• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new model to simulate infrared radiation from an aircraft exhaust system

    2017-11-20 12:07:13ZhouYueWangQiangLiTing
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Zhou Yue,Wang Qiang,Li Ting

    aSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    bCollaborative Innovation Center for Advanced Aero-Engine,Beijing 100083,China

    A new model to simulate infrared radiation from an aircraft exhaust system

    Zhou Yuea,*,Wang Qianga,b,Li Tinga,b

    aSchool of Energy and Power Engineering,Beihang University,Beijing 100083,China

    bCollaborative Innovation Center for Advanced Aero-Engine,Beijing 100083,China

    Computational efficiency;Infrared radiation;k-distribution;Multi-scale method;Radiative contribution

    A multi-scale narrow band correlated-kdistribution(MSNBCK)model is developed to simulate infrared radiation(IR)from an exhaust system of a typical aircraft engine.In this model,an approximate approach instead of statistically uncorrelated assumption is used to treat overlapping bands in gas mixture.It significantly reduces the requirement for computing power through converting the exponential increase of computing power consumption with the increase of participating gas species to linear increase.Besides,MSNBCK model has a great advantage compared with conventional methods which can estimate each species’contribution to the total gas mixture radiation intensity.Line by line(LBL)results,experimental data and other results in the references are used to evaluate this new model,which demonstrates its advantage in terms of accuracy and computing efficiency.By coupling this model and finite volume method(FVM)into radiative transfer equation(RTE),a comparative study is conducted to simulate IR signature from the exhaust system.The results indicate that wall’s IR emission should be considered in both 3–5 lm and 8–14 lm bands while gases’IR emission plays an important role only in 3–5 lm band.For plume IR radiation,carbon dioxide’s emission is much more significant than that of water vapor in both 3–5 lm and 8–14 lm bands.Especially in 3–5 lm band,the water vapor’s IR signal can even be neglected compared with that of carbon dioxide.

    1.Introduction

    Infrared stealth is one of important abilities for aircraft to prevail in modern air battle.IR emission from the exhaust system takes a great proportion in the total IR emission of an aircraft.Therefore,accurate prediction of IR signature from an exhaust system is of great significance for IR detection and aircraft propulsion system design.

    IR emission from a specific exhaust system can be attributed to two parts:hot plume IR emission and high temperature engine parts IR emission,such as that of nozzle,and turbineblades.Compared with high temperature engine parts,radiation from the hot plume is much more complicated,since carbon dioxide and water vapor’s IR emission plays a major role,which shows non-gray characteristics.With respect to nongray gas radiative calculation,LBL method is conducted using detailed information of every needed spectral line from a high resolution spectroscopic database;therefore it is recognized as the most accurate method.1However,the disadvantage of this method is also very obvious,and it requires huge amount of computing power which makes it impractical to be applied to the real world.For this reason,different models have been developed to provide relatively accurate yet efficient calculations.From the functional standpoint,all these models can be divided into two kinds:one is for calculating thermal radiation such as Weighted-Sum-of-Gray-Gases(WSGG)model,2Spectral Line Based Weighted Sum of Gray Gases(SLW)model,3–6absorption distribution function(ADF)model7and full-spectrumk-distribution(FSK)model8,9and the other is for IR signal calculation such as statistical narrow band(SNB)model10,11and narrow bandk-distribution(NBK)model.12The output parameter of SNB model is transmissivity,which is suitable for ray tracing RTE solver,but it is diff icult to couple with differential methods such as finite volume method and discrete coordinate method.Besides,the SNB model is also incompatible with scattering from particles or soot in the plume even though different strategies have been tried to solve this issue.13,14In comparison,NBK model provides absorption coefficient as model output parameter which can be coupled with arbitrary RTE solution method and deal with scattering simultaneously.The principle of NBK model is that provided the medium is homogeneous and for a narrow band which is sufficiently narrow to assume a constant Planck function,the absorption coefficient can be reordered into a smooth and monotonically increasing function so that integration over the narrow band can be replaced by an integral scheme with several points.Compared with spectral evaluations for LBL,NBK model provides an efficient way to reduce the computational costs,but it is limited to calculate single homogeneous medium.Two methods have been used to deal with non-homogeneous gas,i.e.correlated-k(CK)method and scaling approximation,and the CK method assumes that the maximum absorption coefficients across the spectrum under investigation always occur at the same wavenumber,regardless of the temperature,pressure and mole fraction,15and are suitable for all intermediate values.The scaling approximation is inherently similar to CK method but more precise in mathematical terms.Because of less restrictiveness and acceptable accuracy,the CK method is widely used in both full spectrum and narrow band,forming FSCK model and NBCK or SNBCK model.16,17For all band models,treatment of overlapping bands in gas mixture is always somewhat problematic.One conventional approach is statistically uncorrelated assumption,i.e.transmissivity of a gas mixture can be obtained by multiplying transmissivity of each species.This turned to be true for narrow band but the computational costs become expensive by a factor ofNMwhereNis the number of integral points in solving RTE andMthe number of participating gases.Depending on different assumptions,some approximate mixing models such as convolution,multiplication,superposition and hybrid approaches have also been proposed by Solovjov and Webb to deal with gas mixture’s radiation in full spectrum.18Besides,Modest and Riazzi calculated the mixture’s cumulativek-distribution function based on the multiplication of transmissivities and property of Laplace transformation.19Instead of treating the mixture as a single gas,it is noted that a multi-scale approach is applied in full spectrum to calculate radiation emitted by a certain gas but absorbed by all the gases.This is an approximate way but which finally achieved both reasonable accuracy and computational efficiency.20Above all,it increases computational costs by a factor ofM?N,but to date,the multi-scale concept is mainly used in full spectrum with several different models having been derived.21–23

