動(dòng)是許多生物學(xué)過(guò)程的基礎(chǔ),如胚胎發(fā)育、免疫細(xì)胞監(jiān)測(cè)和組織修復(fù)再生等[25]。腫瘤細(xì)胞的運(yùn)動(dòng)能力增加將導(dǎo)致腫瘤細(xì)胞發(fā)生遷移或侵襲,通過(guò)血管進(jìn)入血液而轉(zhuǎn)移到其它組織中,從而破壞組織器官的功能。
Fiordalisi等[17]探討了PTP4A3基因?qū)Ψ伟〩1299細(xì)胞運(yùn)動(dòng)能力的影響,利用單細(xì)胞運(yùn)動(dòng)實(shí)驗(yàn)測(cè)定了轉(zhuǎn)染PRL-3和PRL-3突變體的H1299細(xì)胞運(yùn)動(dòng)能力的變化,實(shí)驗(yàn)結(jié)果表明,與對(duì)照組相比,轉(zhuǎn)染了PRL-3的H1299細(xì)胞的平均運(yùn)動(dòng)速度增加2倍,而轉(zhuǎn)染了PRL-3突變體的H1299細(xì)胞運(yùn)動(dòng)能力沒(méi)有顯著性的變化。Vandsemb等[26]通過(guò)細(xì)胞劃痕實(shí)驗(yàn)探討了PTP4A3基因?qū)η傲邢侔㏄C3細(xì)胞運(yùn)動(dòng)能力的影響,結(jié)果發(fā)現(xiàn),與對(duì)照組相比,加PRL-3抑制劑的PC3細(xì)胞遷移能力降低,并隨著PRL-3抑制劑濃度的增加而進(jìn)一步降低,提示PTP4A3基因能夠促進(jìn)癌細(xì)胞的運(yùn)動(dòng)能力增加。
在分子機(jī)制方面,PRL-3通過(guò)調(diào)節(jié)Rho家族中的小GTP酶,包括RhoA/C、Rac和Cdc42,促進(jìn)結(jié)腸癌細(xì)胞的運(yùn)動(dòng)[27]。PRL-3下調(diào)酪氨酸磷酸化的整聯(lián)蛋白β1,增加細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular regulated protein kinases 1/2,ERK1/2)的磷酸化水平,進(jìn)而促進(jìn)癌細(xì)胞的運(yùn)動(dòng)[28]。
4.3腫瘤侵襲 腫瘤細(xì)胞的侵襲能力與癌癥的發(fā)生發(fā)展密不可分。腫瘤細(xì)胞具有侵襲能力是其轉(zhuǎn)移的前提,具有局部侵襲及遠(yuǎn)處轉(zhuǎn)移能力是惡性腫瘤最重要的生物學(xué)特性[29]。PTP4A3基因能夠促進(jìn)癌細(xì)胞的侵襲,導(dǎo)致癌細(xì)胞突破原發(fā)病灶的上皮基底膜結(jié)構(gòu),侵襲正常的組織并進(jìn)行分裂增殖,從而導(dǎo)致正常組織的結(jié)構(gòu)被破壞[30]。
Dong等[31]通過(guò)細(xì)胞侵襲和遷移實(shí)驗(yàn)探討了PRL-3對(duì)唾液腺樣囊性癌細(xì)胞SACC-83細(xì)胞侵襲和遷移的影響。結(jié)果發(fā)現(xiàn),與對(duì)照組相比,轉(zhuǎn)染了PRL-3 cDNA的SACC-83細(xì)胞侵襲和遷移的細(xì)胞數(shù)顯著增加,提示PRL-3的過(guò)表達(dá)能夠促進(jìn)癌細(xì)胞的侵襲能力。
基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)在腫瘤生長(zhǎng)和腫瘤細(xì)胞侵襲過(guò)程中起重要作用,如MMP-7涉及腫瘤轉(zhuǎn)移,并且在90%的結(jié)腸癌中存在過(guò)表達(dá)的情況[32]。PRL-3通過(guò)誘導(dǎo)MMP-7的表達(dá),進(jìn)而調(diào)節(jié)PI3K/Akt和ERK信號(hào)通路,促進(jìn)結(jié)腸癌細(xì)胞的侵襲。此外,PRL-3能夠通過(guò)ERK-Slug通路在唾液腺樣囊性癌的轉(zhuǎn)移過(guò)程中起重要作用[31]。
