• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚苯胺-還原氧化石墨烯復(fù)合材料的比電容及超級電容性能

    2017-11-01 18:11:07曾向東趙曉昱韋會(huì)鴿王彥飛沙作良
    物理化學(xué)學(xué)報(bào) 2017年10期
    關(guān)鍵詞:聚苯胺物理化學(xué)電容

    曾向東 趙曉昱 韋會(huì)鴿 王彥飛 唐 娜 沙作良

    (天津科技大學(xué)化工與材料學(xué)院,天津 300457)

    聚苯胺-還原氧化石墨烯復(fù)合材料的比電容及超級電容性能

    曾向東 趙曉昱*韋會(huì)鴿 王彥飛 唐 娜 沙作良

    (天津科技大學(xué)化工與材料學(xué)院,天津 300457)

    通過同步還原聚苯胺(PANI)-氧化石墨烯(GO)復(fù)合物制備得到了聚苯胺-還原氧化石墨烯(PANI-rGO)。由于復(fù)合材料中PANI提供了氧化還原反應(yīng)的電荷,使得PANI-rGO復(fù)合材料具有較大的比電容。通過掃描電子顯微鏡(SEM),紫外-可見光譜和熱重量分析法(TGA)對復(fù)合物進(jìn)行了結(jié)構(gòu)和形態(tài)的分析。復(fù)合材料的形態(tài)呈薄片狀,聚苯胺是均勻地包裹在氧化石墨烯上的。當(dāng)電流密度為20 A?g?1時(shí),PANI-rGO復(fù)合材料的比電容可高達(dá)1069 F?g?1(1.71 F?cm?2),是PANI-GO復(fù)合材料的五倍,這是因?yàn)閺?fù)合材料中還原氧化化石墨烯的大比表面和高電導(dǎo)性所引起的。

    聚苯胺-還原氧化石墨烯;聚苯胺-氧化石墨烯;比電容;操作電壓

    1 Introduction

    Graphene (GN), one kind of two-dimensional sp2-hybridized carbon material which has semimetal high crystal structure1,2,high specific area and good conductivity, shows potential in supercapacitor materials. GN based materials attracted many researchers developing supercapacitors3?7, aimed at increase power and energy density as well as lowering fabrication costs while using environmentally friendly materials.

    Based on the reports by researchers, using GN has specific surface area of 2000 m2?g?1, the electric double-layercapacitance (EDLC) was about 20 μF?cm?28. Introducing pseudocapacitance, accumulates charges at the electrode/electrolyte interface, accompanying with the surface redox reaction at high surface area electrode, can increase the energy density to 10 times larger than EDLC9. PANI contained pseudocapacitive materials of the redox species, extend the application in supercapacitors10,11.

    It was reported that transition metal oxides and conducting polymers have been used as electrodes in pseuodocapacitors12,13. Polyaniline-reduced graphene oxide(PANI-rGO) has been considered as one of the rGO based materials for supercapacitors14?17, which is one of the common conductive polymers known as reproducible control of the macromolecule via a simple synthesis method. Moreover, the ability of protonation-deprotonation of PANI make the protons having a significant role in the charge compensation process,which is suitable to use as an energy storing material18.

    The PANI-rGO composite material has recently been used for electric double-layered capacitors of high capacitance. Such hybrid of PANI and rGO, enhanced electrical conductivity,electroactivity and electrochemical stability19?22, prospectively could be used as supercapacitors.

    The composite of PANI-rGO can be obtained by simultaneous reducing PANI-graphene oxide (GO) particles,which was synthesized via in situ oxidation polymerization in the presence of GO23,24. However, PANI-GO was also considered as exhibiting high capacitance25?27. It is difficult to be understood that the insulating GO in PANI-GO can show high capacitance. On the other hand, to prepare PANI-rGO, different researchers use different molar ratio of aniline to ammonium peroxydisulfate (APS) e.g. 4 : 120, 3 : 128, 3 : 229,30. This means that PANI was in different oxidation state and was not the emeraldine oxidation state of PANI which has the highest level of conductivity31. When synthesizing PANI, in order to obtain the high conductive PANI, the researchers usually control the molar ratio of anline to APS at 4 : 5 in early years32?37.

    So, we prepared PANI-rGO, using the method mentioned above, with the molar ratio of anline to APS at 4 : 5. The capacitance of PANI-rGO reduced by hydrazine was estimated by electrochemical technique. The capacitance of PANI-rGO is compared with that of PANI-GO.

    2 Experimental mehthods

    2.1 Synthesis of the composites

    Graphene oxide, PANI and PANI-GO were obtained basically according to the reported processes38. The oxidant,ammonium peroxydisulfate (APS) (Wako, Japan), with molar ratio of aniline hydrochloride to APS of 1 : 1.25 was added to the mixture slowly. The composite of PANI-GO was washed repetitively with distilled water and centrifuged. The sediment was dried under vacuum at 40 °C. 0.1 mL hydrazine monohydrate was added to 50 mL PANI-GO suspension with concentration of 2 g?L?1. The as reduced mixture was put in oil bath at 95 °C for 1 h20,39,40. The product was oxidized by adding 0.0600 g APS20, followed by centrifuged -wash process repetitively with 1 mol?L?1HCl. The dispersion-centrifugation process was iterated until the supernatant showed no absorbance band of PANI. The iteration was normally three or four times. In order to know the amount of PANI-rGO particles with rectangular size of 1.0?1.5 μm38in the acid solution, 5 mg of PANI-rGO suspension was filtered by the PTFE filter paper (JGWP04700, Omnipore Membrane Filter: φ 47 mm,pore size: 0.2 μm) and washed by ion-exchanged distilled water.The mass of the PANI-rGO in the suspension can be obtained after drying under vacuum at 60 °C for 8 h.

    2.2 Characterization

    SEM photographs were taken with JSM-6701F (JEOL,Tokyo, Japan). UV-Vis absorption spectra were measured by V-670 spectrophotometer (Jasco, Japan). Thermogravimetric analyses (TGA) was carried out with Thermo Plus, TG8120(Rigaku, Tokyo, Japan).