    In this paper,we present a narrow band model based on the CK method and multi-scale method,and to the best of the author’s knowledge,such a combination(MSNBCK)has not been carried out in the past.Experimental and LBL results will serve as a benchmark to validate the accuracy ofk-distribution method.When dealing with overlapping bands in gas mixture,the MSNBCK model is evaluated by comparison with exact LBL results and SNB model combined with statistical uncorrelated assumption for both isothermal and non-isothermal cases.Using the Finite Volume Method(FVM)to solve RTE and MSNBCK model and describe the property of non-gray gas mixture,simulation of the infrared signature from a realistic three-dimensional aircraft engine is conducted.Absorption coefficients of participating species are calculated from the spectroscopic database HITEMP 2010 in advance and all the IR calculation process in this paper is accomplished using C program.

    2.Numerical modeling and validation

    The radiative transfer equation for an absorbing,emitting and scattering medium is written as1

    in which e is the wall’s emissivity,Ibgwradiative intensity of the black wall and n the corresponding surface normal vector.

    2.1.k-distribution and spectral reordering

    Fig.1 Absorption coefficient of CO2in 4.3 lm band.

    For a givenkvalue,thek-distribution functionfekT is defined as

    Fig.2 Cumulative k-distribution function corresponding to Fig.1.

    which progressively represents fraction of the spectrum whose absorption coefficient lies below the value ofk.

    in whichLis the length of gas layer.Eqs.(7)and(8)can be easily calculated through numerical integration method.For this paper,all the numerical integration is accomplished via 7-point Gauss integral scheme.The experimental data measured by Bharadwaj et al.24–27Exponential Wide Band(EWB)results28and LBL results are used here for the validation ofk-distribution and spectral reordering.Table 1 shows the conditions under which the measurements and calculations are taken.

    For all conditions,both measured and calculated data are shown in Fig.3,among which the NBK model represents results usingk-distribution method.Generally,the predicted band transmissivity calculated by NBK model and LBL agreed with the measured values very well while the NBK model takes much less computational costs than LBL.For the present case,the bandwidth of NBK model is 4 cm?1and the wavenumber resolution of LBL is 0.01 cm?1,which means transmissivity needs to be calculated 7 times for NBK model and 400 times for LBL method to obtain an average transmissivity in Eq.(8).In contrast,the EWB model treated transmissivity as a constant and calculated it only once across a certain band,but loss of detailed spectral information and larger errors are also inevitable(Fig.3).

    Table 1 Description of calculated and measured conditions.

    Fig.3 Comparison of band transmissivity for cases in Table 1.

    Fig.4 Absorption coefficients at two different temperatures.

    2.2.Correlated-k(CK)method for non-isothermal gas

    In Section 2.1,thek-distribution method is used for isothermal gas and is not straightforward to be applied to non-isothermal medium.To overcome this limitation,the CK method assumes that thek-distribution functions are ‘correlated” regardless of temperatures.15It implies that the ups and downs of the absorption coefficient curve have the same pattern even if temperature changes.This method has been proven very successful in the atmosphere29;however,the appearance of‘hot lines”at high temperature makes the pattern of absorption coefficient curve not strictly match that at low temperature(Fig.4).

    Lack of correlation fails to provide accurate results when CK method is combined with full spectrum(FSCK)to calculate cases with large temperature gradients,and thus the multi-group method is subsequently put forward to solve this problem,which has obtained good accuracy.22,30In the multi-group method,the spectrum is broken up into different groups according to the temperature dependence of absorption coefficients,such grouping ensuresthatthe absorption coefficients in every group closely follow the rule of correlation,and CK method is then used in each group.To examine the accuracy of CK method combined with narrow bandk-distribution model(written as NBCK)as well as the necessity of multi-group method for narrow band,the NBCK model and multi-group NBCK model(written as MGNBCK)are used to calculate narrow band intensities in the following cases.