4.4EMT發(fā)生 EMT是上皮細(xì)胞失去其細(xì)胞極性和細(xì)胞與細(xì)胞間的黏附性,成為獲得遷移和侵襲性質(zhì)的間充質(zhì)干細(xì)胞的過(guò)程[33],多發(fā)生于腫瘤形成期[22],并與腫瘤轉(zhuǎn)移密切相關(guān)。EMT的特征變化在于細(xì)胞喪失黏附性,使上皮腫瘤細(xì)胞獲得遷移、侵襲和抗凋亡的能力[34]。EMT過(guò)程有許多典型的分子標(biāo)志物發(fā)生改變[35](表3),其中最典型的變化包括E-鈣黏蛋白(epithelial cadherin,E-cadherin)表達(dá)的降低和波形蛋白(vimentin)表達(dá)的升高。
表3 EMT分子標(biāo)志物
PRL-3通過(guò)直接或間接地調(diào)節(jié)EMT的分子標(biāo)志物而促進(jìn)EMT的發(fā)生,如PRL-3能夠直接調(diào)節(jié)E-cadherin或通過(guò)促進(jìn)vimentin、Snail、β-聯(lián)蛋白(β-catenin)的表達(dá)升高,間接地引起E-cadherin表達(dá)降低,從而促進(jìn)結(jié)腸癌細(xì)胞發(fā)生EMT[12, 36]。
TGF-β信號(hào)通路是經(jīng)典的EMT信號(hào)通路之一[37],PRL-3是TGF-β的一個(gè)靶蛋白,TGF-β信號(hào)通路的缺失導(dǎo)致結(jié)腸癌中PRL-3表達(dá)上調(diào),與腫瘤轉(zhuǎn)移有潛在的相關(guān)性[9]。PI3K/Akt信號(hào)通路有許多功能,包括細(xì)胞凋亡、細(xì)胞侵襲和腫瘤轉(zhuǎn)移[38]。在PI3K信號(hào)通路中,PRL-3可以通過(guò)下調(diào)磷酸酶和PTEN的表達(dá)進(jìn)而促進(jìn)結(jié)腸癌EMT的發(fā)生[22]。在PI3K/Akt信號(hào)通路中,PRL-3通過(guò)增加PTEN磷酸化水平進(jìn)而激活該信號(hào)通路,促進(jìn)胃癌細(xì)胞轉(zhuǎn)移[39]。
腫瘤轉(zhuǎn)移是惡性腫瘤細(xì)胞從原發(fā)部位,經(jīng)淋巴道、血管或體腔等途徑,到達(dá)其它部位繼續(xù)生長(zhǎng)的一個(gè)過(guò)程,此過(guò)程中會(huì)發(fā)生細(xì)胞骨架的變化、細(xì)胞黏附性喪失和運(yùn)動(dòng)性增強(qiáng),并且能夠分泌降解基底膜的蛋白水解酶[2]。Peng等[40]將結(jié)腸癌LoVo細(xì)胞和轉(zhuǎn)染PRL-3的LoVo細(xì)胞(LoVo-P)注射入雌性BALB/c小鼠體內(nèi),兩個(gè)月之后,將小鼠的肺和肝組織用蘇木紫和曙紅染色制成玻片,在顯微鏡下觀察是否有腫瘤轉(zhuǎn)移發(fā)生。結(jié)果發(fā)現(xiàn),注射LoVo-P的小鼠在肺部出現(xiàn)一個(gè)轉(zhuǎn)移性腫瘤,且注射LoVo-P小鼠中出現(xiàn)轉(zhuǎn)移性腫瘤顯著多于對(duì)照組小鼠。因此,以上結(jié)果均表明PTP4A3基因促進(jìn)了結(jié)腸癌的轉(zhuǎn)移,具有促進(jìn)癌癥的發(fā)生發(fā)展作用。
5總結(jié)與展望
PTP4A3基因?qū)δ[瘤的發(fā)生發(fā)展起著重要的作用,其不僅可以促進(jìn)腫瘤細(xì)胞的增殖、運(yùn)動(dòng)和侵襲,也能通過(guò)EMT而促進(jìn)腫瘤轉(zhuǎn)移。腫瘤轉(zhuǎn)移是一個(gè)復(fù)雜的過(guò)程,包括原發(fā)癌的生成、細(xì)胞轉(zhuǎn)化、細(xì)胞運(yùn)動(dòng)、細(xì)胞侵襲和血管生成等[23]。