• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing

    2017-11-20 12:08:04ZhngWenhuDengSierChenGuodingCuiYongcun
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Zhng Wenhu,Deng Sier,Chen Guoding,Cui Yongcun

    aSchool of Mechatronics Engineering,Northwestern Polytechnical University,Xi’an 710071,China

    bSchool of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China

    cCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,Dalian 116024,China

    Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing

    Zhang Wenhua,Deng Sierb,c,*,Chen Guodinga,Cui Yongcuna

    aSchool of Mechatronics Engineering,Northwestern Polytechnical University,Xi’an 710071,China

    bSchool of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China

    cCollaborative Innovation Center of Major Machine Manufacturing in Liaoning,Dalian 116024,China

    Dynamic characteristic;High-speed angular contact ball bearing;Lubricant traction coefficient;Poincare′map;Stability

    In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,were obtained by a great number of elastohydrodynamic traction tests.The nonlinear dynamics differential equations of high-speed angular contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF)integer algorithm with variable step.The impact of lubricant traction coeff icient on cage’s dynamic characteristics in high-speed angular contact ball bearing was investigated,and Poincare′map was used to analyze the impact of three types of aviation lubricating oils on the dynamic response of cage’s mass center.And then,the period of dynamic response of cage’s mass center and the slip ratio of cage were used to assess the stability of cage under various working conditions.The results of this paper provide the theoretical basis for the selection and application of aviation lubricating oil.

    1.Introduction

    As one of basis parameters for dynamic design of rolling bearing,lubricant traction coefficient is affected by the combined impacts of slip velocity,rolling velocity and contact stress between roller and raceway,the temperature of lubricating oil,etc.Any changes in the above-mentioned factors might revise the traction behavior of lubricant between roller and raceway,causing the changes of collision force and collision frequency between cage and ball,which directly affect the stability of cage.Three types of Chinese aviation lubricating oils,namely 4109,4106 and 4050,are commonly used for lubrica-tion of angular contact ball bearing for high-speed spindle under various working conditions.However,owing to the different physics,chemistry and mechanics properties of lubricants,the systematic researchesin the connectionsof lubricant traction coefficient and cage’s dynamic characteristics are quite rare.

    In 1971,Walters1firstly built the analytic model of highspeed ball bearing,which set the foundation of dynamic analysis of high-speed ball bearing.Gupta2–5built the dynamics differential equations of ball bearing with six degrees of freedom,and then studied the cage’s whirl orbit.By stimulating,Gupta P K indicated that the frictional coefficient between ball and raceway had great impact on cage’s whirl orbit,but he did not further study the influencing factors of cage’s stability.Further to previous research,Gupta6studied the relationship between structural parameters of cage pocket clearance,guide clearance and cage stability,but neglecting the impact of lubricant properties on the stability of cage.Based on the simplified traction model of lubricant,Boesiger et al.7studied the impact of operation conditions on cage’s whirl orbit and unsteady characteristic frequency in ball bearing,pointing out that oil lubrication was more preferable than grease lubrication in terms of cage stability.Lord and Larsson8did the experimental studies of elasto-hydrodynamic traction properties for VG46,VG68 and VG150,analyzing the impact of lubricant properties on lubricant film and traction coefficient,but their research did not involve the impact of lubricant properties on cage’s stability.Rahman and Ohno9did the experiments of the fatigue life and impact performance of bearings,which were lubricated by eight types of synthesized lubricants,analyzing the lubrication film between cage and ball and the reasons for cage’s failure.In addition,in their research,they indicated that lubricant traction coefficient had great impact on cage’s failure.Based on the quasi-dynamic theory of angular contact ball bearing,Deng and Hao10studied the effect of different working conditions and structural parameters on the offset of cage’s mass center,which had been used to assess cage’s stability.Pederson et al.11developed a flexible cage model with six degrees of freedom in deep groove ball bearing,and studied cage’s instability and ball-to-cage pocket contact forces.Based on dynamic theory of angular contact ball bearing,Liu and Deng12studied the effect of working conditions and structural parameters on cage’s whirl orbit and the speed deviation ratio of cage,which were used to assess the cage’s stability.Based on dynamic theory of rolling bearing,Deng and Xie13studied the dynamic characteristics of cage in high-speed angular contact ball bearing,pointing out that too big or too small pocket clearance and the guiding clearance of cage were adverse to cage’s stability.Sathyan et al.14conducted various tests such as run-in test,temperature test,and over-lubrication test to study the instability of cage in ball bearings,and the study results show that square pocket retainers are more stable compared to circular pocket retainers.Ashtekar and Sadeghi15developed a 3D explicit finite element model(EFEM)of the cage to analyze the cage dynamics,deformation,and resulting stresses in a ball bearing under various operating conditions.Ye16studied the effect of cage clearance ratio,bearing load and bearing rotation speed on cage’s whirl orbit and the speed deviation ratio of cage,suggesting that too big or too small pocket clearance and guiding clearance of cage were not beneficial to cage’s stability.Abele et al.17promoted two new image evaluation algorithms to capture cage’s whirl with sensors installed on a bearing test rig,and analyzed the cage motion in an angular contact ball bearing under the operation conditions.All the above mentioned researches mainly focused on the impact of bearing working conditions and structural parameters on cage’s dynamic characteristics and stability,while the impact of lubricant traction coefficient on cage’s dynamic characteristics and stability has not aroused any attention.

