• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    2017-11-20 12:07:49GouYiyongLiHongboDongXinminLiuZongcheng
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Gou Yiyong,Li Hongbo,Dong Xinmin,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Gou Yiyong,Li Hongbo,Dong Xinmin*,Liu Zongcheng

    Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi’an 710038,China

    Aeroelastic system;Constrained control;Flutter suppression;Input nonlinearities;RBFNNs

    A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO)aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs)are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.

    1.Introduction

    In the past,aeroelasticity has attracted increasing concern in aircraft design.Aeroelastic systems exhibit a variety of unstable phenomena as a result of the mutual interaction of structural,inertia and aerodynamic forces.1Divergence,flutter,and limit-cycle oscillation are typical unstable phenomena which can degrade an aircraft’s flight performance,and even cause flight mission failure.1,2Thus,a reliable and effective control strategy becomes one of the key issues in aeroelastic system control design.In previous studies,researchers have analyzed the nonlinear responses of aeroelastic systems,and various control schemes have been extensively studied.Based on the l method,Lind and Brenner3have analyzed the unstable responses of aeroelastic systems and studied robust stability margins.To study different aeroelastic phenomena,the NASA Langley Research Center has developed a benchmark active control technology(BACT)wind-tunnel model.4For this BACT wind-tunnel model,several control laws for fluttersuppression have been developed.4–6Considering nonlinear structural stiffness,a model equipped with a single trailingedge(TE)control surface has been developed at Texas A&M University.7Based on this model,a wide variety of control schemes have been designed.8–11Inspired by the limited effectiveness of a single TE control surface,a wing section equipped with a leading-edge(LE)control surface and a TE control surface has been designed,and a large number of control schemes has been proposed.12–16For this wing section with uncertainties,adaptive control has been widely used to suppress flutter.13–15Neural network control and adaptive control have been developed in this filed and compared in control performance.13With respect to external disturbance and uncertainties,Wang et al.14designed an output feedback adaptive controller coupled with an SDU decomposition which avoids the singularity problem arising from estimation of the input matrix.Accounting on the input saturation problem,Lee and Singh15used an auxiliary dynamic system to compensate for the input saturation and proposed a novel control scheme.In addition,a sliding mode control method was also applied to flutter suppression,and Lee and Singh16have designed a higher-order sliding mode controller which accomplished the finite-time flutter suppression of the aeroelastic system.

    It is well known that input nonlinearities exist in a real control system,and an aeroelastic control system is no exception.Both input dead-zone and saturation are considered for the uncertain aeroelastic system in this paper.Input saturation and dead-zone may induce deterioration of the aeroelastic control system performance,and even make the aeroelastic control system fail.Consequently,input saturation and deadzone have attracted much attention.Input dead-zone could induce a zero input against a range of set values.17An adaptive dead-zone inverse approach was proposed to tackle a system with input dead-zone.18An adaptive fuzzy output feedback control law,which treats dead-zone inputs as system uncertainties,has been developed.19For the input saturation problem,Chen et al.20designed an auxiliary system,whose input was the error between the saturation input and the desired control input,to compensate for the impact of the input saturation.Li et al.21proposed an adaptive fuzzy output feedback control for output constrained nonlinear systems.In general,some researchers have also studied in integrating input deadzone with saturation.For uncertain multi-input and multioutput(MIMO)nonlinear systems with input nonlinearities,a robust adaptive neural network control was developed.17Yang and Chen22regarded input dead-zone and saturation nonlinearities as a new input saturation problem through a dead-zone inverse approach,and proposed an adaptive neural prescribed performance control law for near-space vehicles.

    Motivated by the above discussion,a constrained adaptive neural network control scheme is proposed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.Different from the previous references,it is especially noted that uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered.Inspired by Ref.22,the right inverse function block of the dead-zone is added before the input nonlinearities,by which the input nonlinearities can be regarded as a new input saturation.22To handle the new input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Radial basis function neural networks(RBFNNs)are also applied to approximate the system uncertainties.A novel constrained adaptive control law is developed by using the backstepping control technique.The simulation results of the MIMO aeroelastic control system are presented to verify that the proposed control scheme can accomplish flutter suppression despite the effects of wind gust,system uncertainties,and input nonlinearities.