    2.3 Fabrication of electrode

    The working electrode was prepared by casting the PANI-rGO or PANI-GO suspension onto a platinum electrode with a diameter of 1.6 mm. Typically, 3.55 mg of PANI-rGO composite was dispersed in 1.000 g of 1 mol?L?1HCl solution,forming the PANI-rGO suspension. And 15.50 mg of the suspension was then dropped onto the platinum electrode and dried in an oven before the electrochemical test.

    2.4 Electrochemical measurements

    A three-electrode cell system was used to evaluate the electrochemical performance in 1 mol?L?1HCl solution. The reference electrode was Ag/AgCl in saturated KCl. The counter electrode was a platinum coil wire. Cyclic voltammetry (CV)and galvanostatic charge-discharge process were carried out with an electrochemical workstation (Ivium compact stat.Netherlands). The electrochemical impedance spectroscopy(EIS) carried out with the above workstation, equipped with a lock-in amplifier. Applied alternating voltage was 10 mV in amplitude. The applied frequency was from 10 kHz to 0.1 Hz.

    3 Results and discussion

    3.1 Characterization of composites

    GO dispersed in water shows color of yellow-brown. When GO was chemically reduced, its color would change to black,standing for that the rGO is obtained. Fig.1 shows the UV-Vis spectra of GO, rGO, PANI, PANI-GO and PANI-rGO. The UV-spectrum of GO shows the absorption band at 231 nm and a second absorption peak around 300 nm,which is agreed with other research reports41. After reduced by hydrazine, the C/O atomic ratio become larger than that in GO. Agglomerative black material was obtained which indicating that the conjugated carbon atoms are restored and the oxygenfunctionalities are removed42. As shown in Fig.1, there is only one shifted adsorption band of rGO around 260nm. In addition,GO shows suddenly weight loss around 170?200 °C from the result of TGA (in Fig.2), ascribe to the decomposition of oxygen function groups on GO into H2O, CO and CO243. And there is no weight loss in the domain 170?200 °C for rGO,suggesting that the thermally labile oxygen-functionalities in GO was removed by hydrazine treatment. There is fast weight loss of graphite in the range of 600?700 °C, which is almost the same as the behavior of reduced GO. The weight loss of GO around 600?700 °C caused by the oxidation of graphene in GO with air. In the large temperature range of 200?600 °C, the weight loss may be related to not decomposition completely of oxygen-containing groups in the range of 170?200 °C and some of the GN in GO oxidized by air44.

    As seen in Fig.1, there are two absorption peaks for PANI in 1 mol?L?1HCl acid solution. The peak around 430 nm is the characteristic of oxidized polyaniline, corresponds to significant protonated polymer molecular chain. Absorption peak of 780 nm is caused by polaronic and bipolaronic band structures31,45. These peaks suggest that PANI is in the emeraldine oxidation state of PANI.

    PANI-GO curve in Fig.1 shows absorption bands containing the GO absorption spectrum near 270 nm and that of PANI around 420 nm and 780 nm. The TGA results in Fig.2 show weight loss of GO in the composite of PANI-GO, which is different from the weight loss behavior of pure PANI,indicating that the composite of PANI-GO is formed. However,PANI-GO shows clearer absorption spectrum at 780 nm and more green color than pure PANI and PANI-rGO in the suspension, caused by the increasing of the two polaron bands at such wavelengths39.

    Fig.1 UV-Vis spectra of (a) PANI-rGO, (b) PANI-GO, (c) PANI,(d) GO and (e) rGO obtained in 1 mol?L?1 aqueous acid dispersions.

    Fig.2 TGA curves of (a) GO, (b) PANI-GO, (c) PANI-rGO,(d) PANI and (e) rGO.

    Fig.3 SEM images of (A) PANI-rGO, (B) PANI-GO and (C) PANI; (D) AFM image of the cross section of PANI-rGO film.

    The thick films will be formed after a few drops of the suspensions dried on a carbon tape. As shown in Fig.3, SEM results of PANI-GO and PANI-rGO films show shape of flaky morphology. This is the evidence of successfully uniformly coating PANI on rGO, when comparing with that pure PANI(Fig.3(C)) presented the granular morphology. This is mainly corresponding to the polymerization of PANI46?48. The result is in agreement with other research that the polymerization process has no effect on the shape of GO and PANI can uniformly cover the rGO surface49. The cross section of the film by AFM is obtained, showing layered structure (Fig.3(D)).

    3.2 Electrochemical Characterizations

    The supercapacitance of the composites is expressed by specific capacitance, CSwhich could be calculated from charge capability tested by CV and galvanostatic charge-discharge technique50. For cyclic voltammograms, the specific capacitance was calculated by:

    where I is the instantaneous current, v is the scan rate, m is the mass of the active materials on the working electrode with unit of μg. E1, E2are the switching potential range. For galvanostatic charge-discharge curve, the average specific capacitance can be simply calculated by:

    where i is charge-discharge constant current, ?t is the time for the overall potential decrease (ΔE) during discharge. In addition, the energy density ESand power density PSof the electrodes were determined by equation. (3) and (4):

    Fig.4 Cyclic voltammograms of (a) PANI, (b) rGO,(c) PANI-rGO and (d) PANI-GO casted on electrode as workingelectrode for v = 10 mV?s?1.The current values were specific current per unit of mass.

    The CV results of PANI-rGO and PANI-GO pasted on electrode are shown in Fig.4 with the potential range from ?0.1 to 0.6 V (vs Ag/AgCl) at scan rate of 10 mV?s?1. It shows a pair of redox peaks for both the PANI-rGO and PANI-GO, relating to the redox transforming of PANI between the leucoemeraldine salt and conductive emeraldine salt, which faradic current involving redox reaction offers high energy density. From the CV results, the capacitance of PANI-rGO and PANI-GO are calculated as 1200 F?g?1(1.91 F?cm?2) and 208 F?g?1(0.33 F?cm?2), respectively. The small capacitance of PANI-GO possibly attributes by the intrinsic surface nature of GO playing a blocking effect and inhibit the charge transformation51,52. PANI-rGO also shows larger capacitance than that of the simple summation of pure PANI and rGO at the potential range from 0.4 to 0.6 V (vs Ag/AgCl). That can be explained as PANI decreased the agglomeration of rGO, so that the surface area of rGO in the composite is enhanced.