    In this paper,the formulas of elasto-hydrodynamic traction coefficients of three Chinese aviation lubricating oils,4109,4106 and 4050,are obtained through a great number of elasto-hydrodynamic traction tests.The nonlinear dynamics differential equations are built on the basis of dynamic theory of rolling bearings and solved by Gear Stiff(GSTIFF)integer algorithm with variable step.The impact of lubricant traction coefficient on cage’s dynamic characteristics is investigated,and Poincare′map is used to analyze the impact of three types of aviation lubricating oils on dynamic response of cage’s mass center and the slip ratio of cage.The period of dynamic response of cage’s mass center and the slip ratio of cage are used to assess cage’s stability and the research results of this paper provide theoretical basis for the selection of aviation lubricating oil.

    2.Elasto-hydrodynamic traction coefficient tests

    The tests of elasto-hydrodynamic traction coefficients for three Chinese aviation lubricating oils,4109,4106 and 4050,were conducted by using a self-made test rig.The construction of test rig is shown in Fig.1,where B direction denotes the left view of local type view.

    According to the dynamic viscosity and temperatureviscosity coefficient,the three Chinese aviation lubricating oils,4109,4106 and 4050,are categorized to the low viscosity lubricant,medium viscosity lubricant,and medium viscosity,hightemperature resistant lubricant,respectively.

    The formulas of elasto-hydrodynamic traction coef ficients l of 4109,4106 and 4050 were obtained by applying the curve fitting technic to the test data.

    Fig.1 Construction of test rig.

    Table 1 Parameters of aviation lubricating oil.

    In Eq.(1),Sis slide-roll ratio of ball;AL,BL,CL,DLare functions of normal load,lubrication temperature of inlet and velocity of contact surface,and the expressions ofAL,BL,CL,DLfor 4109,4106 and 4050 are shown as Eqs.(2)–(4),respectively.

    3.Dynamic model of high-speed angular contact ball bearing

    In this paper,outer ring is fixed,inner ring rotates at constant speed,and cage is guided by outer ring.The surfaces of bearing components are absolutely smooth,and the component’s mass center coincides with its centroid.In order to build the dynamic model of bearing,the following five coordinate systems in Fig.2 are defined.

    (1)Inertial coordinate system{O;X,Y,Z}is fixed in space,Xaxis coincides with rotating axis of bearing,andYZplane parallels to radial plane through bearing center.

    (2)Coordinate system of ball mass center{obj;xbj,ybj,zbj},where subscriptjdenotes thejth ball or cage pocket.objcoincides with ball’s mass center,ybjaxis is along radial direction of bearing,andzbjaxis is along circumferential direction of bearing.{obj;xbj,ybj,zbj}moves but doesn’t spin with ball’s mass center,and each ball has its own local coordinate system.

    (3)Coordinate system of cage’s mass center{oc;xc,yc,zc}.xcaxis coincides with rotating axis of cage,yczcplane parallels to radial plane through cage center,occoincides with geometric center of cage,and{oc;xc,yc,zc}moves and spins with cage.

    (4)Coordinate system of inner ring mass center{oi;xi,yi,zi}.xiaxis is along with rotating axis of inner ring,yiziplane parallels with radial plane through inner ring mass center,oicoincides with geometric center of inner ring,and{oi;xi,yi,zi}moves and spins with inner ring.

    (5)Coordinate system of thejth cage pocket center{opj;xpj,ypj,zpj}.opjcoincides with geometric center of cage pocket,ypjaxis is along radial direction of bearing,andzpjaxis is along circumferential direction of bearing.{opj;xpj,ypj,zpj}moves and spins with cage,and each cage pocket center has its own local coordinate system.

    3.1.Nonlinear dynamics differential equations of ball

    When angular contact ball bearing is working at high speed,the forces acting on ball are shown in Fig.3.For the detailed expressions of symbols,please refer to Ref.18.

    Fig.2 Coordinate system of ball bearing.

    The nonlinear dynamics differential equations of thejth ball are shown as Eqs.(5)–(10):

    Fig.3 Schematic diagram of forces acting on ball.

    3.2.Nonlinear dynamics differential equations of cage

    The forces acting on cage are shown in Fig.4,and{or;yr,,zr}is cage’s reference coordinate system.For the expressions of symbols in Fig.4,please refer to Ref.18.