    2.Nonlinear aeroelastic model and preliminary

    2.1.Nonlinear aeroelastic model

    A two-degree-of-freedom(2-DOF)wing section equipped with LE and TE control surfaces is presented in Fig.1.15The second-order differential equations signifying the dynamic of this aeroelastic system are given by13,14

    In Eq.(1),MandLrepresent the aerodynamic moment and lift in a quasi-steady form expressed by13

    Fig.1 Aeroelastic system with LE and TE control surfaces.15

    whereCma,CmbandCmcare the moment derivatives due to a,b and c,respectively;andCmacan be approximately regarded to be zero.13The moment and lift arose by wind gust can be given by14

    wherets?Ut=b,and xgetsT denotes the disturbance velocity.

    wherevimaxandvimindenote the known saturation values of the control inputvi(i?1;2).

    Fig.2 Structural diagram of input nonlinearity

    Fig.3 Saturation function

    Fig.4 Dead-zone function

    whereluiandldiare the breakpoints of the dead-zone;kui>0 andkdi>0 are the right and left slope parameters,respectively.

    In this paper,the control objective is to design a constrained adaptive neural network controller for the MIMO aeroelastic system in Eq.(6)to ensure the output y can track the desired output signal ydby appropriately choosing design parameters.

    Lemma 320.No eigenvalue of matrixAexceeds any of its norm in its absolute value,that is,

    2.2.Analysis of input nonlinearity

    Base on the analysis of the characteristics of the new construction of input nonlinearity in Ref.26,uican be described as

    Fig.5 Right inverse function

    Fig.6 Structural diagram of input nonlinearity

    The above equation means that the input saturation and dead-zone coupled with the right inverse function block of the dead-zone can be regarded as an equivalent input saturation.

    2.3.RBF neural networks

    3.Design of a constrained adaptive control scheme based on RBFNNs

    3.1.Design of a constrained adaptive control scheme

    In this section,the backstepping method is used to construct a constrained adaptive neural network controller for the nonlinear system in Eq.(6).Define the error variables as

    During the constrained adaptive neural network controller design,the backstepping control technique is employed and the detailed design process is described as follows.

    Step 1.Considering the system in Eq.(6)and differentiating z1,we obtain

    To proceed with the design of the constrained adaptive neural network control scheme,we define

    Then,we obtain

    Consider the Lyapunov function candidate

    Step 2.Differentiating z2yields

    Consider the Lyapunov function candidate

    As shown in Section 2.3,the RBFNNs will be employed to approximate the system uncertainties DFexT,and the optimal approximation can be written as

    Substituting Eq.(29)into Eq.(28)yields

    Considering Assumptions 1 and 2,we obtain

    In view of Young’s inequality,20and invoking Lemma 1,Eq.(31)can be rewritten as

    From Eq.(13),the control inputs u can be regarded as an input saturation problem.To compensate for the impact of the input saturation,the auxiliary error system is presented as follows20

    Define20

    Invoking Lemma 2 and taking the input saturation into consideration,choose the control law as follows

    3.2.Stability analysis

    In this section,the main results will be stated,and the semiglobal boundedness of all the signals in the closed-loop system will be proven by two cases.

    Choose the Lyapunov function as follows

    Following from Eqs.(25)and(32)and invoking Lemma 3,the time derivative ofVis

    Invoking Eq.(36),we obtain

    Substituting Eq.(40)into Eq.(39)yields

    Substituting Eq.(42)into Eq.(41),we obtain

    The structure diagram of the whole control system can be seen in Fig.7.

    4.Example results and discussion

    Fig.7 Structural diagram of whole control system.