    PANI is considered as supercapacitor material mainly because of its faradaic pseudocapacitance. There are two oxidation processes: the initial oxidation and the second oxidation. In the initial oxidation process, as seen in Fig.4,partial protonated amines of PANI in the reduced form are expulsed protons following anions insertion to compensation the charge, resulting in a little solvent transport and forming charged sites of protonated imines. Thereby, large power densities could be obtained, caused by the faster protons expulsion rather than the diffusion of the anions18.

    As the energy density is proportional to the square of the voltage, large operating voltage is wanted. When high potential is applied, the second oxidation of PANI can happen, which makes the theoretical specific capacitance of PANI up to 2000 F?g?150. However, when applied potential larger than 0.6 V, the imine will be hydrolyzed to form benzoquinone18,53. As seen in Fig.5, after the scanning of PANI-rGO going around in circular manner for 20 times from ?0.1 to 1 V, PANI is hydrolyzed,even the incorporation of rGO in PANI is regarded as enhancing electrochemical stability of PANI19?22.

    Fig.5 Cyclic voltammograms of PANI-rGO casted on electrode as working electrode for 20 scans at v = 10 mV?s?1.

    The CV curve of GO modified electrode in Fig.6, shows almost the same behavior as the bare electrode in 1 mol?L?1acid solution. Redox of protons in low potential which caused by the hydrogen ions interacting with GO or rGO, indicates that GO does not contribute to the current without any effect on the redox reaction of PANI, because the reduction potential of GO is smaller than ?0.2 V (vs SCE) in aqueous solution54. The CV curve of rGO shows constant current with linearly increase of potential, indicating rGO recovered the electric conductivity and have good charge transfer between the material and the electrode. The specific capacitance of rGO, calculated from CV measurement (in Fig.4) is smaller than the theoretical value of 400 F?g?18for the highest specific-area single layer rGO.Because rGO in water suspension undergoes aggregation randomly55; even through rGO dispersed in organic solvent with concentration of 0.2?1.0 g?L?156. In addition, rGO has very low apparent density, which limit the capacitance increasing with the mass of rGO57.

    Fig.7 shows the galvanostatic symmetric charge-discharge curves of PANI-rGO and PANI-GO at the current densities range of 20 A?g?1, from which specific capacities, CSare calculated as 1069 and 210 F?g?1(1.71 and 0.34 F?cm?2) for PANI-rGO and PANI-GO respectively. The average energy density and power density were 91.7 Wh?kg?1and 1.8 kW?kg?1for PANI-rGO, 25.4 Wh?kg?1and 1.3 kW?kg?1for PANI-GO electrode. The charge- discharge curves do not show linear relationship of ideal double layer capacitance, caused by the faradic process of PANI providing pseudocapacitance.

    It is calculated that the specific capacitance values of charging-discharging at different current densities, as shown in Fig.8. PANI-rGO shows an enhancement of specific capacitance compared with PANI-GO even through there is no difference in the morphology from the SEM results and the flexible film resistance, which was measured by two needle-like terminal pins of a resistance meter. This may be caused by combination of rGO, increased the surface area and improved the charge transfer. We also take the cycle performance for 2000 cycles at the scan rate of 100 mV?s?1from ?0.1 to 0.6 V (vs Ag/AgCl) (Fig.8 inset), showing 95%and 85% specific capacitance retention after 2000 cycles for PANI-rGO and PANI-GO. The lower retention of PANI-GO may be caused by the insulating GO in PANI-GO making some of the PANI in the film inactive.

    Fig.6 CV curve of GO and rGO casted on electrode compared with the bare electrode in 1 mol?L?1 HCl.

    Fig.7 Charge-discharge cycling curves of PANI-GO and PANI-rGO electrodes at a current density of 20 A?g?1.

    Fig.8 Specific capacitance measured at different charging current, based on their total mass of composites on electrode.Inset is the cyclic performance of the electrode at the scan rate 100 mV?s?1.

    Fig.9 (a) Nyquist plots of PANI-rGO and PANI-GO, with DC potential under 0 V vs Ag/AgCl;Inset shows magnified view at high frequency range.(b) Equivalent circuit model for the EIS analysis.

    The electrochemical impedance spectroscopy (EIS) was carried out, which is used to research the resistance of redox reaction and intra- and inter-surface. The Nyquist plots of PANI-rGO and PANI-GO are shown in Fig.9(a), with frequency range of 0.1 Hz~10 kHz. By applying potential of 0 V vs Ag/AgCl, PANI could be reduced without reduction of GO.The equivalent circuit model shows in Fig.9(b), which comprised of series resistance (Rs), electrical double layer capacitance (Cd), charge-transfer resistance (Rct) and War-burg impedance (W). At high frequency, there is a circular arc appear for PANI-GO, relating to the low electron conductivity of the film20,58. The intercept on the real axis correspond to the solution resistance, Rs, relating to electrolyte, electrode and the interface of electrolyte and electrode. As shown in inset of Fig.9, the diameter of the arc for PANI-GO is larger than PANI-rGO, which demonstrates that PANI-GO film on the electrode has charge transfer resistance Rct. The poor ability of charge transfer of PANI-GO imply the incompleteness of the electrochemical reduction of PANI59,60in the PANI-GO film when taking CV measurements. Some parts of oxidized PANI are much easier left behind from the electrochemical reduction because of cut-off of the electric percolation during the reduction. For PANI-GO, with the reducing of PANI, the conductivity of the film decreased, causing uncompleted reducing of the PANI in the composite by electrochemical measurements. So, PANI-rGO exhibited larger specific capacitance than PANI-GO. However, considering the hydrolysis of pernigraniline in acid, PANI-rGO, bear the limit of energy density because of the short operating voltage.

