• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    2017-11-01 18:11:07王亞楠彭路梅方艷艷周曉文
    物理化學(xué)學(xué)報(bào) 2017年10期
    關(guān)鍵詞:中國(guó)科學(xué)院醋酸晶體

    王亞楠 馬 品 彭路梅 張 迪 方艷艷 周曉文 林 原,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    王亞楠1,2馬 品1,2彭路梅1張 迪1,2方艷艷1周曉文1林 原1,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    采用醋酸鉛作為鉛源,成功制備出CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3)發(fā)光納米晶體顆粒。醋酸鉛比鹵化物鉛鹽,尤其是氯化鉛,能更好地溶解在N?N-二甲基甲酰胺(DMF)溶劑中,解決了鹵化物鹽溶解度低的問(wèn)題。在MAPbBr3-xClx中,不同比例的Br/Cl可以產(chǎn)生不同的光譜性質(zhì),熒光光譜(PL)可以從399 nm調(diào)控到527 nm。所有熒光光譜的半峰寬(FWHM)在20 nm左右,說(shuō)明色譜比較純。制備的MAPbBr3-xClx納米晶體顆粒尺寸分布在~(11 ± 3) nm,可以很好地分散在甲苯中。其中,MAPbBr3納米晶體顆粒的熒光量子產(chǎn)率(PLQY)高達(dá)73%,其平均熒光壽命為97.4 ns。

    鈣鈦礦;CH3NH3PbBr3?xClx;納米晶體;醋酸鉛

    1 Introduction

    The field of solution processed organic-inorganic halide perovskite based solar cells has emerged in the last couple of years1?6. Intensive research has led to a rapid rise in powerconversion efficiency (PCE) since their original publication in 2009 to values reaching 22.1% in 20167, showing superiority over all other third generation photovoltaic devices. The most studied compound in photovoltaic is the methylammonium lead iodide CH3NH3PbI3(CH3NH3= MA) perovskite, due to its strong bandgap absorption of about 1.6 eV8,9. While the predominant research have since been oriented towards the use of these materials as active layer in light-harvesting devices,more recent studies have demonstrated photoelectronic applications of perovskite materials in light-emitting-devices(LEDs)10?14. In these studies, the compound of the perovskite is MAPbBr3with bandgap of about 2.3 eV. The above mentioned perovskite has a generic structure of APbX3(A = cationic organic molecules; X = halogens), which can be made from abundant and low-cost starting compounds.

    Nano-structured halide perovskite hold great promise for various optoelectronic applications, especially for electroluminescent devices and lasers15?21. Researchers have been developing synthesis approaches to create a variety of nanostructures of organic-inorganic halide perovskite to expand the property space and to achieve new properties. Pé rez-Prieto and co-workers did pioneering works about non-template synthesis of perovskite nanopaticles (NPs)22. Nanoscaled MAPbBr3NPs were first synthesized at mild temperature.MAPbBr3NPs can be prepared by fine-tuning the molar ratios of all the componments, which either form part of the framework (MABr and PbBr2) or act as the organic capping(octylammonium bromide and 1-octadecene, ODE)23. Zhong and co-workers demonstrated a strategy to prepare MAPbBr3NPs by ligand-assissted reprecipitation (LARP) technique in order to solve the poor solubility of perovskite precursors in ODE24. All precursors were dissolved into the DMF and dropped into the poor solvent. Typical products had an average diameter of 3.3 nm with a size deviation of ±0.7 nm and the PLQY up to 70%. Ogale and co-workers have recently reported the preparation of MAPbBr3NPs by electrospay antisolventsolvent extraction and intercalation25.

    The photoluminescence (PL) spectrum of halide perovskite also can be modified via controlling the ratio of halide26,27.However, tuning the band-gap in the blue-green region using solution processed chloride-bromide mixed halide perovskite has been a challenging task, given the low solubility of the chloride containing precursor (PbCl2) in solvent DMF. With the lead acetate to synthesis the perovskite NCs, the growth of perovskite crystal is much faster28. Lead acetate also has a high solubility in DMF. So we here use an organic lead source of lead acetate Pb(Ac)2to synthesis the perovskite NCs.

    In this work, we use an organic lead source of lead acetate as Pb precursor to synthesis the mixed halide perovskites MAPbBr3?xClx(0≤ x ≤3) (NCs), especially for the blue-green perovskite MAPbBr3?xClxNCs. The obtained colloidal MAPbBr3NCs with absolute quantum yield reaches 73% at room temperature, which is comparable to the reported MAPbBr3QDs24. We conducted surface characterization,optical properties and thermal stability to illustrate the MAPbBr3colloidal NCs obtained by the lead acetate. Finally,we tuned the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate.The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity.