PTP4A3基因通過(guò)多種途徑促進(jìn)腫瘤轉(zhuǎn)移,涉及細(xì)胞增殖、細(xì)胞侵襲和細(xì)胞運(yùn)動(dòng)及EMT等,且這些方面相互影響,協(xié)同促進(jìn)了腫瘤轉(zhuǎn)移(圖4):(1)PTP4A3基因促進(jìn)細(xì)胞增殖,可能會(huì)促進(jìn)細(xì)胞侵襲和遷移[8,12];(2)細(xì)胞運(yùn)動(dòng)和細(xì)胞侵襲受到EMT調(diào)節(jié)[23],EMT通過(guò)ERK-Slug信號(hào)通路使得細(xì)胞運(yùn)動(dòng)和侵襲的能力增加[31],是激活細(xì)胞運(yùn)動(dòng)的重要因素[40];(3)細(xì)胞運(yùn)動(dòng)能力的增加,使細(xì)胞間失去粘連性,促進(jìn)EMT發(fā)生[41];(4)EMT以上皮細(xì)胞間連接的破壞、細(xì)胞形態(tài)改變、抗細(xì)胞凋亡、細(xì)胞外基質(zhì)蛋白降解和細(xì)胞運(yùn)動(dòng)能力增加等為特征,使得腫瘤細(xì)胞具有侵襲能力,最終實(shí)現(xiàn)腫瘤遠(yuǎn)端轉(zhuǎn)移,促進(jìn)癌癥的進(jìn)展[42]。
Figure 4. The possible mechanism ofPTP4A3 gene in promoting tumor metastasis.
圖4PTP4A3基因促進(jìn)腫瘤轉(zhuǎn)移的可能分子機(jī)制
目前,關(guān)于PTP4A3基因的功能與腫瘤關(guān)系的研究報(bào)道應(yīng)該更加關(guān)注如下幾個(gè)方面:(1)加強(qiáng)對(duì)轉(zhuǎn)錄因子調(diào)控的信號(hào)通路研究,進(jìn)一步揭示PTP4A3基因編碼的蛋白各功能與腫瘤發(fā)生發(fā)展之間的關(guān)系;(2)PTP4A3基因編碼的蛋白各功能之間相互影響,提示與腫瘤相關(guān)的各信號(hào)通路間可能存在著相互的聯(lián)系,需要進(jìn)一步開展基因網(wǎng)絡(luò)通路的探討;(3)PTP4A3基因在癌癥發(fā)生發(fā)展中發(fā)揮了重要的作用,尤其是能夠促進(jìn)腫瘤轉(zhuǎn)移,因此,將來(lái)應(yīng)該針對(duì)PRL-3進(jìn)行腫瘤的靶向治療,這將為轉(zhuǎn)移性腫瘤的診斷、預(yù)防和治療等提供新的研究方向。
[1] Rubio T, K?hn M. Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3[J]. Biochem Soc Trans, 2016, 44(5):1305-1312.
[2] Saha S, Bardelli A, Buckhaults P, et al. A phosphatase associated with metastasis of colorectal cancer[J]. Science, 2001, 294(5545):1343-1346.
[3] Radke I, G?tte M, Kersting C, et al. Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer[J]. Br J Cancer, 2006, 95(3):347-354.
[4] Gungabeesoon J, Tremblay ML, Uetani N. Localizing PRL-2 expression and determining the effects of dietary Mg2+on expression levels[J]. Histochem Cell Biol, 2016, 146(1):99-111.
[5] 褚忠華, 劉 璐, 來(lái) 偉, 等. 受翻譯調(diào)節(jié)的腫瘤蛋白在PRL-3促進(jìn)結(jié)腸癌轉(zhuǎn)移中的作用[J]. 中國(guó)病理生理雜志, 2011, 27(10):1907-1912.