    4 Conclusions

    PANI-rGO is obtained by simultaneous reducing of PANI-GO, which is synthesized via in situ oxidation polymerization in the presence of GO. PANI is uniformly coated on GO with half oxidation state. The morphology of the composite is rectangular flakes shape. PANI-rGO has the high specific capacitance than PANI-GO, contributed by significantly increased surface area and conductivity of rGO with synergistic effect. When PANI is considered as a supercapacitor material, the high potential should be avoided,since the second oxidation of PANI is undesired. PANI-rGO composite, used as supercapacitor, has specific capacitance of 1069 F?g?1(1.71 F?cm?2) at a current density of 20 A?g?1. The operating voltage, however, need more attentions and will be a critical point to real application in the future.

    (1) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.doi: 10.1038/Nmat1849

    (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004,306, 666. doi: 10.1126/science.1102896

    (3) Ghosh, D.; Giri, S.; Dhibar, S.; Das, C. K. Electrochim. Acta 2014,147, 557. doi: 10.1016/j.electacta.2014.09.130

    (4) Mishra, A. K.; Ramaprabhu, S. J. Phys. Chem. C 2011, 115, 14006.doi: 10.1021/jp201673e

    (5) Yan, J.; Wei, T.; Shao, B.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.;Wei, F. Carbon 2010, 48, 487. doi: 10.1016/j.carbon.2009.09.066

    (6) Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Carbon 2015, 81, 552.doi: 10.1016/j.carbon.2014.09.090

    (7) Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Nanoscale 2010, 2,2164. doi: 10.1039/c0nr00224k

    (8) Conway, B. E.; Pell, W. G. J. Solid State Electrochem. 2003, 7,637. doi: 10.1007/s10008-003-0395-7

    (9) Rauda, I. E.; Augustyn, V.; Dunn, B.; Tolbert, S. H. Acc. Chem.Res. 2013, 46, 1113. doi: 10.1021/ar300167h

    (10) Wang, Z. L.; He, X. J.; Ye, S. H.; Tong, Y. X.; Li, G. R. ACS Appl. Mater. Interfaces 2014, 6, 642. doi: 10.1021/am404751k

    (11) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. ACS Appl. Mater. Interfaces 2015, 7, 14843.doi: 10.1021/acsami.5b03126

    (12) Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210.doi: 10.1126/science.1249625

    (13) Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014,7, 1597. doi: 10.1039/C3EE44164D

    (14) Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4,1963. doi: 10.1021/nn1000035

    (15) Tan, Y. T.; Ran, F.; Kong, L. B.; Liu, J.; Kang, L. Synth. Met.2012, 162, 114. doi: 10.1016/j.synthmet.2011.11.020

    (16) Wang, H. Z.; Gao, C. X.; Zhang, P.; Yao, S. W.; Zhang, W. G.Acta Phys. -Chim. Sin. 2013, 29, 117. [王宏智, 高翠俠, 張鵬, 姚素薇, 張衛(wèi)國. 物理化學(xué)學(xué)報(bào), 2013, 29, 117.]doi: 10.3866/PKU.WHXB201210234

    (17) Wang, L. L.; Xing, R. G.; Zhang, B. W.; Hou, Y. Acta Phys. -Chim. Sin. 2014, 30, 1659. [汪麗麗, 邢瑞光, 張邦文,侯 淵. 物理化學(xué)學(xué)報(bào), 2014, 30, 1659.]doi: 10.3 866/PKU.WHXB201406162

    (18) Orata, D.; Buttry, D. A. J. Am. Chem. Soc. 1987, 109, 3574.doi: 10.1021/ja00246a013

    (19) Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai,L.;Baek, J. B. ACS Nano 2012, 6, 1715.doi: 10.1021/nn204688c

    (20) Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Chem. Mater.2010, 22, 1392. doi: 10.1021/cm902876u

    (21) Lindfors, T.; Latonen, R. M. Carbon 2014, 69, 122.doi: 10.1016/j.carbon.2013.11.074

    (22) Co?kun, E.; Zaragoza-Contreras, E. A.; Salavagione, H. J.Carbon 2012, 50, 2235. doi: 10.1016/j.carbon.2012.01.041

    (23) Shulga, Y. M.; Baskakov, S. A.; Abalyaeva, V. V.; Efimov, O.N.; Shulga, N. Y.; Michtchenko, A.; Lartundo-Rojas, L.;Moreno, L. A.; Cabanas-Moreno, J. G.;Vasilets, V. N. J. Power Sources 2013, 224, 195. doi: 10.1016/j.jpowsour.2012.09.105

    (24) Zhang, W. L.; Park, B. J.; Choi, H. J. Chem. Commun. 2010,46, 5596. doi: 10.1039/c0cc00557f

    (25) Luo, Z. H.; Zhu, L. H.; Zhang, H. Y.; Tang, H. Q. Mater. Chem.Phys. 2013, 139, 572.doi: 10.1016/j.matchemphys.2013.01.059

    (26) Zhang, Q.; Li, Y.; Feng, Y.; Feng, W. Electrochim. Acta 2013,90, 95. doi: 10.1016/j.electacta.2012.11.035

    (27) Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q.Ind. Eng. Chem. Res. 2012, 51, 14390. doi: 10.1021/ie301734f

    (28) Xu, D.; Xu, Q.; Wang, K.; Chen, J.; Chen, Z. ACS Appl. Mater.Interfaces 2013, 6, 200. doi: 10.1021/am404799a

    (29) Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25,6985. doi: 10.1002/adma.201303529

    (30) Xu, J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. ACS Nano 2010, 4, 5019. doi: 10.1021/nn1006539

    (31) Huang, W. S.; MacDiarmid, A. G. Polymer 1993, 34, 1833.doi: 10.1016/0032-3861(93)90424-9

    (32) Blinova, N. V.; Sapurina, I.; Klimovi?, J.; Stejskal, J. Polym.Degrad. Stabil. 2005, 88, 428.doi: 10.1016/j.polymdegradstab.2004.11.014

    (33) Stejskal, J.; Kratochví l, P.; Helmstedt, M. Langmuir 1996, 12,3389. doi: 10.1021/la9506483