    The results of Figs.5 and 6 indicate that both NBCK model and MGNBCK model predict the integrated intensity in nonisothermal gas very well.Although the accuracy of NBCK model is not as good as MGNBCK model,its maximum error is still quite small as shown in Figs.5(b)and 6(b).Results of NBCK model also prove that the CK method in a narrow band is still acceptable although it is not strictly rigid,which is consistent with the conclusion in Ref.16 to some extent.For MGNBCK model,the present grouping number is 4 as used in Ref.30 and integral scheme is 7-point Gauss integration,which means that the RTE needs to be solved 4?7 times in every narrow band.In comparison,the NBCK model treats every narrow band as a whole group and the RTE needs to be solved just 7 times.Considering the accuracy and computational efficiency together,the NBCK model is a good approach and isused to calculateradiation ofnonisothermal gases in the following part.

    Fig.5 Computational results of hot layer at 1500 K.

    Fig.6 Computational results of hot layer at 2000 K.

    2.3.Treatments of gas mixture

    When radiation calculations in gas mixture are performed,the NBK model is not straightforward to be used without any premise.It is mainly because spectral properties of each participating gas are often quite different and overlapping in certain bands,which leads to unknown cumulativek-distribution functiong(k)for gas mixture.To solve this problem,the conventional method:statistical uncorrelated assumption and the new method:multi-scale method will be discussed as follows.

    2.3.1.Statistical uncorrelated assumption

    The statistical uncorrelated assumption believes that the total transmissivity of an overlapping band obeys the multiplication property,

    whereIdenotes the total number of individual gas species.Applying Eq.(9)and NBK model to a gas mixture of CO2and H2O,the mixture’s transmissivity can be written as

    where x is the quadrature weight of a gauss integral point,kcithe absorption coefficient of carbon dioxide at Gauss intagration pointi,khjthe absorption coefficient of water vapor at Gauss integration pointj,and this implies that the RTE becomes

    2.3.2.Multi-scale method

    For gas mixture,scattering effects can be neglected in Eq.(1),the absorption coefficientkgand radiative intensityIgare summation fromMsingle gas,and accordingly,the total RTE can then be separated intoMindividuals as Eq.(13).

    Eq.(26)provides the relationship betweenkmand km.To determine km,Eq.(26)is integrated on both sides.

    Although Eq.(27)is an implicit equation,kmcan be determined through numerical integration and linear interpolation.

    In practical application of multi-scale method,radiative intensity,which is emitted by every single gas(water vapor or carbon dioxide)and absorbed by the total gas mixture,is firstly calculated,and then the single intensity is added together to obtain the total intensity as shown in Eq.(28).

    2.3.3.Validation of MSNBCK model

    Case 2:the gas mixture contains 10%CO2,20%H2O and 70%N2(mole fraction),and temperature of the gas varied obeying the rule

    2.4.RTE solver

    Considering the compatibility ofk-distribution model,finite volume method is used to solve RTE and this method is briefly summarized in this section.Eq.(1)is integrated over volumeVand solid angle X:

    Fig.7 Computational results for isothermal gas mixture.

    Fig.8 Computational results for non-isothermal gas mixture.

    Table 2 Computational time of different models.ms.

    whereAis the cell’s surface and n the corresponding outward face normal vector.Assume that the intensity and radiative properties within the control volume and solid angle are constant,which can be characterized by the value at cell centerP,and Eq.(29)turns to be

    whereAiis the area of cell’si-th surface,Ig;Aithe intensity at the surface center.First-order step scheme shown as Eq.(31)is chosen to link the relationship between cell-surface intensities and cell-center intensities.

    Then the discretization form of RTE is obtained as follows:

    where

    3.Application and discussion

    3.1.Three-dimensional CFD simulations

    Fig.9 Exhaust system 3D model and radiative direction definition.

    For a typical condition,the fuel is C12H23;fuel–air ratio is 0.0202;free-stream values used are temperatureT=288 K,pressureP=101325 Pa and velocityMa=0.8;gas temperature at nozzle inlet is 800 K with a velocity 110 m/s;the wall is adiabatic.Three-dimensional CFD simulations are conducted using Fluent.Fig.10 demonstrates the distribution of static temperature,static pressure,mole fraction of carbon dioxide and mole fraction of water vapor.Considering symmetry of the jet flow,only a half cross-section is shown in Fig.10.

    3.2.Radiative characteristics of gas mixture

    Fig.10 Distribution of nozzle’s thermodynamic parameters.

    Fig.11 Intensity distribution of

    Fig.12 Intensity distribution of 8–14 lm band

    Fig.13 Validation of spectral characteristics of plume.

    Fig.14 Plume spectral intensity attenuated by atmosphere.