    For the purpose of examining the effectiveness of the proposed constrained adaptive neural network control scheme at different freestream velocities,simulations at three different freestream velocitiesUc,1:5Ucand 2Ucare undertaken.The results are presented in Fig.11,which shows that the closedloop system is stable despite different freestream velocities,and for a higher freestream velocity,the responses are quicker.To examine that the LCOs can be suppressed,the aeroelastic system at a freestream velocity of 12 m/s is held in an open loop for 10 s and then the loop is closed.In Fig.12,we can observe that the pitch LCO is suppressed in about 5 s and the plunge LCO is suppressed in about 1 s;in terms of control surface,the TE control surface deflection converges to zero in less than 6 s,and the LE control surface deflection converges to zero in about 2 s.

    Table 1 Model parameters.13–15

    Fig.8 Real part of eigenvalues in open-loop system.

    Fig.9 Aeroelastic system phase diagrams at different freestream velocities.

    Fig.10 Aeroelastic system LCO frequency spectra at different freestream velocities.

    To verify the applicability and robustness of the aeroelastic control system,based on four types of wind gust,four sets of simulations are done as follows.

    The mathematical model of sinusoidal gust is given by14

    Fig.11 Constrained control at different freestream velocities.

    Fig.12 Constrained control,controller active at t=10 s.

    Fig.13 Constrained control for sinusoidal gust,U?12 m=s.

    For the triangular gust,one has14

    For the exponential gust,the mathematical model can be described as15

    Figure 14 Constrained control for random gust,

    Fig.15 Constrained control for triangular gust,

    Fig.16 Constrained control for exponential gust,

    Fig.17 Constrained controlagainstsystem uncertainties,

    Fig.18 Constrained control with LE control surface failure,

    Fig.19 Constrained control with TE control surface failure,

    5.Conclusions

    (1)An effective constrained adaptive neural network control scheme has been developed for an MIMO aeroelastic system with wind gust,system uncertainties,and input nonlinearities.

    (2)In order to handle the system uncertainties,RBFNNs have been employed to approximate the system uncertainties effectively,and simulation results demonstrate the effectiveness of the proposed control scheme against the system uncertainties.

    (3)To deal with the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,and the input nonlinearities can be treated as a single input saturation nonlinearity.Moreover,an auxiliary error system is designed to compensate for the impact of the input saturation.

    (4)By using the Lyapunov stability theory and the backstepping control technique,all signals of the closedloop system based on the proposed constrained adaptive neural network control scheme are semi-globally uniformly bounded.

    (5)Digital simulation results illustrate the effectiveness of the proposed control scheme which can accomplish flutter suppression quickly at different freestream velocities.Moreover,in terms of wind gust,the simulation results verify the applicability and robustness of the proposed control scheme.In addition,considering the failure of a control surface,we find that the proposed control method can be applied to the aeroelastic system with only the TE control surface.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120),and the AeronauticalScience Foundation of China (No.20155896026).

    1.Mukhopadhyay V.Historical perspective on analysis and control of aeroelastic responses.J Guidance,Control,Dyn2003;26(5):673–84.

    2.Li DC,Xiang JW,Guo SJ.Adaptive control of a nonlinear aeroelastic system.Aerospace Sci Technol2011;15(5):343–52.

    3.Lind R,Brenner M.Robust aeroservoelastic stability analysis.London:Springer-Verlag;1999.p.117–52.

    4.Waszak MR.Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model.J Guidance,Control,Dyn2001;24(1):147–53.

    5.Mukhopadhyay V.Transonic flutter suppression control law design and wind-tunnel test results.J Guidance,Control,Dyn2000;23(5):930–7.

    6.Kelkar AG,Joshi SM.Passivity-based robust control with application to benchmark controls technology wing.J Guidance,Control,Dyn2000;23(5):938–47.

    7.Ko J,Kurdila AJ,Strganac TW.Nonlinear control of a prototypical wing section with torsional nonlinearity 1997.J Guidance,Control,Dyn1997;20(6):1181–9.

    8.Ko J,Strganac TW,Kurdila AJ.Adaptive feedback linearization for the control of a typical wing section with structural nonlinearity.Nonlinear Dyn1999;18(3):289–301.

    9.Xing W,Singh SN.Adaptive output feedback control of a nonlinear aeroelastic structure.J Guidance,Control,Dyn2000;23(6):1109–16.