    (34) Ghosh, P.; Siddhanta, S. K.; Chakrabarti, A. Eur. Polym. J.1999, 35, 699. doi: 10.1016/S0014-3057(98)00157-8

    (35) Sulimenko, T.; Stejskal, J.; Krivka, I.; Prokes, J. Eur. Polym. J.2001, 37, 219. doi: 10.1016/S0014-3057(00)00104-X

    (36) Somani, P. R. Mater. Chem. Phys. 2003, 77, 81.doi: 10.1016/S0254-0584(01)00579-X

    (37) Abu, Y. M.; Aoki, K. Electrochim. Acta 2005, 50, 3634.doi: 10.1016/j.electacta.2005.01.004

    (38) Chen, J.; Zeng, X.; Aoki, K. J.; Nishiumi, T. International Journal of Chemistry 2015, 7, 1. doi: 10.5539/ijc.v7n21-11

    (39) Valls, C.; Jimnez, P.; Muoz, E.; Benito, A. M.;Maser, W. K.J. Phys. Chem. C 2011, 115, 10468. doi: 10.1021/jp201791h

    (40) Choi, E. Y.; Han, T. H.; Hong, J. H.; Kim, J. E.; Lee, S. H.;Kim, H. W.; Kim, S. O. J. Mater. Chem. 2010, 20, 1907.doi: 10.1039/b919074k

    (41) Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.;Martinez-Alonso, A.; Tascon, J. M. Langmuir 2009, 25, 5957.doi: 10.1021/la804216z

    (42) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.;Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S.Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034

    (43) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.;Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car,R.; Prud'homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19,4396. doi: 10.1021/cm0630800

    (44) Zhang, H.; Yu, H. M.; Xu, C. H.; Zhang, M. H.; Pan, X. H.;Gao, Y. F. Acta Phys -Chim. Sin. 2016, 32, 1634. [張 恒, 于惠梅, 徐朝和, 張明輝, 潘秀紅, 高彥峰. 物理化學(xué)學(xué)報(bào),2016, 32, 1634.] doi: 10.3866/PKU.WHXB201605111

    (45) Stejskal, J.; Kratochví l, P.; Radhakrishnan, N. Synth. Met.1993, 61, 225. doi: 10.1016/0379-6779(93)91266-5

    (46) Stejskal, J.; Sapurina, I.; Trchová, M. Prog. Polym. Sci. 2010,35, 1420. doi: 10.1016/j.progpolymsci.2010.07.006

    (47) Wang, P. C.; Huang, Z.; MacDiarmid, A. G. Synth. Met. 1999,101, 852. doi: 10.1016/S0379-6779(98)01329-0

    (48) Mazur, M.; Predeep, P. Polymer 2005, 46, 1724.doi: 10.1016/j.polymer.2005.01.013

    (49) Tong, Z.; Yang, Y.; Wang, J.; Zhao, J.; Su, B. L.; Li, Y.J. Mater. Chem. A 2014, 2, 4642. doi: 10.1039/c3ta14671e

    (50) Li, H. L.; Wang, J. X.;Chu, Q. X.; Wang, Z.; Zhang, F. B.;Wang, S. C. J. Power Sources 2009, 190, 578.doi: 10.1016/j.jpowsour.2009.01.052

    (51) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano 2010, 4, 2429.doi: 10.1021/nn1002387

    (52) Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d

    (53) Yang, X. H.; Xie, Q. J.; Yao, S. Z. Synth. Met. 2004, 143, 119.doi: 10.1016/j.synthmet.2003.10.027

    (54) O'Neil, G. D.; Weber, A. W.; Buiculescu, R.; Chaniotakis, N.A.; Kounaves, S. P. Langmuir 2014, 30, 9599.doi: 10.1021/la502053m

    (55) Yang, W. Z.; Widenkvist, E.; Jansson, U.; Grennberg, H. New J. Chem. 2011, 35, 780. doi: 10.1039/c0nj00968g

    (56) O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J.N. J. Phys. Chem. C 2011, 115, 5422. doi: 10.1021/jp110942e

    (57) Gogotsi, Y.; Simon, P. Science 2011, 334, 917.doi: 10.1126/science.1213003

    (58) Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C.; Liu, T.ACS Appl. Mater. Interfaces 2013, 5, 3382.doi: 10.1021/am4003827

    (59) Aoki, K.; Cao, J. A.; Hoshino, Y. Electrochim. Acta 1993, 38,1711. doi: 10.1016/0013-4686(93)85066-8

    (60) Aoki, K.; Kawase, M. J. Electroanal. Chem. 1994, 377, 125.doi: 10.1016/0022-0728(94)03446-X

    Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite

    ZENG Xiang-Dong ZHAO Xiao-Yu*WEI Hui-Ge WANG Yan-Fei TANG Na SHA Zuo-Liang
    (College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China)

    Flaky polyaniline-reduced graphene oxide (PANI-rGO) composites have larger specific capacitance due to the improved redox charge of PANI in the composites, fabricated by simultaneous reduction of PANI-GO. The structural and morphological analyses were carried out using scanning electron microscopy, UV-Vis spectroscopy, and thermogravimetry. The results showed that the composites are flaky in shape. PANI is uniformly coated on GO, and PANI-rGO has specific capacitance as high as 1069 F?g?1(1.71 F?cm?2) at a current density of 20 A?g?1, 5 times higher than PANI-GO; this is caused by the large surface and conductivity of the rGO in the composite.

    Polyaniline-reduced graphene oxide; Polyaniline-graphene oxide; Specific capacitance;Operating voltage

    February 9, 2017; Revised: May 10, 2017; Published online: May 18, 2017.

    O646

    10.3866/PKU.WHXB201705182 www.whxb.pku.edu.cn

    *Corresponding author: Email: xyz@tust.edu.cn.

    The project was supported by the National Natural Science Foundation of China (21503146).