    The nonlinear dynamics differential equations of cage are shown as Eqs.(11)–(16):

    Fig.4 Schematic diagram of forces acting on cage.

    3.3.Nonlinear dynamics differential equations of inner ring

    The nonlinear dynamics differential equations of inner ring are shown as Eqs.(17)–(21):

    4.Impact of lubricant traction coefficient on cage’s dynamic characteristics

    The major parameters of high-speed angular contact ball bearing are shown in Table 2.

    Due to the strong nonlinearity of dynamics differential equations of high-speed angular contact ball bearing,the solution of nonlinear equations is more complicated.Here,the nonlinear dynamics differential Eqs.(5)–(21)were solved by GSTIFF integer algorithm with variable step19,and Poincare′map20was used to analyze the whirl orbit of cage.

    4.1.Impact analysis of lubricant temperature on dynamic response of cage’s mass center

    Table 2 Major parameters of bearing.

    Fig.5 Whirl orbit and Poincare′map under different temperatures of 4109.

    As shown in Fig.5,with the temperature of 4109 increasing,the whirl orbit of cage presents the single circle whirl,the less obvious multi-circle whirl and the obvious multicircle whirl.One Poincare′mapping point,three Poincare′mapping points and the closed curve formed by Poincare′mapping points in Fig.5(a)–(c)indicate that cage undergoes one period,three periods and quasi-periodicity at different lubricant temperatures,respectively.

    In Fig.6,both the temperatures of 4106 and 4050 have tiny impact on the dynamic response of cage,and cage keeps whirling along one circle and less obvious multiple circles,respectively.The Poincare′points in Fig.6(a)and(b)also show that cage is in the state of one periodic motion and four periodic motion respectively,no matter how the temperature of 4106 and 4050 changes.

    Fig.6 Whirl orbit and Poincare′map under different temperatures of 4106 and 4050.

    Fig.7 Whirl orbit and Poincare′map under different axial forces of 4109.

    4.2.Impact analysis of axial force on dynamic response of cage’s mass center

    We assume that the speed of inner ring is set to 14,000 r/min,axial forceFxapplied on inner ring are set to 100 N,500 N,1000 N,2000 N,3000 N and 6000 N,and lubricant temperatureTis set to 130℃.

    In Fig.7,bearing is lubricated by 4109,and when axial load is small(Fx=100 N),the whirl orbit of cage and Poincare′mapping points in Fig.7(a)are disorderly,indicating that cage is in the chaotic state.With axial load increasing(Fx=500–2000 N),cage successively undergoes the single circle whirl and the multi-circle whirl.Four Poincare′mapping points in Fig.7(b)and the closed curve formed by Poincare′mapping points in Fig.7(c)show that cage is in the four periodic and quasi-periodic state,respectively.When axial loadFxis in the range of 3000–6000 N,the disorderly Poincare′mapping points in Fig.7(d)show that cage is in chaotic state.

    In Fig.8,bearing is lubricated by 4106,and when axial load is small(Fx=100 N),the disorderly whirl orbit of cage and Poincare′mapping points in Fig.8(a)show that cage is in a chaotic state.With axial load increasing(Fx=500–3000 N),both the single circle whirl of cage and one Poincare′mapping point in Fig.8(b)represent that cage is in the state of single period.When axial loadFxis up to 6000 N,the less obvious multi-circle whirl of cage and the closed curve formed by Poincare′mapping points in Fig.8(c)also represent that cage is in a quasi-periodic state.

    Fig.8 Whirl orbit and Poincare′map under different axial forces of 4106.

    In Fig.9,bearing is lubricated by 4050,and when axial load is small(Fx=100 N),the disorderly whirl of cage and Poincare′mapping points in Fig.9(a)represent that cage is in the state of chaotic motion.When axial loadFxis up to 500 N,both the single circle whirl of cage and one Poincare′mapping point in Fig.9(b)show that the motion of cage’s mass center is in the state of single period.With axial load increasing(Fx=1000–2000 N),four Poincare′mapping points in Fig.9(c)represent that cage is in the state of four periodic motion.When axial load is big enough(Fx=3000–6000 N),as shown in Fig.9(d)and(e),cage undergoes the quasi-periodic motion and the chaotic motion,respectively.

    Fig.9 Whirl orbit and Poincare′map under different axial forces of 4050.

    Fig.10 Whirl orbit and Poincare′map under different radial forces of 4109.

    4.3.Impact analysis of combined loads on dynamic response of cage’s mass center

    We assume that the speed of inner ring is set to 14,000 r/min,radial forcesFyapplied on inner ring are set to 100 N,500 N and 1000 N,axial forceFxapplied on inner ring is set to 1000 N,and lubricant temperatureTis set to 130℃.

    In Fig.10,when bearing is lubricated by 4109,the multicircle whirl of cage is less obvious,and the closed curve formed by Poincare′mapping points also represents that cage is in the state of quasi-periodic motion,no matter how radial forceFychanges.