    10.Lee KW,Singh SN.Global robust control of an aeroelastic system using output feedback.J Guidance,Control,Dyn2007;30(1):271–5.

    11.Beha A,Marzocca P,Rao VM,Gnann A.Nonlinear adaptive control of an aeroelastic two-dimensional lifting surface.J Guidance,Control,Dyn2006;29(2):382–90.

    12.Platanitis G,Strganac TW.Control of a nonlinear wing section using leading-and trailing-edge surfaces.J Guidance,Control,Dyn2004;27(1):52–8.

    13.Gujjula S,Singh SN,Yim W.Adaptive and neural control of a wing section using leading-and trailing-edge surfaces.Aerospace Sci Technol2005;9(2):161–71.

    14.Wang Z,Behal A,Marzocca P.Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance.J Guidance,Control,Dyn2011;34(2):446–58.

    15.Lee KW,Singh SN.Adaptive control of multi-Input aeroelastic system with constrained inputs.J Guidance,Control,Dyn2015;38(12):2337–50.

    16.Lee KW,Singh SN.Robust higher-order sliding-mode finite-time control of aeroelastic systems.J Guidance,Control,Dyn2014;37(5):1664–70.

    17.Chen M,Ge SS,Eehow BV.Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities.IEEE Trans Neural Netw2010;21(5):796–812.

    18.Zhou J,Wen C,Zhang Y.Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity.IEEE Trans Autom Control2006;51(3):504–10.

    19.Tong S,Li Y.Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs.IEEE Trans Fuzzy Sys2013;21(1):134–46.

    20.Chen M,Ge SS,Ren BB.Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints.Automatica2011;47(3):452–65.

    21.Li Y,Tong S,Li T.Adaptive fuzzy output feedback control for output constrained nonlinear systems in the presence of input saturation.Fuzzy Sets Syst2014;248(1):138–55.

    22.Yang QY,Chen M.Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity.Neurocomputing2016;174:780–9.

    23.Liu ZC,Dong XM,Xue JP,Chen Y.Adaptive neural control for a class of time-delay systems in the presence of backlash or deadzone nonlinearity.IET Control Theory Appl2014;8(11):1009–22.

    24.Zhang TP,Ge SS.Adaptive dynamic surface control of nonlinear systems with unknown dead-zone in pure feedback form.Automatica2008;44(7):1895–903.

    25.Polycarpou MM,Ioannou PA.A robust adaptive nonlinear control design.Automatica1996;32(3):423–7.

    26.Ma DCRL,Heath WP.Controller structure for plants with combined saturation and deadzone/backlash.2012 IEEE international conference on control application;2012 Oct 18–20;Dubrovnik.Piscataway(NJ):IEEE Press;2012.p.1394–9.

    27.Chen M,Yu J.Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer.Chin J Aeronautics2015;28(3):853–64.

    20 April 2016;revised 2 September 2016;accepted 28 November 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:gouyiyong@139.com(Y.Gou),dongxinmin@139.com(X.Dong).

    Peer review under responsibility of Editorial Committee of CJA.