    3.3.Role of gas mixture and solid walls in radiation process

    Fig.15 Intensity distribution emitted by gas mixture and solid walls

    Fig.16 Intensity distribution emitted by gas mixture

    Fig.17 Intensity distribution emitted by gas mixture and solid walls with wall’s emission

    Fig.18 Intensity distribution emitted by gas mixture without wall’s emission

    4.Conclusions

    A numerical study is carried out to predict the IR signature from an engine exhaust system.Combining thek-distribution and multi-scale method in narrow band,we develop a MSNBCK model to calculate radiative properties of gas mixture.According to the relevant analysis of numerical results,several conclusions are listed as follows:

    (1)Compared with statistically uncorrelated assumption to treat radiation in overlapping bands,the MSNBCK model is constructed based on the physical interaction effects between different participating species.According to LBL and experimental data in reference,the new model shows satisfactory accuracy,saving tremendous computation time through converting the exponential increase of computation time with the number of participating species to linear increase.In addition,the new model provides a solution to investigate the individual species’contribution to the total intensity of gas mixture.

    (2)Compared with emission in 3–5 lm band,the plume’s radiative effects in 8–14 lm band is too weak to make an influence.No matter the interested band is 3–5 lm or 8–14 lm,carbon dioxide always plays a more important role than water vapor,which provides a theoretical conclusion that less carbon content in aviation kerosene helps to reduce infrared signature of aircraft.

    (3)IR emission from solid walls always greatly enhances the exhaust system’s radiation for both 3–5 lm and 8–14 lm bands since its spectral intensity is more intense and continuous.Especially,the walls’IR makes a significant difference for 8–14 lm band because both nozzle external surface and hot parts of engine show effective emission in this band.

    1.Modest MF.Radiative heat transfer.San Diego:Academic Press;2013.p.325–6.

    2.Modest MF,Haworth DC.Radiative heat transfer in turbulent combustion systems:theory and applications.New York:Springer Press;2016.

    3.Denison MK,Webb BW.An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer.J Quant Spectrosc Radiat Transf1993;50(5):499–510.

    4.Chu H,Liu F,Consalvi JL.Relationship between the spectral line based weighted-sum-of-gray-gases model and the full spectrumkdistribution model.J Quant Spectrosc Radiat Transf2014;143(8):111–20.

    5.Doner N,Selc?uk N.An application of spectral line-based weighted sum of grey gases(SLW)model with geometric optics approximation for radiative heat transfer in 3-D participating media.Appl Therm Eng2013;50(1):89–93.

    6.Denison MK,Webb BW.The spectral-line-based weighted-sumof-gray-gases model in non-isothermal non-homogeneous media.J Heat Transf1995;117(2):359–65.

    7.Pierrot L,Soufiani A,Taine J.Accuracy of narrow-band and global models for radiative transfer in H2O,CO2,and H2O-CO2-mixture at high temperature.J Quant Spectrosc Radiat Transf1999;62(5):523–48.

    8.Modest MF,Zhang H.The full-spectrum correlate-d-kdistribution for thermal radiation from molecular gas-particulate mixture.J Heat Transf2002;124(1):30–8.

    9.Pal G,Modest MF,Wang L.Hybrid full-spectrum correlated kdistribution method for radiative transfer in strongly non-homogeneous gas mixture.J Quant Spectrosc Radiat Transf2008;130(8):2701–8.

    10.Levy Y,Lev M,Ovcharenko V.Study of infrared CO2radiation from liquid-fueled combustor.J Heat Transf2005;128(5):478–83.11.Hu HY,Wang Q.A numerical simulation on the infrared radiation of hot exhausting nozzles with a coupled flow and heat transfer model.Sci China(Technol Sci)2010;53(10):2699–707.

    12.Wang AQ,Modest MF.High accuracy,compact database of narrow-bandk-distributions for water vapor and carbon dioxide.J Quant Spectrosc Radiat Transf2005;93(1):245–61.

    13.Hiers RS,Cromwell III BK,Zaccardi VA.Compatibility of infrared band models with scattering.J Thermophys Heat Transf1994;8(2):208–15.

    14.Liu F,Smallwood GJ,Oslash,Guacute M,lder.Application of statistical narrowband model to three-dimensional absorbingemitting-scattering media.J Thermophys Heat Transf1999;13(3):285–91.

    15.Lacis AA,Oinas VA.Description of the correlated-kdistribution method for modeling non-gray gaseous absorption,thermal emission,and multiple scattering in vertically inhomogeneous atmospheres.J Geophys Res Atmos1991;96(5):9027–63.

    16.Modest MF.Narrow-band and full-spectrumk-distributions for radiative heat transfer correlated-kvs.scaling approximation.J Quant Spectrosc Radiat Transf2002;76(1):69–83.