    In Fig.11,bearing is lubricated by 4106.When radial load is small,cage undergoes a single circle whirl,and one Poincare′mapping point in Fig.11(a)shows that cage is in the state of one periodic motion.With radial load increasing,the multicircle whirl increases obviously,and closed curve in Fig.11(b)and disorderly Poincare′mapping points in Fig.11(c)also show that cage undergoes quasi-periodic motion and ultimately tends to chaotic motion.

    In Fig.12,when bearing is lubricated by 4050,Poincare′mapping points in Fig.12(a)and(b)indicate that cage undergoes four periodic and chaotic motion with the increase of the radial load,respectively.

    Fig.11 Whirl orbit and Poincare′map under different radial forces of 4106.

    Fig.12 Whirl orbit and Poincare′map under different radial forces of 4050.

    Fig.13 Cage slip ratio under different lubricant temperatures.

    Fig. 14 Cage slip ratio under different axial forces(Speed=14000 r/min,T=130℃).

    5.Impact analysis of lubricant traction coefficient on cage’s stability

    According to the above analysis in Section 4,the motion of cage in angular contact ball bearing lubricated by 4109,4106 and 4050 shows the different dynamic responses and changing pattern under various working conditions.However,it is inadequate to assess the stability of cage with just a dynamic response result.

    In this paper,the slip ratio of cage and the period of dynamic response of cage’s mass center were used as the criteria to assess the stability of cage.The cage’s slip ratio and the period of nonlinear dynamic response of cage’s mass center under different lubricant temperatures,axial loads and radial loads are shown in Figs.13–15 and Tables 3–5.

    In Figs.13–15,cage’s slip ratio shows the different changing trends under different lubricant temperatures and axial forces.But,radial force has tiny impact on cage’s slip ratio when bearing bears combined loads.

    Fig.15 Cage slip ratio with different radial forces(Fx=1000 N,Speed=14000 r/min,T=130℃).

    Table 3 Nonlinear dynamic response period of cage at different lubricant temperatures.

    Table 4 Nonlinear dynamic response period of cage at different axial forces.

    According to the above-mentioned analysis,it is apparent that different types of lubricating oils have great impact on cage’s dynamic characteristics and the stability of cage.Fewer periods of dynamic response of cage’s mass center and smaller slip ratio of cage are beneficial to cage’s stability.Therefore,in order to improve the stability of cage,the type of aviation lubricating oil is chosen according to Table 6 under different working conditions.

    Table 5 Nonlinear dynamic response period of cage at different radial forces.

    Table 6 Recommended working condition for three aviation lubricating oils.

    6.Conclusions

    (1)Lubricant traction coefficient affects the dynamic characteristics of cage,and the motion of cage’s mass center shows the abundant periodic and non-periodic(quasiperiodic and chaotic)responses.In addition,cage’s whirl orbit presents different periods of nonlinear response and changing pattern in angular contact ball bearings lubricated by different types of aviation lubricating oils.

    (2)For three types of aviation lubricating oils,4109,4106 and 4050 in this paper,a too small or too large axial force is adverse to cage’s stability.With the increase of axial force,cage might undergo from chaotic state to periodic motion,and then ultimately tend to quasiperiodic state or chaotic state.

    (3)When bearing only bears an axial force,for the sake of cage’s stability,lubricant with low viscosity is suggested for lubrication of bearing working at high speed,light load and low temperature;lubricant with medium viscosity is suggested for lubrication of bearing working at high speed,heavy load and low temperature;lubricant with the medium and high temperature resistant is suggested for lubrication of bearing working at high speed,heavy load and high temperature.

    (4)When bearing simultaneously bears an axial force and a

    radial force,for the sake of cage’s stability,lubricant with medium viscosity and high temperature resistant is suggested for lubrication of bearing working at high speed,high temperature and heavy radial load;lubricant with low viscosity is suggested for lubricating of bearing working under any other working condition.

    Acknowledgements

    The study was financially co-supported by the National Natural Science Foundation of China(No.U1404514),Henan Outstanding Person Foundation(No.144200510020)of China and Collaborative Innovation Center of Major Machine Manufacturing in Liaoning,China.

    1.Walters CT.The dynamics of ball bearings.J Lubr Tech1970;93(1):1–10.

    2.Gupta PK.Dynamics of rolling element bearings.Parts I,II,III and IV.J Lubr Tech1979;101(3):293–326.

    3.Gupta PK.Some dynamic effects in high-speed solid-lubricated ball bearings.Tribol Trans1983;26(3):393–400.

    4.Gupta PK.Advanceddynamicsofrollingelements.New York:Springer Verlag;1984.p.76–99.

    5.Gupta PK.Frictional instabilities in ball bearings.Tribol Trans1988;31(2):258–68.

    6.Gupta PK.Modeling of instabilities induced by cage clearances in ball bearings.Tribol Trans1991;34(1):93–9.