    母亲3免费完整高清在线观看 | 简卡轻食公司| 中文字幕制服av| 日韩欧美一区视频在线观看| 免费看不卡的av| 大话2 男鬼变身卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久 成人 亚洲| 另类精品久久| 国产一区二区三区综合在线观看 | 国产精品免费大片| 国产在视频线精品| 日本欧美视频一区| 黄色一级大片看看| 日韩中字成人| 精品少妇内射三级| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 人成视频在线观看免费观看| 国产精品免费大片| 亚洲精品第二区| 大又大粗又爽又黄少妇毛片口| 色94色欧美一区二区| 成人黄色视频免费在线看| 国产高清国产精品国产三级| 久久久精品区二区三区| 欧美变态另类bdsm刘玥| 汤姆久久久久久久影院中文字幕| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 国产成人freesex在线| 欧美亚洲 丝袜 人妻 在线| 男女边吃奶边做爰视频| 国产 精品1| 欧美成人精品欧美一级黄| 久久久久久久久久久丰满| 乱码一卡2卡4卡精品| 中文字幕久久专区| 亚洲精华国产精华液的使用体验| 97超碰精品成人国产| 十八禁网站网址无遮挡| 成人亚洲欧美一区二区av| 久久久午夜欧美精品| 22中文网久久字幕| 国产成人精品久久久久久| 伊人亚洲综合成人网| av免费观看日本| 免费播放大片免费观看视频在线观看| 亚洲av国产av综合av卡| 国产一区二区在线观看av| 极品人妻少妇av视频| 爱豆传媒免费全集在线观看| 国产片内射在线| 黑人欧美特级aaaaaa片| 亚洲av.av天堂| 五月伊人婷婷丁香| 国产一区二区三区av在线| 人人妻人人澡人人看| 国产一区二区三区av在线| 99热国产这里只有精品6| 777米奇影视久久| 大码成人一级视频| 成人漫画全彩无遮挡| 91精品伊人久久大香线蕉| 色婷婷久久久亚洲欧美| 欧美日韩av久久| 少妇 在线观看| 91精品国产九色| 亚洲不卡免费看| 亚洲精华国产精华液的使用体验| 人人妻人人澡人人爽人人夜夜| 亚洲成色77777| 日韩人妻高清精品专区| 又大又黄又爽视频免费| 精品午夜福利在线看| 日韩中文字幕视频在线看片| 欧美国产精品一级二级三级| 国产精品一区二区在线不卡| 久久久久人妻精品一区果冻| 国产精品熟女久久久久浪| 简卡轻食公司| 在线亚洲精品国产二区图片欧美 | 国产在线免费精品| 黄色配什么色好看| 亚洲av欧美aⅴ国产| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 成人18禁高潮啪啪吃奶动态图 | 欧美 日韩 精品 国产| 一级爰片在线观看| 午夜视频国产福利| 少妇高潮的动态图| 我的老师免费观看完整版| 国产一区二区三区av在线| 啦啦啦在线观看免费高清www| 国产综合精华液| 简卡轻食公司| 亚洲少妇的诱惑av| 一个人看视频在线观看www免费| 永久免费av网站大全| 欧美人与性动交α欧美精品济南到 | 欧美最新免费一区二区三区| 老司机影院成人| 欧美日韩av久久| 欧美 日韩 精品 国产| 久久国产精品男人的天堂亚洲 | 精品亚洲成国产av| 成年女人在线观看亚洲视频| 国产在线免费精品| 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| 亚洲av电影在线观看一区二区三区| 91在线精品国自产拍蜜月| 亚洲综合精品二区| 熟女人妻精品中文字幕| a级毛片黄视频| 亚洲av在线观看美女高潮| 国产精品人妻久久久久久| 在线天堂最新版资源| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 黄色一级大片看看| 2018国产大陆天天弄谢| 欧美亚洲日本最大视频资源| 久久人妻熟女aⅴ| 最近最新中文字幕免费大全7| 国产亚洲精品久久久com| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 一区二区三区免费毛片| 国产成人精品一,二区| 22中文网久久字幕| 丝袜美足系列| 精品亚洲成a人片在线观看| 亚洲欧美一区二区三区黑人 | 亚洲综合色惰| 少妇熟女欧美另类| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 99热国产这里只有精品6| 能在线免费看毛片的网站| 精品一区二区三卡| 五月伊人婷婷丁香| 久久久久精品性色| 少妇高潮的动态图| 欧美国产精品一级二级三级| 国产高清有码在线观看视频| 高清毛片免费看| 国产av码专区亚洲av| 一级片'在线观看视频| 韩国高清视频一区二区三区| .