    國家自然科學(xué)基金(21503146)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    聚苯胺物理化學(xué)電容
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
    中國塑料(2015年7期)2015-10-14 01:02:34
    PWM Buck變換器電容引起的混沌及其控制
    一種降壓/升壓式開關(guān)電容AC-AC變換器設(shè)計(jì)
    聚苯胺復(fù)合材料研究進(jìn)展
    中國塑料(2014年11期)2014-10-17 03:07:18
    高電導(dǎo)率改性聚苯胺的合成新工藝
    投射式多點(diǎn)觸控電容觸摸屏
    河南科技(2014年12期)2014-02-27 14:10:32
    天堂√8在线中文| 免费搜索国产男女视频| 国产一区二区三区综合在线观看| 91成人精品电影| 亚洲中文字幕日韩| 亚洲专区字幕在线| 亚洲天堂国产精品一区在线| 国产极品粉嫩免费观看在线| 黄频高清免费视频| 国产精品久久久久久精品电影 | 香蕉丝袜av| 国产私拍福利视频在线观看| 神马国产精品三级电影在线观看 | 国产一卡二卡三卡精品| 不卡一级毛片| 一本综合久久免费| 国产成人av激情在线播放| 久久久久国产一级毛片高清牌| 男人操女人黄网站| 老鸭窝网址在线观看| 国产精品自产拍在线观看55亚洲| 国产野战对白在线观看| 欧美不卡视频在线免费观看 | 国产xxxxx性猛交| 午夜精品国产一区二区电影| 亚洲一区二区三区不卡视频| 黄片播放在线免费| 多毛熟女@视频| 女人精品久久久久毛片| 亚洲一码二码三码区别大吗| 国产精品一区二区三区四区久久 | 麻豆国产av国片精品| 极品教师在线免费播放| 国产亚洲精品第一综合不卡| 国语自产精品视频在线第100页| 成人18禁高潮啪啪吃奶动态图| 一进一出抽搐动态| 51午夜福利影视在线观看| 日本 av在线| 丝袜在线中文字幕| 色老头精品视频在线观看| 可以在线观看毛片的网站| 性欧美人与动物交配| 麻豆av在线久日| 免费高清在线观看日韩| 国产又色又爽无遮挡免费看| 国产精品免费视频内射| 欧美国产日韩亚洲一区| 两性夫妻黄色片| а√天堂www在线а√下载| 在线天堂中文资源库| 无遮挡黄片免费观看| 精品国产亚洲在线| 无限看片的www在线观看| 久久人妻av系列| 国产亚洲欧美98| 一区在线观看完整版| 欧美成人性av电影在线观看| АⅤ资源中文在线天堂| 欧美在线黄色| 国产精品久久久久久亚洲av鲁大| 精品不卡国产一区二区三区| 久久午夜综合久久蜜桃| 国产麻豆成人av免费视频| 大香蕉久久成人网| 长腿黑丝高跟| 亚洲,欧美精品.| 一级a爱片免费观看的视频| 91成人精品电影| 老熟妇仑乱视频hdxx| 欧美日韩精品网址| av电影中文网址| 成人18禁高潮啪啪吃奶动态图| 国产亚洲欧美98| 日韩一卡2卡3卡4卡2021年| 久久人妻福利社区极品人妻图片| 精品国产美女av久久久久小说| 午夜福利高清视频| 亚洲中文日韩欧美视频| 日韩欧美国产在线观看| 精品久久蜜臀av无| 操出白浆在线播放| 男女之事视频高清在线观看| 国产精品自产拍在线观看55亚洲| 人人妻人人爽人人添夜夜欢视频| 日本 av在线| 亚洲精品久久成人aⅴ小说| 美女免费视频网站| 搡老岳熟女国产| www.自偷自拍.com| 亚洲 国产 在线| 好男人电影高清在线观看| 久久人人97超碰香蕉20202| 日本免费一区二区三区高清不卡 | 亚洲九九香蕉| 国产午夜精品久久久久久| 亚洲男人天堂网一区| 少妇被粗大的猛进出69影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲av成人不卡在线观看播放网| 嫩草影视91久久| 乱人伦中国视频| 国产成人系列免费观看| 国产不卡一卡二| 国产xxxxx性猛交| 日韩 欧美 亚洲 中文字幕| 一级a爱片免费观看的视频| 日韩 欧美 亚洲 中文字幕| 国产一区在线观看成人免费| 欧美绝顶高潮抽搐喷水| 夜夜躁狠狠躁天天躁| 黄色毛片三级朝国网站| 91老司机精品| 亚洲第一电影网av| 国产精品 欧美亚洲| 中文字幕最新亚洲高清| 亚洲精品国产一区二区精华液| 亚洲国产中文字幕在线视频| 国内久久婷婷六月综合欲色啪| 日韩大尺度精品在线看网址 | 午夜影院日韩av| 12—13女人毛片做爰片一| 久久婷婷成人综合色麻豆| 在线观看66精品国产| 亚洲熟女毛片儿| 妹子高潮喷水视频| 又紧又爽又黄一区二区| av免费在线观看网站| 久久精品亚洲精品国产色婷小说| 在线国产一区二区在线| 久久青草综合色| 免费一级毛片在线播放高清视频 | 久久狼人影院| 国产一区在线观看成人免费| 日韩欧美国产一区二区入口| 伊人久久大香线蕉亚洲五| 一进一出抽搐gif免费好疼| 午夜精品国产一区二区电影| 女人被躁到高潮嗷嗷叫费观| 日韩免费av在线播放| 一区二区三区高清视频在线| 黄色 视频免费看| 动漫黄色视频在线观看| 日本黄色视频三级网站网址| 亚洲午夜精品一区,二区,三区| 757午夜福利合集在线观看| 国产精品亚洲一级av第二区| 成人特级黄色片久久久久久久| 亚洲精品在线美女| 在线观看www视频免费| 久久精品91蜜桃| 国产成人欧美| 欧美+亚洲+日韩+国产| 亚洲少妇的诱惑av| 18禁观看日本| av天堂在线播放| 婷婷精品国产亚洲av在线| 午夜影院日韩av| 欧美av亚洲av综合av国产av| 在线观看一区二区三区| 亚洲第一av免费看| 日韩精品免费视频一区二区三区| 国产xxxxx性猛交| 国产精品香港三级国产av潘金莲| 国产免费av片在线观看野外av| 国产免费av片在线观看野外av| 天堂动漫精品| or卡值多少钱| 日本a在线网址| 电影成人av| 欧美成狂野欧美在线观看| 后天国语完整版免费观看| 欧美日韩一级在线毛片| 如日韩欧美国产精品一区二区三区| 成年人黄色毛片网站| 一区在线观看完整版| x7x7x7水蜜桃| 国内精品久久久久久久电影| 视频在线观看一区二区三区| 国产成人欧美在线观看| 美女免费视频网站| 神马国产精品三级电影在线观看 | 亚洲国产精品999在线| 国产野战对白在线观看| 国产亚洲精品第一综合不卡| 美女午夜性视频免费| 99热只有精品国产| a级毛片在线看网站| 可以在线观看的亚洲视频| 国产成人一区二区三区免费视频网站| 欧美色欧美亚洲另类二区 | 日韩免费av在线播放| 日本五十路高清| 精品一品国产午夜福利视频| 深夜精品福利| 国产黄a三级三级三级人| 国产av精品麻豆| 久久久久久久精品吃奶| 亚洲精品久久国产高清桃花| 欧美人与性动交α欧美精品济南到| 午夜老司机福利片| 欧美一级毛片孕妇| 最新美女视频免费是黄的| 黄片播放在线免费| 欧美日本视频| www日本在线高清视频| 精品国产亚洲在线| 