[6] Campbell AM, Zhang ZY. Phosphatase of regenerating li-ver: a novel target for cancer therapy[J]. Expert Opin Ther Targets, 2014, 18(5):555-569.
[7] Lian S, Meng L, Xing X, et al. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer[J]. Oncol Lett, 2016, 12(3):1661-1666.
[8] Al-Aidaroos AQ, Yuen HF, Guo K, et al. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells[J]. J Clin Invest, 2013, 123(8):3459-3471.
[9] Jiang YJ, Liu XQ, Rajput A, et al. Phosphatase PRL-3 is a direct regulatory target of TGFβ in colon cancer metastasis[J]. Cancer Res, 2010, 71(1): 234-244.
[10] Zhou J, Cheong LL, Liu SC, et al. The pro-metastasis tyrosine phosphatase, PRL-3 (PTP4A3), is a novel mediator of oncogenic function of BCR-ABL in human chronic myeloid leukemia[J]. Mol Cancer, 2012, 11:72.
[11] Basak S, Jacobs SB, Krieg AJ, et al. The metastasis-associated genePrl-3 is a p53 target involved in cell-cycle regulation[J]. Mol Cell, 2008, 30(3): 303-314.
[12] Zheng P, Meng HM, Gao WZ, et al. Snail as a key regulator ofPrl-3 gene in colorectal cancer[J]. Cancer Bio Ther, 2011, 12(8):742-749.
[13] Xu J, Cao S, Wang L, et al. VEGF promotes the transcription of the humanPrl-3 gene in HUVEC through transcription factor MEF2C[J]. PLoS One, 2011, 6(11):e27165.
[14] Zhou J, Chong PS, Lu X, et al. Phosphatase of regenerating liver-3 is regulated by signal transducer and activator of transcription 3 in acute myeloid leukemia[J]. Exp Hematol, 2014, 42(12):1041-1052.
[15] Li Z, Zhang G, Li D, et al. Methylation-associated silencing of miR-495 inhibit the migration and invasion of human gastric cancer cells by directly targeting PRL-3[J]. Biochem Biophys Res Commun, 2015, 456(1):344-350.
[16] Ishii T, Funato Y, Miki H. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL)[J]. J Biol Chem, 2013, 288(10):7263-7270.
[17] Fiordalisi JJ, Dewar BJ, Graves LM, et al. Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion[J]. PLoS One, 2013, 8(5):e64309.
[18] Zeng Q, Hong W, Tan YH. Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1[J]. Biochem Biophys Res Commun, 1998, 244(2):421-427.
[19] Zeng Q, Si X, Horstmann H, et al. Prenylation-depen-dent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome[J]. J Biol Chem, 2000, 275(28):21444-21452.
[20] Xing C, Lu XX, Guo PD, et al. Ubiquitin-specific pro-tease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis[J]. Cancer Res, 2016, 76(1):83-95.
[21] Choi MS, Min SH, Jung H, et al. The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability[J]. Biochem Biophys Res Commun, 2011, 406(2):305-309.
[22] Wang H,Quah SY,Dong JM, et al. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition[J]. Cancer Res, 2007, 67(67):2922-2926.
[23] Chu ZH, Liu L, Zheng CX, et al. Proteomic analysis identifies translationally controlled tumor protein as a mediator of phosphatase of regenerating liver-3-promoted proliferation, migration and invasion in human colon cancer cells[J]. Chin Med J (Engl), 2011, 124(22):3778-3785.
[24] Matsukawa Y, Semba S, Kato H, et al. Constitutive suppression of PRL-3 inhibits invasion and proliferation of gastric cancer cellinvitroandinvivo[J]. Pathobiology, 2010, 77(3):155-162.
[25] Yamaguchih H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion[J]. Biochim Biophys Acta, 2007, 1773(5):642-652.
[26] Vandsemb EN, Bertilsson H, Abdollahi P, et al. Phosphatase of regenerating liver 3 (PRL-3) is overexpressed in human prostate cancer tissue and promotes growth and migration[J]. J Transl Med, 2016, 14:71.
[27] Fiordalisi JJ, Keller PJ, Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility[J]. Cancer Res, 2006, 66(6): 3153-3161.