    17.Faycal BN,Akram M,Kamel C.Application of the statistical narrow-band correlated-kmodel to entropy generation through non-grey gas radiation inside a spherical enclosure.Int J Exergy2011;8(2):128–47.

    18.Solovjov VP,Webb BW.SLW modeling of radiative transfer in multicomponent gas mixtures.J Quant Spectrosc Radiat Transf2000;65(4):655–72.

    19.Modest MF,Riazz RJ.Assembly full spectrumk-distribution from a narrow band database:effects of mixing gases,gases and non-gray absorbing particles and non-gray scatters in non-gray enclosures.J Quant Spectrosc Radiat Transf2005;90(2):169–89.

    20.Zhang HM,Modest MF.A multi-scale full-spectrum correlated-kdistribution for radiative heat transfer in inhomogeneous gas mixture.J Quant Spectrosc Radiat Transf2002;73(2–5):349–60.

    21.Wang LY,Modest MF.Narrow-band based multiscale fullspectrumk-distribution method for radiative transfer in inhomogeneous gas mixture.J Heat Transf2005;127(7):740–8.

    22.Gopalendu P,Modest MF.A narrow band-based multiscale multigroup full-spectrumk-distribution method for radiative transfer in non-homogeneous gas-soot mixture.J Heat Transf2010;132(2):291–303.

    23.Roger M,Crouseilles N.A dynamic multi-scale model for transient radiative transfer calculations.J Quant Spectrosc Radiat Transf2013;116(1):110–21.

    24.Modest MF,Bharadwaj SP.Medium resolution transmission measurements of CO2at high temperature.J Quant Spectrosc Radiat Transf2002;73(2–5):329–38.

    25.Modest MF,Bharadwaj SP.Medium resolution transmission measurements of CO2at high temperature-an update.J Quant Spectrosc Radiat Transf2007;103(1):146–55.

    26.Bharadwaj SP,Modest MF,Riazzi RJ.Medium resolution transmission measurements of water vapor at high temperature.J Heat Transf2006;128(4):374–81.

    27.Bharadwaj SP.Medium resolution transmission measurements of CO2and H2O at high temperature and a multiscale Malkmus model for treatment of inhomogeneous gas paths[dissertation].Philadelphia:Pennsylvania State University;2005.

    28.Edwards DK,Balakrishnan A.Thermal radiation by combustion gases.Int J Heat Mass Transf1973;16(1):25–40.

    29.Fu Q,Liou KN.On the correlatedk-distribution method for radiative transfer in nonhomogeneous atmosphere.J Atmos Sci1992;49(22):2139–56.

    30.Zhang H,Modest MF.Scalable multi-group full-spectrum correlated-kdistributions for radiative transfer calculations.J Heat Transf2003;125(3):454–61.

    31.Liu F,Smallwood GJ,O¨mer LG.Application of the statistical narrow-band correlated-kmethod to non-grey gas radiation in CO2–H2O mixtures:approximatetreatmentsofoverlapping bands.J Quant Spectrosc Radiat Transf2001;68(4):401–17.

    32.Shan Y,Zhang JZ.Numerical investigation of flow mixture enhancement and infrared radiation shield by lobed forced mixer.Appl Therm Eng2009;29(17):3687–95.

    20 November 2015;revised 10 February 2016;accepted 24 March 2016

    Available online 17 February 2017

    *Corresponding author.

    E-mail address:zhouyuebuaa@163.com(Y.Zhou).

    Peer review under responsibility of Editorial Committee of CJA.