国产精品久久| 中国三级夫妇交换| 青春草国产在线视频| 伦理电影大哥的女人| 国产精品人妻久久久影院| 九色亚洲精品在线播放| 亚洲在久久综合| 国产精品秋霞免费鲁丝片| 中文字幕精品免费在线观看视频 | 日本-黄色视频高清免费观看| 免费av中文字幕在线| 蜜桃国产av成人99| 夜夜看夜夜爽夜夜摸| 一级毛片电影观看| 丁香六月天网| 亚洲美女黄色视频免费看| 精品国产国语对白av| 久久狼人影院| 精品国产乱码久久久久久小说| 亚洲综合精品二区| 国产在线视频一区二区| 欧美精品国产亚洲| 国产精品久久久久久精品古装| 九九在线视频观看精品| 9色porny在线观看| 国产乱人偷精品视频| 国产成人精品无人区| 成人漫画全彩无遮挡| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 校园人妻丝袜中文字幕| 精品一区二区三卡| 精品久久久久久电影网| 麻豆精品久久久久久蜜桃| 亚洲av二区三区四区| 精品久久久久久久久av| 99热这里只有精品一区| 亚洲精品自拍成人| 一本一本综合久久| 国产精品99久久久久久久久| 午夜久久久在线观看| 国产精品久久久久久久久免| 国产永久视频网站| videossex国产| 午夜视频国产福利| 精品国产一区二区久久| 另类精品久久| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 在线播放无遮挡| 成人国产麻豆网| 色婷婷久久久亚洲欧美| 国产日韩欧美在线精品| 亚洲第一av免费看| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 免费观看在线日韩| 亚洲伊人久久精品综合| 观看美女的网站| a级毛色黄片| 少妇的逼水好多| 高清黄色对白视频在线免费看| 成人国产麻豆网| 久久久久久久精品精品| 99热全是精品| 尾随美女入室| 日本与韩国留学比较| 亚洲情色 制服丝袜| 久久99热6这里只有精品| 在线播放无遮挡| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 另类精品久久| 国产一区二区三区综合在线观看 | 最新的欧美精品一区二区| 国国产精品蜜臀av免费| 国产精品嫩草影院av在线观看| 内地一区二区视频在线| 麻豆成人av视频| 汤姆久久久久久久影院中文字幕| 国产亚洲午夜精品一区二区久久| 精品久久久精品久久久| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 日韩三级伦理在线观看| 日本欧美国产在线视频| 男女无遮挡免费网站观看| av.在线天堂| 亚洲av.av天堂| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 亚洲久久久国产精品| 欧美日韩成人在线一区二区| 国产综合精华液| 中文字幕制服av| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区成人| 韩国高清视频一区二区三区| 考比视频在线观看| 久久热精品热| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 乱码一卡2卡4卡精品| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡 | 国产免费又黄又爽又色| 寂寞人妻少妇视频99o| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 午夜福利,免费看| 亚洲综合色惰| 99热这里只有精品一区| 69精品国产乱码久久久| 三级国产精品片| 永久网站在线| 高清不卡的av网站| 亚洲久久久国产精品| 国产精品三级大全| 亚洲少妇的诱惑av| 亚洲国产av影院在线观看| 欧美3d第一页| 大香蕉久久成人网| 麻豆乱淫一区二区| 视频在线观看一区二区三区| 久久久久网色| 满18在线观看网站| 国内精品宾馆在线| 精品熟女少妇av免费看| 久久午夜福利片| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区| 成人综合一区亚洲| 亚州av有码| 久久精品国产亚洲av天美| 日本av免费视频播放| 午夜久久久在线观看| 97在线人人人人妻| 亚洲国产av新网站| 国产爽快片一区二区三区| 超色免费av| a 毛片基地| 九九在线视频观看精品| 午夜老司机福利剧场| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 亚洲精品久久成人aⅴ小说 | 亚洲国产精品国产精品| 人人妻人人澡人人看| 蜜桃国产av成人99| 国产精品一国产av| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 亚洲av免费高清在线观看| videosex国产| 黄色毛片三级朝国网站| 亚洲中文av在线| 欧美性感艳星| 人妻一区二区av| 91久久精品国产一区二区三区| 男人添女人高潮全过程视频| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| www.