    7.Boesiger EA,Donley AD,Loewenthal S.An analytical and experimental investigation of ball bearing retainer instabilities.Analyst1992;114(3):530–9.

    8.Lord J,Larsson R.Effects of slide-roll ratio and lubricant properties on elastohydrodynamic lubrication film thickness and traction.Proc Inst Mech Eng2001;215:301–8.

    9.Rahman MZ,Ohno N.Effect of lubricating oils on cage failure of ball bearings.Tribol Trans2003;46(4):499–505.

    10.Deng SE,Hao JJ.Dynamics analysis on cage of angular contact ball bearings.Bearing2007;10:1–5[Chinese].

    11.Pederson BM,Sadeghi F,Wassgren C.The effects of cage flexibility on ball-to-cage pocket contact forces and cage instability in deep groove ball bearings.SAE Tech Pap2006;1:0358–372.

    12.Liu XH,Deng SE.Dynamic stability analysis of cages in highspeed oil-lubricated angular contact ball bearings.Trans Tianjin Univ2011;17:20–7.

    13.Deng SE,Xie PF.Flexible-body dynamics analysis on cage of high-speed angular contact ball bearing.Acta Armamentarii2011;32(5):293–311.

    14.Sathyan K,Gopinath K,Lee SH,Hsu HY.Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems.Tribol Trans2012;55(4):503–11.

    15.Ashtekar A,Sadeghi F.A new approach for including cage flexibility in dynamic bearing models by using combined explicit if nite and discrete element methods.J Tribol2012;134(4):041502.

    16.Ye ZH.Cage instabilities in high-speed ball bearings.Appl MechMater2013;278–280:3–6.

    17.Abele E,Holland L,Nehrbass A.Image acquisition and image processing algorithms for movement analysis of bearing cages.J Tribol2015;138(2):021105.

    18.Deng SE,Jia QY,Xue JX.Design principle of rolling bearings.2rd ed.Beijing:China Standard Press;2014.p.225–37[Chinese].

    19.Gear CW.Simultaneous numerical solution of differential-algebraic equations.IEEE Trans Circ Theor1971;18(1):89–95.

    20.Harsha SP,Sandeep K,Prakash R.The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings.Int J Mech Sci2003;45(4):725–40.

    8 March 2016;revised 5 April 2016;accepted 10 May 2016

    Available online 15 October 2016

    *Corresponding author at:School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China.Tel.:+86 379 64270625.

    E-mail addresses:526916105@qq.com(W.Zhang),dse@haust.edu.cn(S.Deng),gdchen@nwpu.edu.cn(G.Chen),372865368@qq.com(Y.Cui).

    Peer review under responsibility of Editorial Committee of CJA.