    午夜免费成人在线视频| 欧美三级亚洲精品| av天堂在线播放| 波多野结衣高清作品| 91午夜精品亚洲一区二区三区 | 韩国av在线不卡| 成熟少妇高潮喷水视频| 国内精品一区二区在线观看| 99国产极品粉嫩在线观看| 88av欧美| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 精品一区二区三区视频在线观看免费| 99久久精品热视频| 久久久久国内视频| 一本精品99久久精品77| h日本视频在线播放| 深夜a级毛片| 天堂√8在线中文| 嫁个100分男人电影在线观看| 一级av片app| 免费av观看视频| ponron亚洲| 久久精品国产亚洲av香蕉五月| 村上凉子中文字幕在线| 美女免费视频网站| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 一进一出好大好爽视频| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 久久香蕉精品热| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 少妇人妻精品综合一区二区 | 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| 亚洲中文字幕日韩| 成人国产一区最新在线观看| 婷婷色综合大香蕉| av国产免费在线观看| 国产成年人精品一区二区| 床上黄色一级片| 99久久精品国产国产毛片| 高清在线国产一区| 国产极品精品免费视频能看的| 久久久成人免费电影| 免费搜索国产男女视频| 成人亚洲精品av一区二区| 大又大粗又爽又黄少妇毛片口| 色5月婷婷丁香| 亚洲av二区三区四区| 不卡一级毛片| 自拍偷自拍亚洲精品老妇| 久久精品夜夜夜夜夜久久蜜豆| 色噜噜av男人的天堂激情| 精品久久久久久久久亚洲 | 成熟少妇高潮喷水视频| 国产色婷婷99| 一个人看视频在线观看www免费| 在线a可以看的网站| 精品人妻偷拍中文字幕| 国产精品久久久久久亚洲av鲁大| av国产免费在线观看| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 我的老师免费观看完整版| 亚洲av免费在线观看| 久久九九热精品免费| 日本一本二区三区精品| 国产乱人视频| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 日韩欧美 国产精品| 天堂√8在线中文| 久99久视频精品免费| av专区在线播放| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 少妇高潮的动态图| 日韩欧美三级三区| 国产成人aa在线观看| 久久久久久久久中文| 成人国产一区最新在线观看| 日本爱情动作片www.在线观看 | 内射极品少妇av片p| 美女免费视频网站| 国产成人影院久久av| 日本在线视频免费播放| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 免费不卡的大黄色大毛片视频在线观看 | 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 国产精品99久久久久久久久| 久久久国产成人精品二区| 特级一级黄色大片| 久久这里只有精品中国| 精品欧美国产一区二区三| 亚洲三级黄色毛片| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 久久久久久久久久久丰满 | 天美传媒精品一区二区| 国产精品永久免费网站| 99久久久亚洲精品蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久精品电影| 高清毛片免费观看视频网站| 国产av麻豆久久久久久久| 嫩草影视91久久| 午夜日韩欧美国产| 久久国产乱子免费精品| 久久国内精品自在自线图片| 国产激情偷乱视频一区二区| 久久人人精品亚洲av| 欧美在线一区亚洲| 精品久久久噜噜| 国产精品综合久久久久久久免费| 日本a在线网址| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 五月玫瑰六月丁香| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 88av欧美| 国产精品伦人一区二区| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 国产人妻一区二区三区在| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 午夜精品在线福利| 伦精品一区二区三区| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 此物有八面人人有两片| 免费搜索国产男女视频| 国产精品电影一区二区三区| 日本与韩国留学比较| 美女高潮喷水抽搐中文字幕| 国产视频内射| 九九在线视频观看精品| 黄色视频,在线免费观看| 精品日产1卡2卡| 欧美日韩综合久久久久久 | 午夜久久久久精精品| 国产免费一级a男人的天堂| 久久久久久大精品| 乱码一卡2卡4卡精品| 国产乱人视频| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添小说| 自拍偷自拍亚洲精品老妇| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 国产精品久久视频播放| 日韩欧美在线乱码| 免费不卡的大黄色大毛片视频在线观看 | 夜夜夜夜夜久久久久| 国语自产精品视频在线第100页| 精品午夜福利在线看| 非洲黑人性xxxx精品又粗又长| 国产探花极品一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产在视频线在精品| ponron亚洲| 69人妻影院| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看 | 久久人人爽人人爽人人片va| 久久久久性生活片| 不卡一级毛片| 性插视频无遮挡在线免费观看| 免费观看精品视频网站| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| av天堂中文字幕网| 俄罗斯特黄特色一大片| 免费观看精品视频网站| 亚洲国产精品sss在线观看| 国产精华一区二区三区| 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 亚洲av中文av极速乱 | 身体一侧抽搐| 校园人妻丝袜中文字幕| 国产探花在线观看一区二区| 精品一区二区免费观看| 免费看日本二区| 国产极品精品免费视频能看的| 欧美一区二区亚洲| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 亚洲成人免费电影在线观看| 亚洲最大成人av| 欧美高清性xxxxhd video| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 在线播放无遮挡| 99久久中文字幕三级久久日本| 国产日本99.