色视频.com| 久久久久久久国产电影| 99热国产这里只有精品6| 最近的中文字幕免费完整| 男女免费视频国产| 热99国产精品久久久久久7| 色94色欧美一区二区| xxxhd国产人妻xxx| 黄色配什么色好看| 国产免费视频播放在线视频| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频| 伊人久久精品亚洲午夜| 人人澡人人妻人| 免费看不卡的av| 黑人猛操日本美女一级片| 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看| 99久久人妻综合| av福利片在线| 美女视频免费永久观看网站| 精品久久久久久久久亚洲| 国产一级毛片在线| 观看av在线不卡| 婷婷成人精品国产| 最黄视频免费看| 91精品国产九色| 国产一区二区三区av在线| 久久99热6这里只有精品| 亚洲av国产av综合av卡| 久久99热6这里只有精品| 2022亚洲国产成人精品| 一边摸一边做爽爽视频免费| 国产黄频视频在线观看| 亚洲av综合色区一区| 2022亚洲国产成人精品| 欧美3d第一页| 日韩中字成人| 黑人巨大精品欧美一区二区蜜桃 | 国产成人a∨麻豆精品| 国产在线免费精品| 美女内射精品一级片tv| 一级毛片黄色毛片免费观看视频| 一本一本综合久久| 美女大奶头黄色视频| 人妻少妇偷人精品九色| 亚洲精品自拍成人| 久久精品久久久久久久性| 日本与韩国留学比较| 久久99热6这里只有精品| 只有这里有精品99| 美女视频免费永久观看网站| 国产 一区精品| 性色av一级| 中文欧美无线码| 国产无遮挡羞羞视频在线观看| 超色免费av| 久久99热6这里只有精品| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 少妇丰满av| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 亚洲不卡免费看| 日韩制服骚丝袜av| 国产亚洲精品第一综合不卡 | 国产精品久久久久成人av| 九九在线视频观看精品| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 麻豆乱淫一区二区| 欧美人与性动交α欧美精品济南到 | 日本色播在线视频| 高清毛片免费看| 亚洲国产精品专区欧美| av黄色大香蕉| 五月玫瑰六月丁香| 精品视频人人做人人爽| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| 人成视频在线观看免费观看| 日韩一区二区三区影片| 观看av在线不卡| 成年av动漫网址| 国产成人91sexporn| 少妇精品久久久久久久| 国国产精品蜜臀av免费| 麻豆成人av视频| 亚洲,一卡二卡三卡| 人人妻人人澡人人爽人人夜夜| 午夜老司机福利剧场| 午夜福利在线观看免费完整高清在| 久久久久网色| 亚洲精品日韩在线中文字幕| 飞空精品影院首页| 日韩不卡一区二区三区视频在线| 少妇精品久久久久久久| 免费av中文字幕在线| 久久亚洲国产成人精品v| 久久99热这里只频精品6学生| 伦理电影大哥的女人| 能在线免费看毛片的网站| 日本-黄色视频高清免费观看| 亚洲国产色片| 亚洲精品久久久久久婷婷小说| 亚洲成人一二三区av| 最新中文字幕久久久久| 又黄又爽又刺激的免费视频.| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 欧美日韩成人在线一区二区| 亚洲精品国产av蜜桃| 国产一区二区在线观看av| 午夜影院在线不卡| av天堂久久9| 国产探花极品一区二区| 日韩欧美精品免费久久| 22中文网久久字幕| 亚洲精品456在线播放app| 精品国产一区二区久久| 中文字幕久久专区| 亚洲情色 制服丝袜| 国产成人精品福利久久| 亚洲四区av| 成人毛片a级毛片在线播放| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 久久久久久久久久久丰满| 精品午夜福利在线看| 热99久久久久精品小说推荐| 日日爽夜夜爽网站| 成年美女黄网站色视频大全免费 | 精品国产乱码久久久久久小说| 极品少妇高潮喷水抽搐| 国产精品欧美亚洲77777| 欧美激情 高清一区二区三区| 