国产精品影院久久| 一区二区日韩欧美中文字幕| 国产精品一区二区三区四区久久 | 国产精品影院久久| 丰满的人妻完整版| 国产精品爽爽va在线观看网站 | 日韩免费av在线播放| 亚洲第一av免费看| 19禁男女啪啪无遮挡网站| 亚洲七黄色美女视频| 麻豆av在线久日| 亚洲人成电影免费在线| 十分钟在线观看高清视频www| 国内久久婷婷六月综合欲色啪| 日韩大尺度精品在线看网址 | 欧美午夜高清在线| 99国产精品免费福利视频| 美女高潮喷水抽搐中文字幕| 制服丝袜大香蕉在线| 国产成人影院久久av| 亚洲欧美激情综合另类| 一卡2卡三卡四卡精品乱码亚洲| 50天的宝宝边吃奶边哭怎么回事| 日韩国内少妇激情av| 欧美成人午夜精品| 久久欧美精品欧美久久欧美| 两个人免费观看高清视频| 嫩草影院精品99| 久久久久九九精品影院| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 色婷婷久久久亚洲欧美| 免费在线观看影片大全网站| 亚洲自拍偷在线| www.999成人在线观看| 香蕉丝袜av| 亚洲色图 男人天堂 中文字幕| 中文字幕色久视频| xxx96com| 成人永久免费在线观看视频| 国产精品免费视频内射| 亚洲av成人不卡在线观看播放网| 在线永久观看黄色视频| 欧美日韩亚洲综合一区二区三区_| 嫁个100分男人电影在线观看| av片东京热男人的天堂| 久久人人爽av亚洲精品天堂| 欧美精品啪啪一区二区三区| 一进一出抽搐gif免费好疼| 欧美黑人精品巨大| 久久久久久久午夜电影| 国产精品 国内视频| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 午夜两性在线视频| 村上凉子中文字幕在线| 男女做爰动态图高潮gif福利片 | 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 怎么达到女性高潮| 亚洲色图av天堂| 嫩草影视91久久| 免费在线观看完整版高清| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 久久人人爽av亚洲精品天堂| 中文字幕精品免费在线观看视频| 亚洲成人久久性| 少妇被粗大的猛进出69影院| 淫秽高清视频在线观看| 中亚洲国语对白在线视频| 无人区码免费观看不卡| 国产成人啪精品午夜网站| 亚洲国产日韩欧美精品在线观看 | 一进一出抽搐gif免费好疼| 天天躁狠狠躁夜夜躁狠狠躁| av欧美777| 黑丝袜美女国产一区| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 久久国产精品人妻蜜桃| 少妇熟女aⅴ在线视频| www.自偷自拍.com| 久久天堂一区二区三区四区| 午夜福利在线观看吧| 欧洲精品卡2卡3卡4卡5卡区| 国产精品电影一区二区三区| 国产伦一二天堂av在线观看| 国产精品1区2区在线观看.| 久久欧美精品欧美久久欧美| 十八禁网站免费在线| 国产成人精品久久二区二区91| 大香蕉久久成人网| 久久伊人香网站| 久久久久久久久中文| 久久人人97超碰香蕉20202| 一二三四社区在线视频社区8| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av | 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 国产成人一区二区三区免费视频网站| 伊人久久大香线蕉亚洲五| 国产成年人精品一区二区| 久久精品成人免费网站| 欧美国产日韩亚洲一区| 欧美精品啪啪一区二区三区| 精品久久久久久,| av在线天堂中文字幕| 给我免费播放毛片高清在线观看| www.精华液| 天天一区二区日本电影三级 | 欧美日韩福利视频一区二区| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 精品人妻在线不人妻| 69av精品久久久久久| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 啦啦啦 在线观看视频| 99riav亚洲国产免费| 天堂影院成人在线观看| 欧美精品亚洲一区二区| 国产一区在线观看成人免费| 欧美日韩乱码在线| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 国产av在哪里看| 嫩草影院精品99| 免费在线观看亚洲国产| 在线国产一区二区在线| 久久欧美精品欧美久久欧美| 视频区欧美日本亚洲| 91麻豆av在线| 国产精品国产高清国产av| 黑人巨大精品欧美一区二区蜜桃| 亚洲无线在线观看| 免费在线观看黄色视频的| 可以在线观看毛片的网站| 丝袜在线中文字幕| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 99国产精品99久久久久| 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 日韩一卡2卡3卡4卡2021年| 午夜日韩欧美国产| 乱人伦中国视频| 日韩欧美免费精品| 成人国语在线视频| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 露出奶头的视频| 很黄的视频免费| 咕卡用的链子| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 精品久久蜜臀av无| 色老头精品视频在线观看| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 欧美久久黑人一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 日韩一卡2卡3卡4卡2021年| 午夜福利影视在线免费观看| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看 | 伦理电影免费视频| 精品福利观看| 日韩欧美一区视频在线观看| 欧美成人一区二区免费高清观看 | 亚洲avbb在线观看| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 久久久久久久精品吃奶| 欧美国产日韩亚洲一区| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 身体一侧抽搐| 91成年电影在线观看| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 国产精品久久久久久人妻精品电影| 丰满人妻熟妇乱又伦精品不卡| 在线观看www视频免费| 长腿黑丝高跟| 久久这里只有精品19| 亚洲一区二区三区不卡视频| 丁香欧美五月| 视频在线观看一区二区三区| 最近最新中文字幕大全电影3 | 亚洲男人的天堂狠狠| 又紧又爽又黄一区二区| 天堂动漫精品| 性少妇av在线| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女| 免费在线观看亚洲国产| 色婷婷久久久亚洲欧美| 黄色女人牲交| 制服诱惑二区| 国产精品一区二区在线不卡| 亚洲五月色婷婷综合| 亚洲,欧美精品.