免费观看| 在线观看66精品国产| a级毛片a级免费在线| 亚洲精品乱码久久久v下载方式| 精品一区二区三区视频在线观看免费| 少妇猛男粗大的猛烈进出视频 | 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 12—13女人毛片做爰片一| 亚洲av熟女| 国产色婷婷99| 香蕉av资源在线| 久久久久性生活片| 成人av一区二区三区在线看| 亚洲va在线va天堂va国产| 中文资源天堂在线| 色哟哟·www| 日本在线视频免费播放| 亚洲精品成人久久久久久| 最近在线观看免费完整版| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 尤物成人国产欧美一区二区三区| 搡老岳熟女国产| 久久久国产成人免费| 国产精品国产高清国产av| 国国产精品蜜臀av免费| 国内精品久久久久精免费| 亚洲成人中文字幕在线播放| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| 国产亚洲精品综合一区在线观看| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 成人国产一区最新在线观看| 久久久国产成人免费| 精品福利观看| 狠狠狠狠99中文字幕| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看 | av黄色大香蕉| 少妇被粗大猛烈的视频| 欧美中文日本在线观看视频| 国产三级中文精品| 成人av在线播放网站| 亚洲精品一卡2卡三卡4卡5卡| 综合色av麻豆| 免费一级毛片在线播放高清视频| 深夜精品福利| 久久久久精品国产欧美久久久| 国产一区二区三区av在线 | 日韩欧美在线二视频| 男女啪啪激烈高潮av片| 1024手机看黄色片| 久久香蕉精品热| 欧美成人性av电影在线观看| 色5月婷婷丁香| 99在线人妻在线中文字幕| 欧美高清性xxxxhd video| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 大又大粗又爽又黄少妇毛片口| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 97热精品久久久久久| 国产精品乱码一区二三区的特点| 18禁在线播放成人免费| 日韩欧美在线乱码| 九九热线精品视视频播放| 国产成人a区在线观看| 国产不卡一卡二| 久久99热6这里只有精品| 免费在线观看影片大全网站| 日本欧美国产在线视频| 亚洲中文字幕日韩| 亚洲精华国产精华精| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 美女被艹到高潮喷水动态| 香蕉av资源在线| 亚洲av电影不卡..在线观看| 搡老岳熟女国产| 国产日本99.免费观看| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 黄色欧美视频在线观看| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 少妇丰满av| 性欧美人与动物交配| 97碰自拍视频| 一进一出抽搐动态| 22中文网久久字幕| 乱系列少妇在线播放| 99视频精品全部免费 在线| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 免费观看人在逋| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看| 久久久久精品国产欧美久久久| 色噜噜av男人的天堂激情| 又爽又黄无遮挡网站| 久久欧美精品欧美久久欧美| 在线免费观看不下载黄p国产 | 干丝袜人妻中文字幕| 神马国产精品三级电影在线观看| 很黄的视频免费| 12—13女人毛片做爰片一| 日本一二三区视频观看| 成年女人看的毛片在线观看| 久久午夜亚洲精品久久| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 国产高清不卡午夜福利| 日韩高清综合在线| 在线天堂最新版资源| 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 69av精品久久久久久| 伦精品一区二区三区| 我要看日韩黄色一级片| 在线播放无遮挡| 亚洲无线在线观看| 赤兔流量卡办理| 天堂√8在线中文| 精品久久久久久久久久免费视频| 97超视频在线观看视频| 精品久久久久久久久久免费视频| 国产亚洲91精品色在线| 美女被艹到高潮喷水动态| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 久久国产精品人妻蜜桃| 深夜精品福利| 欧美潮喷喷水| 国产成人福利小说| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 欧美潮喷喷水| 淫秽高清视频在线观看| 国产精品人妻久久久久久| 综合色av麻豆| 亚洲性久久影院| 国产精品女同一区二区软件 | 免费搜索国产男女视频| 中文字幕高清在线视频| 一区福利在线观看| 国产精品美女特级片免费视频播放器| 亚洲专区国产一区二区| 深爱激情五月婷婷| 亚洲成av人片在线播放无| 成人特级av手机在线观看| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 欧美日本视频| 亚洲av一区综合| 久久精品国产亚洲av涩爱 | 淫秽高清视频在线观看| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| 亚洲国产精品合色在线| 中国美女看黄片| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 性欧美人与动物交配| 美女免费视频网站| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 久久久精品大字幕| 成人特级av手机在线观看| netflix在线观看网站| 舔av片在线| 欧美+日韩+精品| 亚洲七黄色美女视频| 少妇高潮的动态图| 俺也久久电影网| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 极品教师在线视频| 国产免费av片在线观看野外av| 国产大屁股一区二区在线视频| 