高清不卡的av网站| 午夜福利在线观看免费完整高清在| 国产黄色视频一区二区在线观看| 街头女战士在线观看网站| 欧美成人精品欧美一级黄| 国产成人免费观看mmmm| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 免费久久久久久久精品成人欧美视频 | 晚上一个人看的免费电影| 日韩制服骚丝袜av| 久久这里有精品视频免费| 18禁在线播放成人免费| 老司机影院毛片| 曰老女人黄片| 国产黄色免费在线视频| 成年av动漫网址| 99热6这里只有精品| 久久热精品热| 久久精品夜色国产| 午夜日本视频在线| 狂野欧美激情性bbbbbb| 国产永久视频网站| 最近的中文字幕免费完整| 伊人亚洲综合成人网| 亚洲国产色片| 中文天堂在线官网| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 我要看黄色一级片免费的| 高清午夜精品一区二区三区| 国产免费视频播放在线视频| 免费大片黄手机在线观看| 久久精品久久精品一区二区三区| 免费大片黄手机在线观看| 久久精品久久精品一区二区三区| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 蜜桃在线观看..| 自拍欧美九色日韩亚洲蝌蚪91| 国产色爽女视频免费观看| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠久久av| 熟女人妻精品中文字幕| 男女边摸边吃奶| 久久久久国产精品人妻一区二区| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 99热这里只有是精品在线观看| 欧美亚洲 丝袜 人妻 在线| 青春草国产在线视频| 国产黄频视频在线观看| 成人二区视频| 日韩av在线免费看完整版不卡| 综合色丁香网| 99九九在线精品视频| 高清不卡的av网站| 国产不卡av网站在线观看| 在线观看国产h片| 亚洲精品久久成人aⅴ小说 | 国产乱来视频区| 国产黄频视频在线观看| 在线观看www视频免费| av福利片在线| videos熟女内射| 国产精品三级大全| 大香蕉久久网| 国产精品熟女久久久久浪| 久久免费观看电影| 欧美日韩亚洲高清精品| 在线观看三级黄色| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 欧美xxⅹ黑人| 999精品在线视频| 亚洲色图 男人天堂 中文字幕 | 成人综合一区亚洲| 午夜免费鲁丝| 欧美xxⅹ黑人| 特大巨黑吊av在线直播| 啦啦啦在线观看免费高清www| 熟女av电影| videossex国产| 亚洲精品视频女| 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 一区二区三区四区激情视频| 在线看a的网站| 久热久热在线精品观看| 久久久久久久久大av| 啦啦啦啦在线视频资源| 久久久久久久久久成人| 久久久久视频综合| 18禁观看日本| 少妇人妻 视频| 伊人久久国产一区二区| 国产成人精品婷婷| 成年人免费黄色播放视频| 最近手机中文字幕大全| 汤姆久久久久久久影院中文字幕| 日日啪夜夜爽| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看| 狂野欧美激情性bbbbbb| 国产精品秋霞免费鲁丝片| 两个人免费观看高清视频| 卡戴珊不雅视频在线播放| 日本色播在线视频| 精品久久久噜噜| 日本爱情动作片www.在线观看| 男女免费视频国产| 国产精品蜜桃在线观看| 多毛熟女@视频| 人人妻人人澡人人爽人人夜夜| 51国产日韩欧美| 国产一区二区在线观看av| 国产成人午夜福利电影在线观看| 精品少妇内射三级| 亚洲av中文av极速乱| av在线app专区| 9色porny在线观看| 制服丝袜香蕉在线| 欧美日韩亚洲高清精品| 欧美国产精品一级二级三级| 亚洲人成77777在线视频| 久久精品国产亚洲网站| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 国产精品久久久久久精品电影小说| 26uuu在线亚洲综合色| 成人午夜精彩视频在线观看| 欧美日韩国产mv在线观看视频| 欧美日韩在线观看h| 国产免费又黄又爽又色| 中文字幕av电影在线播放| 22中文网久久字幕| 国产在线一区二区三区精| 中国国产av一级| 免费观看av网站的网址| 晚上一个人看的免费电影| 国产精品免费大片| 欧美最新免费一区二区三区| 三级国产精品片| 国产欧美另类精品又又久久亚洲欧美| 国产一区二区三区综合在线观看 | 日韩电影二区| 丝袜美足系列| 大香蕉久久成人网| 久久国产精品男人的天堂亚洲 | 九九爱精品视频在线观看|