| 好男人在线观看高清免费视频 | 久久香蕉激情| 亚洲情色 制服丝袜| 自线自在国产av| 大陆偷拍与自拍| 人妻久久中文字幕网| 少妇 在线观看| 国产一区二区三区综合在线观看| 波多野结衣一区麻豆| 脱女人内裤的视频| 好男人电影高清在线观看| 精品国产乱码久久久久久男人| 夜夜躁狠狠躁天天躁| 变态另类丝袜制服| 国产97色在线日韩免费| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 午夜福利一区二区在线看| 波多野结衣av一区二区av| 波多野结衣av一区二区av| 亚洲av熟女| 高清在线国产一区| 侵犯人妻中文字幕一二三四区| 国产一区二区在线av高清观看| 精品日产1卡2卡| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 伦理电影免费视频| 自线自在国产av| 老鸭窝网址在线观看| 久久国产亚洲av麻豆专区| 国产真人三级小视频在线观看| 久久午夜亚洲精品久久| 无限看片的www在线观看| 一进一出好大好爽视频| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 一个人免费在线观看的高清视频| 人妻久久中文字幕网| 久久久久久人人人人人| av视频在线观看入口| 亚洲 欧美一区二区三区| av在线播放免费不卡| 午夜精品久久久久久毛片777| 欧美绝顶高潮抽搐喷水| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 12—13女人毛片做爰片一| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 日韩 欧美 亚洲 中文字幕| 在线观看日韩欧美| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 中国美女看黄片| 国产亚洲精品av在线| 午夜福利,免费看| 国产区一区二久久| 亚洲精品国产区一区二| 一个人观看的视频www高清免费观看 | 亚洲精品久久成人aⅴ小说| x7x7x7水蜜桃| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 成人18禁高潮啪啪吃奶动态图| 波多野结衣av一区二区av| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 国产精品九九99| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| 91国产中文字幕| 亚洲一区中文字幕在线| 国产三级黄色录像| 久久人妻av系列| 国产真人三级小视频在线观看| 欧美色视频一区免费| 色婷婷久久久亚洲欧美| 99国产精品免费福利视频| 法律面前人人平等表现在哪些方面| 97碰自拍视频| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 嫩草影院精品99| 国产精品电影一区二区三区| 国产欧美日韩一区二区三| 久久草成人影院| 精品电影一区二区在线| www.www免费av| 亚洲一区中文字幕在线| 日韩欧美免费精品| 黄色毛片三级朝国网站| 黄片小视频在线播放| 国产成人啪精品午夜网站| 精品久久久久久,| 国产麻豆成人av免费视频| 精品国产亚洲在线| 最近最新免费中文字幕在线| 国产免费男女视频| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费| 国产91精品成人一区二区三区| 精品日产1卡2卡| 久久国产乱子伦精品免费另类| 欧美日韩一级在线毛片| 黄网站色视频无遮挡免费观看| 国产精品久久视频播放| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 丁香六月欧美| 岛国视频午夜一区免费看| 色尼玛亚洲综合影院| 最好的美女福利视频网| 在线观看免费午夜福利视频| 97人妻天天添夜夜摸| 久久久精品欧美日韩精品| 国产成人免费无遮挡视频| АⅤ资源中文在线天堂| 黄色丝袜av网址大全| 精品久久久久久,| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 女人精品久久久久毛片| 国产1区2区3区精品| 久久香蕉国产精品| 中文字幕高清在线视频| 国产欧美日韩精品亚洲av| xxx96com| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 国产av在哪里看| 女警被强在线播放| 国产99白浆流出| 黄片大片在线免费观看| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 少妇熟女aⅴ在线视频| 91av网站免费观看| 9191精品国产免费久久| 国产三级黄色录像| 成人欧美大片| 国产精品九九99| 久久青草综合色| 深夜精品福利| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| svipshipincom国产片| 在线观看免费视频网站a站| 色av中文字幕| 日本欧美视频一区| 性欧美人与动物交配| 成人国产一区最新在线观看| 国产99久久九九免费精品| 国产91精品成人一区二区三区| 国产aⅴ精品一区二区三区波| 18禁国产床啪视频网站| 亚洲欧洲精品一区二区精品久久久| 久热这里只有精品99| www.熟女人妻精品国产| 少妇被粗大的猛进出69影院| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看| 国产av一区在线观看免费| 国产av一区二区精品久久| 国内久久婷婷六月综合欲色啪| 国产精品久久久人人做人人爽| 校园春色视频在线观看| 在线观看免费视频网站a站| www.精华液| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 亚洲激情在线av| 国产精品一区二区在线不卡| 岛国视频午夜一区免费看| 欧美最黄视频在线播放免费| 琪琪午夜伦伦电影理论片6080| 99国产精品99久久久久| 视频区欧美日本亚洲| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| av视频在线观看入口| 国产精品98久久久久久宅男小说| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 如日韩欧美国产精品一区二区三区| 少妇粗大呻吟视频| 美女 人体艺术 gogo|