    新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 男人操女人黄网站| 亚洲人成电影观看| 日韩欧美免费精品| 极品教师在线免费播放| 日韩熟女老妇一区二区性免费视频| 国产野战对白在线观看| 欧美日韩亚洲高清精品| 国产日韩欧美视频二区| 亚洲色图av天堂| 午夜福利视频精品| 国产成人av激情在线播放| 2018国产大陆天天弄谢| 欧美日韩一级在线毛片| 一级,二级,三级黄色视频| 动漫黄色视频在线观看| 免费一级毛片在线播放高清视频 | aaaaa片日本免费| 亚洲熟女精品中文字幕| 中国美女看黄片| 一区二区三区精品91| 亚洲国产欧美一区二区综合| 亚洲精品国产精品久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 18禁观看日本| 18禁观看日本| 91成人精品电影| 一个人免费看片子| 妹子高潮喷水视频| 五月天丁香电影| 啦啦啦视频在线资源免费观看| 高清在线国产一区| 成人影院久久| 两人在一起打扑克的视频| av片东京热男人的天堂| 亚洲五月婷婷丁香| 狠狠狠狠99中文字幕| 18禁美女被吸乳视频| 天天操日日干夜夜撸| 肉色欧美久久久久久久蜜桃| 在线天堂中文资源库| 久久毛片免费看一区二区三区| av天堂在线播放| 亚洲少妇的诱惑av| 少妇精品久久久久久久| 女人高潮潮喷娇喘18禁视频| 十八禁高潮呻吟视频| 欧美亚洲日本最大视频资源| 一二三四在线观看免费中文在| 午夜福利影视在线免费观看| www.熟女人妻精品国产| www.熟女人妻精品国产| 久久影院123| 美女扒开内裤让男人捅视频| 日本vs欧美在线观看视频| 日本wwww免费看| 日韩有码中文字幕| 日本vs欧美在线观看视频| 一本—道久久a久久精品蜜桃钙片| 亚洲人成伊人成综合网2020| 女人精品久久久久毛片| 一本—道久久a久久精品蜜桃钙片| 十分钟在线观看高清视频www| 欧美精品一区二区免费开放| 99riav亚洲国产免费| 色精品久久人妻99蜜桃| 亚洲av欧美aⅴ国产| 亚洲一区二区三区欧美精品| 一级,二级,三级黄色视频| 久久免费观看电影| 男女免费视频国产| 免费女性裸体啪啪无遮挡网站| 国产免费现黄频在线看| 久久久国产精品麻豆| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频| 老司机影院毛片| 男女免费视频国产| 99国产综合亚洲精品| 美女高潮到喷水免费观看| 国产精品.久久久| 国产精品av久久久久免费| 夜夜爽天天搞| 丝袜人妻中文字幕| 一区在线观看完整版| 久久九九热精品免费| 亚洲五月婷婷丁香| 久久这里只有精品19| 精品国产一区二区久久| 亚洲精品乱久久久久久| 免费不卡黄色视频| 法律面前人人平等表现在哪些方面| 夫妻午夜视频| 久久午夜综合久久蜜桃| 9色porny在线观看| 啦啦啦视频在线资源免费观看| 免费av中文字幕在线| 高清av免费在线| 欧美日韩亚洲国产一区二区在线观看 | 久久青草综合色| 最新美女视频免费是黄的| 国产av国产精品国产| 国产99久久九九免费精品| 99久久99久久久精品蜜桃| 又黄又粗又硬又大视频| a级毛片黄视频| 又紧又爽又黄一区二区| 亚洲全国av大片| 嫩草影视91久久| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 久久亚洲真实| 日本av免费视频播放| 日韩大码丰满熟妇| 久久精品亚洲av国产电影网| 黄色片一级片一级黄色片| 亚洲第一欧美日韩一区二区三区 | www.精华液| 伦理电影免费视频| 国产1区2区3区精品| 老司机亚洲免费影院| 一边摸一边做爽爽视频免费| 国产视频一区二区在线看| 老熟妇仑乱视频hdxx| 国产深夜福利视频在线观看| 亚洲专区中文字幕在线| 日本欧美视频一区| 亚洲第一av免费看| 丁香欧美五月| 国产av一区二区精品久久| 免费在线观看完整版高清| 亚洲人成77777在线视频| 久久久久久久精品吃奶| 日韩有码中文字幕| 国产成人欧美在线观看 | 国产精品偷伦视频观看了| 精品免费久久久久久久清纯 | 欧美黑人欧美精品刺激| a级片在线免费高清观看视频| 十八禁网站网址无遮挡| 天堂中文最新版在线下载| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美精品济南到| 成人黄色视频免费在线看| 久久午夜亚洲精品久久| 日韩一卡2卡3卡4卡2021年| 国产精品免费大片| 国产高清videossex| 丁香六月欧美| 欧美国产精品va在线观看不卡| 老司机深夜福利视频在线观看| 99九九在线精品视频| 国产精品99久久99久久久不卡| av免费在线观看网站| 日韩免费av在线播放| 波多野结衣av一区二区av| 岛国毛片在线播放| 国产精品久久久久久人妻精品电影 | 国产成人影院久久av| 国产成人欧美在线观看 | 操出白浆在线播放| 欧美成人免费av一区二区三区 | 国产成人精品无人区| a在线观看视频网站| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 免费日韩欧美在线观看| 久久婷婷成人综合色麻豆| 免费少妇av软件| 国产欧美日韩一区二区三| 美女高潮到喷水免费观看| 母亲3免费完整高清在线观看| 久久午夜亚洲精品久久| 色尼玛亚洲综合影院| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 在线观看免费视频日本深夜| 国产日韩欧美在线精品| 久久精品人人爽人人爽视色| 1024视频免费在线观看| 两人在一起打扑克的视频| 久久久久精品国产欧美久久久| 免费在线观看日本一区| 无限看片的www在线观看| 午夜视频精品福利| 国产91精品成人一区二区三区 | 成人影院久久| 国产1区2区3区精品| 亚洲欧美日韩另类电影网站| 大型黄色视频在线免费观看| 久久毛片免费看一区二区三区| 高清视频免费观看一区二区| 视频区欧美日本亚洲| 黄频高清免费视频| 美女主播在线视频| 最新在线观看一区二区三区| 91大片在线观看| 我要看黄色一级片免费的| 精品一区二区三区视频在线观看免费 | 亚洲国产欧美日韩在线播放| av天堂在线播放| 99精品欧美一区二区三区四区| 日韩视频一区二区在线观看| 一级,二级,三级黄色视频| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人 | 视频区图区小说| 法律面前人人平等表现在哪些方面| 