深夜精品福利| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 国产免费男女视频| 亚洲精品影视一区二区三区av| 国产精品亚洲一级av第二区| 亚洲国产色片| 日本与韩国留学比较| 婷婷丁香在线五月| 国产精品一及| 欧美最黄视频在线播放免费| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 97热精品久久久久久| 999久久久精品免费观看国产| 精品一区二区三区视频在线| 亚洲精品一区av在线观看| 国产精品久久久久久久久免| 久久久久久伊人网av| 亚洲在线观看片| 成年女人永久免费观看视频| 搞女人的毛片| 在线观看午夜福利视频| 亚洲成人久久性| 一级黄片播放器| 91av网一区二区| 日本在线视频免费播放| 国产av不卡久久| 亚洲成av人片在线播放无| 嫩草影院新地址| av天堂中文字幕网| 午夜精品久久久久久毛片777| 久久欧美精品欧美久久欧美| 人妻久久中文字幕网| 香蕉av资源在线| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av香蕉五月| 十八禁国产超污无遮挡网站| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区| 亚洲欧美日韩高清专用| 自拍偷自拍亚洲精品老妇| 亚洲avbb在线观看| 亚洲国产欧洲综合997久久,| 韩国av一区二区三区四区| 欧美成人性av电影在线观看| 一区二区三区激情视频| 国产淫片久久久久久久久| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 少妇丰满av| 日本一本二区三区精品| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 91午夜精品亚洲一区二区三区 | 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 69av精品久久久久久| 日本黄色视频三级网站网址| 亚洲欧美激情综合另类| 国产精品av视频在线免费观看| 亚洲在线观看片| 我要看日韩黄色一级片| .国产精品久久| 国产淫片久久久久久久久| 最好的美女福利视频网| 亚洲精品乱码久久久v下载方式| 波多野结衣高清作品| 欧美日本视频| 午夜福利在线观看吧| 悠悠久久av| 色视频www国产| 色综合亚洲欧美另类图片| 免费观看精品视频网站| 男女之事视频高清在线观看| 亚洲成人免费电影在线观看| 在线看三级毛片| 男女做爰动态图高潮gif福利片| 联通29元200g的流量卡| 制服丝袜大香蕉在线| 欧美日韩综合久久久久久 | 日本成人三级电影网站| 乱系列少妇在线播放| 18禁黄网站禁片免费观看直播| 老女人水多毛片| 久久久久久久午夜电影| 国产白丝娇喘喷水9色精品| 欧美色视频一区免费| 人人妻人人澡欧美一区二区| 欧美极品一区二区三区四区| 国产av不卡久久| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 亚洲精品一区av在线观看| 久久久久久久久久久丰满 | 国产精品一区二区免费欧美| 深爱激情五月婷婷| 亚洲中文字幕日韩| 日本黄色片子视频| 丰满人妻一区二区三区视频av| 国产精品人妻久久久久久| 欧美黑人巨大hd| 22中文网久久字幕| 亚洲男人的天堂狠狠| 床上黄色一级片| 久久久久国产精品人妻aⅴ院| 亚洲精品影视一区二区三区av| 变态另类成人亚洲欧美熟女| 亚洲va在线va天堂va国产| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 99久久九九国产精品国产免费| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 精品免费久久久久久久清纯| 久久精品国产亚洲av涩爱 | 国产免费一级a男人的天堂| 久9热在线精品视频| ponron亚洲| 亚洲人成伊人成综合网2020| 免费看a级黄色片| 一级av片app| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片 | 校园春色视频在线观看| 久久这里只有精品中国| 国产在视频线在精品| 国产精品一区二区三区四区久久| 国产精品一区二区免费欧美| 长腿黑丝高跟| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验 | 久久欧美精品欧美久久欧美| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 成人精品一区二区免费| 97热精品久久久久久| 亚洲真实伦在线观看| 精品人妻一区二区三区麻豆 | 最后的刺客免费高清国语| 亚洲真实伦在线观看| 真实男女啪啪啪动态图| 一夜夜www| 国产免费一级a男人的天堂| 人妻久久中文字幕网| 男女边吃奶边做爰视频| 变态另类成人亚洲欧美熟女| 夜夜夜夜夜久久久久| 欧美黑人欧美精品刺激| 不卡视频在线观看欧美| 人妻少妇偷人精品九色| 国产蜜桃级精品一区二区三区| 国产精品不卡视频一区二区| 久久国内精品自在自线图片| eeuss影院久久| 日日摸夜夜添夜夜添小说| 精品久久久久久久末码| 久久人人精品亚洲av| 国内精品久久久久精免费| 丝袜美腿在线中文| 此物有八面人人有两片| 真实男女啪啪啪动态图| 最近中文字幕高清免费大全6 | 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 99久久精品一区二区三区| 国模一区二区三区四区视频| 村上凉子中文字幕在线| 国产探花在线观看一区二区| 日本 欧美在线| 国产精品福利在线免费观看| 免费在线观看日本一区| 亚洲五月天丁香| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3| 免费观看人在逋| 欧美一区二区精品小视频在线| 亚洲国产精品久久男人天堂| 美女xxoo啪啪120秒动态图| 亚洲国产高清在线一区二区三| 老司机福利观看| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 欧美一区二区国产精品久久精品| 在线天堂最新版资源| 91麻豆av在线| 狂野欧美激情性xxxx在线观看| 亚洲第一区二区三区不卡| 精品99又大又爽又粗少妇毛片 | 在线观看66精品国产| 久久久国产成人精品二区| 国产精品三级大全| 女同久久另类99精品国产91| 如何舔出高潮| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三| 午夜福利成人在线免费观看| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区人妻视频| 国内久久婷婷六月综合欲色啪|