[28] Peng L, Jin G, Wang L, et al. Identification of integrin α1 as an interacting protein of protein tyrosine phosphatase PRL-3[J]. Biochem Biophys Res Commun, 2006, 342(1):179-183.
[29] 吳 香, 柳 露. miRNA與卵巢癌的侵襲轉(zhuǎn)移機(jī)制研究進(jìn)展[J]. 國(guó)際婦產(chǎn)科學(xué)雜志, 2014, 41(2):142-145.
[30] 王 君, 張 曉. 乳腺癌浸潤(rùn)和轉(zhuǎn)移的研究進(jìn)展[J]. 臨床軍醫(yī)雜志, 1998, 26(4): 48-50.
[31] Dong Q, Ding X, Chang B, et al. PRL-3 promotes migration and invasion and is associated with poor prognosis in salivary adenoid cystic carcinoma[J]. J Oral Pathol Med, 2016, 45(2): 111-118.
[32] Lee SK, Han YM, Yun J, et al. Phosphatase of regenerating liver-3 promotes migration and invasion by upregulating matrix metalloproteinases-7 in human colorectal cancer cells[J]. Int J Cancer, 2012, 131(3):E190-E203.
[33] 張燦燦, 尉 蔚, 林雪艷, 等. 上皮性卵巢癌中PARP-1的表達(dá)及其與EMT的關(guān)系[J]. 中國(guó)病理生理雜志, 2016, 32(3):425-431.
[34] Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
[35] Zhou P, Liu B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer [J]. Mol Cancer, 2017, 16:52.
[36] Liu Y, Zhou J, Chen J, et al. PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly[J]. Cancer Biol Ther, 2009, 8(14): 1352-1359.
[37] Massagué J. TGFβ in cancer [J]. Cell, 2008, 134(2):215-230.
[38] Fresno Vara JA, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treat Rev, 2004, 30(2):193-204.
[39] Xiong J, Li Z, Yang Z, et al. PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN [J]. Oncol Rep, 2016, 36(4):1819-1828.
[40] Peng L, Xing X, Li W, et al. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin β1-ERK1/2 and-MMP2 signaling[J]. Mol Cancer, 2009, 8:110.
[41] Shin Y, Kim GD, Jeon JE, et al. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition[J]. Mar Drugs, 2013, 11(7):2472-2485.
[42] Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006, 7(2):131-142.
(責(zé)任編輯: 盧 萍, 余小慧)
Effect of PTP4A3 gene on tumor growth and metastasis
GUO Yu-bing1, XU Dan1, SUN Ye-qing1, ZHAO Bin2
(1DalianMaritimeUniversity,EnvironmentalScienceandEngineeringCollege,InstituteofEnvironmentalSystemsBiology,Dalian
116026,China;2ChineseAcademyofScience,StateKeyLaboratoryofEnvironmentalChemistryandEcotoxicology,ResearchCenterforEco-environmentalScience,Beijing100085,China.E-mail:jotan1995@dlmu.edu.cn)
PTP4A3 is an oncogene, which encodes phosphatase of regenerating liver (PRL)-3 protein that is a metastasis-associated phosphorylase. At present, a number of studies have found that it promotes cell proliferation, cell motility, cell invasion, tumor metastasis and epithelial-mesenchymal transition. Therefore, it is inseparable with the occurrence and development of cancer. Here, we summarize the relationship betweenPTP4A3 gene and the occurrence and development of cancer, the alteration ofPTP4A3 gene expression and the functional role ofPTP4A3 gene in a variety of cancers. This review will help us to understand the correlation betweenPTP4A3 gene and cancer as well as the mechanism of signaling pathway, providing new insights ofPTP4A3 gene targeting strategy for treating cancer.
PTP4A3 gene; Cell proliferation; Cell motility; Tumor invasion; Tumor metastasis; Epithelial-mesenchymal transition
1000- 4718(2017)11- 2103- 07
2017- 05- 15
2017- 06- 27
國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(No. 21207012);遼寧省自然科學(xué)基金資助項(xiàng)目(No. 201602079);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(No. 3132014306); 環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)開放基金(No. KF2014-15)
△通訊作者 Tel: 0411-84723633-822; E-mail: jotan1995@dlmu.edu.cn
R73.3; R363
A
10.3969/j.issn.1000- 4718.2017.11.030