国产日韩一区二区三区精品不卡| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久免费高清国产稀缺| 国产真人三级小视频在线观看| 国产精品麻豆人妻色哟哟久久| 窝窝影院91人妻| 久热爱精品视频在线9| 宅男免费午夜| 亚洲精品中文字幕一二三四区 | 国产免费福利视频在线观看| 日本a在线网址| 99香蕉大伊视频| 国产片内射在线| 亚洲专区字幕在线| 日韩制服丝袜自拍偷拍| 天堂动漫精品| 亚洲一码二码三码区别大吗| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 亚洲欧美精品综合一区二区三区| 丝瓜视频免费看黄片| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 久9热在线精品视频| 高清av免费在线| 两人在一起打扑克的视频| 一级毛片精品| 中文字幕av电影在线播放| 在线观看66精品国产| 国产在线观看jvid| 国产有黄有色有爽视频| 久久精品成人免费网站| 老司机福利观看| 欧美乱码精品一区二区三区| 纯流量卡能插随身wifi吗| 一区二区日韩欧美中文字幕| 免费观看人在逋| 久久这里只有精品19| av国产精品久久久久影院| 757午夜福利合集在线观看| 少妇精品久久久久久久| 国产三级黄色录像| 日本av免费视频播放| 精品欧美一区二区三区在线| 免费一级毛片在线播放高清视频 | 午夜两性在线视频| 亚洲av美国av| 国产黄色免费在线视频| 精品久久蜜臀av无| 精品国产国语对白av| 午夜精品国产一区二区电影| 1024香蕉在线观看| 男女下面插进去视频免费观看| 成人国产av品久久久| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| av福利片在线| 丁香六月欧美| 纯流量卡能插随身wifi吗| 亚洲,欧美精品.| 欧美日韩成人在线一区二区| 国产精品亚洲av一区麻豆| 日韩免费高清中文字幕av| 97在线人人人人妻| 捣出白浆h1v1| 最黄视频免费看| 黑人欧美特级aaaaaa片| 亚洲精品国产区一区二| 国产一卡二卡三卡精品| 精品国产乱码久久久久久男人| bbb黄色大片| 欧美日韩国产mv在线观看视频| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 中文亚洲av片在线观看爽 | 欧美av亚洲av综合av国产av| 欧美激情高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 亚洲成人免费电影在线观看| 亚洲男人天堂网一区| 免费人妻精品一区二区三区视频| 亚洲精品乱久久久久久| 国产99久久九九免费精品| 91字幕亚洲| 肉色欧美久久久久久久蜜桃| 国产成人免费观看mmmm| 美女福利国产在线| 伊人久久大香线蕉亚洲五| 精品人妻熟女毛片av久久网站| 成人手机av| 看免费av毛片| 成人av一区二区三区在线看| 另类亚洲欧美激情| 一级,二级,三级黄色视频| 精品第一国产精品| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 欧美日韩一级在线毛片| 王馨瑶露胸无遮挡在线观看| 亚洲av成人不卡在线观看播放网| 女性生殖器流出的白浆| 99香蕉大伊视频| 又黄又粗又硬又大视频| 精品国产一区二区三区四区第35| 最近最新中文字幕大全免费视频| 国产单亲对白刺激| 成年版毛片免费区| 亚洲,欧美精品.| 在线观看www视频免费| 国产伦理片在线播放av一区| 麻豆av在线久日| av国产精品久久久久影院| 国产深夜福利视频在线观看| 叶爱在线成人免费视频播放| 精品欧美一区二区三区在线| 丝袜在线中文字幕| 久久中文字幕人妻熟女| 色尼玛亚洲综合影院| 久久久久久久大尺度免费视频| 午夜福利,免费看| 午夜老司机福利片| 久久精品国产综合久久久| 国产又爽黄色视频| 高清毛片免费观看视频网站 | 亚洲成人免费电影在线观看| 久久中文看片网| 亚洲一卡2卡3卡4卡5卡精品中文| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 国产欧美亚洲国产| 日韩有码中文字幕| 超碰成人久久| 人妻 亚洲 视频| 国产黄色免费在线视频| 国产aⅴ精品一区二区三区波| 亚洲熟女毛片儿| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 午夜91福利影院| 亚洲第一av免费看| 久久久久久久久久久久大奶| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 麻豆av在线久日| 日日爽夜夜爽网站| 色在线成人网| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦免费观看视频1| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 男女之事视频高清在线观看| 多毛熟女@视频| 国产亚洲一区二区精品| 亚洲精品粉嫩美女一区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品一区二区www | 日本五十路高清| 欧美在线一区亚洲| www.精华液| 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费 | h视频一区二区三区| 亚洲七黄色美女视频| 两个人看的免费小视频| 国产男靠女视频免费网站| 丝袜人妻中文字幕| 色综合婷婷激情| 久久中文看片网| 亚洲伊人久久精品综合| 国产精品久久久久成人av| 国产真人三级小视频在线观看| 久久亚洲真实| 真人做人爱边吃奶动态| 99re在线观看精品视频| 亚洲熟女精品中文字幕| 美女福利国产在线| 国产一卡二卡三卡精品| e午夜精品久久久久久久| 久久国产精品影院| 黄色视频不卡| 午夜成年电影在线免费观看| 老司机靠b影院| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 亚洲一区二区三区欧美精品| 免费一级毛片在线播放高清视频 | 在线观看免费视频网站a站| 国产成人影院久久av| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9 | 欧美成人免费av一区二区三区 | 欧美久久黑人一区二区| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 中文字幕高清在线视频| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 亚洲av日韩精品久久久久久密| 一本色道久久久久久精品综合| 侵犯人妻中文字幕一二三四区| 成人亚洲精品一区在线观看| 高清在线国产一区| 一个人免费看片子| 国产精品偷伦视频观看了| 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 国产麻豆69| 女同久久另类99精品国产91| 大陆偷拍与自拍| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 亚洲国产欧美一区二区综合| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产 | 中文字幕制服av| 99riav亚洲国产免费| 国产精品久久久久成人av| 天堂动漫精品| 欧美中文综合在线视频| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 王馨瑶露胸无遮挡在线观看| 国产伦理片在线播放av一区| 一进一出抽搐动态| 国产精品1区2区在线观看. | 一个人免费看片子| 美女主播在线视频| 国产日韩欧美视频二区| 在线看a的网站| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 欧美午夜高清在线| 国产精品欧美亚洲77777| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 国产色视频综合| 国产精品久久久久久精品电影小说| 国产欧美日韩精品亚洲av| av网站在线播放免费| videos熟女内射| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 日韩熟女老妇一区二区性免费视频| av一本久久久久| av天堂在线播放| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| 国产精品秋霞免费鲁丝片| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| 手机成人av网站| 黄频高清免费视频| 精品国产国语对白av| 国产免费现黄频在线看| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 日本vs欧美在线观看视频| 老熟妇仑乱视频hdxx| 两性夫妻黄色片| 在线观看66精品国产| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 啦啦啦 在线观看视频| 亚洲精品久久午夜乱码| 午夜福利欧美成人| 久久久久视频综合| 自线自在国产av| 精品熟女少妇八av免费久了| 欧美日韩黄片免| 视频在线观看一区二区三区| 下体分泌物呈黄色| 黑丝袜美女国产一区| 精品少妇久久久久久888优播| 在线永久观看黄色视频| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| 大码成人一级视频| 999久久久国产精品视频| 波多野结衣一区麻豆| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| 久久精品亚洲熟妇少妇任你| 欧美激情高清一区二区三区| 丰满少妇做爰视频| 久久久水蜜桃国产精品网| 怎么达到女性高潮| 天堂动漫精品| 亚洲情色 制服丝袜| 精品乱码久久久久久99久播| svipshipincom国产片| 成年动漫av网址| 一级片'在线观看视频| 亚洲精品在线观看二区| 18禁黄网站禁片午夜丰满| 久久久久久久大尺度免费视频| 十八禁人妻一区二区| 国产亚洲av高清不卡| 一边摸一边抽搐一进一小说 | 99国产精品一区二区三区| 亚洲九九香蕉| 亚洲专区字幕在线| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 亚洲午夜精品一区,二区,三区| 黑丝袜美女国产一区| 热re99久久国产66热| 丝袜美腿诱惑在线| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 超碰成人久久| 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| 一夜夜www| 岛国在线观看网站| 纵有疾风起免费观看全集完整版| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 天天躁日日躁夜夜躁夜夜| 免费观看人在逋| 欧美精品啪啪一区二区三区| 亚洲国产精品一区二区三区在线| 中文字幕精品免费在线观看视频| 老司机影院毛片| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 欧美精品av麻豆av| 国产91精品成人一区二区三区 | 新久久久久国产一级毛片| 精品国产一区二区久久| av天堂在线播放| 十分钟在线观看高清视频www| 日韩欧美国产一区二区入口| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 在线观看免费午夜福利视频| 精品亚洲乱码少妇综合久久| 国产成人一区二区三区免费视频网站| 在线亚洲精品国产二区图片欧美| 69精品国产乱码久久久| 午夜精品国产一区二区电影| 美女主播在线视频| 老熟妇仑乱视频hdxx| aaaaa片日本免费| 搡老岳熟女国产| 国产男女内射视频| 国产高清激情床上av| 成人影院久久| 国产一卡二卡三卡精品| 高潮久久久久久久久久久不卡| 精品人妻熟女毛片av久久网站| 午夜免费鲁丝| 国产在线免费精品| 国产免费视频播放在线视频| 岛国毛片在线播放| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 老熟妇乱子伦视频在线观看| 1024视频免费在线观看| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 亚洲熟女毛片儿| 黄片大片在线免费观看| 国产高清视频在线播放一区| 国产成人免费观看mmmm| 丁香六月天网| 2018国产大陆天天弄谢| 在线观看免费视频网站a站| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 免费在线观看日本一区| videosex国产| 日韩免费高清中文字幕av| 俄罗斯特黄特色一大片| 水蜜桃什么品种好| 国产精品久久久久久人妻精品电影 | 日韩免费av在线播放|