    2 Experimental

    2.1 Synthesis of CH3NH3Br and CH3NH3Cl

    The precursors CH3NH3Br and CH3NH3Cl were synthesized from HBr (48% in water, Aladdin) and HCl (37% in water,Beijing Chemical Works) respectively, by reaction with methylamine solution (27%?32% in ethanol, Sinopharm) as follows. First, acid solution (HBr or HCl) was added dropwise to CH3NH2solution at 0 °C with stirring for 2 h. The mixture was evaporated in a rotary evaporator under vacumme at 60 °C.The resulting solid was washed with diethyl ether (AR, Beijing Chemical Works) for three times and then recrystallized from ethanol (AR, Beijing Chemical Works). The obtained CH3NH3Br and CH3NH3Cl crystals were dried under vacuum and used without further purification.

    2.2 Synthesis of CH3NH3PbBr3?xClxnanoparticles

    For MAPbBr3, 36 mmol·L?1of Pb(Ac)2?3H2O (Ac =CH3COO, AR, Sinopharm) and 108 mmol·L?1of MABr were dissolved in 5 mL DMF (AR, Beijing Chemical Works) with 20 μL of n-octylamine (99%, Aladdin) and 0.5 mL of oleic acid(85%, Aladdin) to form a precursor solution. 0.2 mL of precursor solution was dropped into 5 mL of toluene (AR,Beijing Chemical Works) with vigorous stirring. Along with the mixing, strong green PL emission was observed. The MAPbCl3-based NCs were fabricated using the same strategy with 36 mmol·L?1of Pb(Ac)2?3H2O and 108 mmol·L?1of MACl as the precursor. For the synthesis of mixed-halid-based perovskite NCs, separate precursor solutions of MAPbBr3and MAPbCl3were mixed with different volume ratios.

    2.3 Characterization

    Transmission electron microscopy (TEM) images were captured using HITACHI HT7700 (Japan). X-ray diffraction(XRD) patterns were recorded on a Rigaku D/Max 2500 X-ray diffractometer (Cu Kαradiation, λ = 0.15402 nm, Japan). X-ray photoelectron spectroscopy (XPS) analysis was carried out using a VG Scientific ESCALab 220i-XL (England)spectrometer with standard Al Kαradiation. The UV-Visible spectra (UV-Vis) were recorded using HITACHI U3010 UV-Vis spectrophotometer (Japan). The steady-state PL spectra were performed at room temperature on a HITACHI F-7000 fluorescence spectrophotometer (Japan). The PL quantum yields of colloidal perovskites were measured by using a Edinburgh FLS980 (England) absolute PL quantum yield measurement system with monochromatic light source (Xe lamp, 150 W) and integrating sphere. The lifetime was measured using a Compact fluorescence lifetime spectrometer C11367 (Japan), Quantaurus-Tau, with LED excitation wavelength of 365 nm.

    Fig.1 (a) Schematic of MAPbBr3 NCs formation process by the reprecipitation technique.(b) Photographs taken under UV irradiation at indicated volume period with the precursor dropped into the toluene.

    3 Results and discussion

    Colloidal perovskite NCs were prepared by the modified ligand-assisted reprecipitation method as reported previously24.The scheme of the synthesis process is shown in Fig.1. In this work, Pb(Ac)2and MABr for the synthesis of MAPbBr3, were dissolved together with oleic acid (OA) and octylamine (OLA)in the good solvent dimethylformamide (DMF), resulting in a transparent solution (Fig.1a), which has no light emitting under 365 nm UV-lamp. The precursor solution was subsequently dropwise to the poor solvent toluene under vigorous stirring at room temperature (Fig.1a). Poor solvent means that in which both perovskite precursors are completely insoluble. Initially,the sample fluoresces blue, but with each addition of further precursor solution, the color shifts to green (Fig.1b). Finally,the semitransparent colloidal with green emitting under UV-lamp was formed. Smaller MAPbBr3NCs were formed when tiny amounts of the precursors (7 μL) were added into the toluene. The smaller MAPbBr3NCs exhibited blue-shifted emission due to quantum confinement analogous to conventional semiconductors. The change in photoluminescence with increasing amount of precursor indicates that the formation takes place via seed-mediated growth15,17.

    Fig.2a shows a typical TEM image of MAPbBr3NCs, it is observed that typical MAPbBr3NCs have an average diameter of 11 nm with a size deviation of ±3 nm (Fig.2b). The particle size distribution of MAPbBr3NCs is uniform without large crystals. In order to analyze the phase structure, XRD (Fig.2b)patterns were applied to characterize the obtained samples. The diffraction peaks of MAPbBr3NC at 15.07°, 21.26°, 30.28°,33.90°, 43.31°, 46.00° can be index to the (100), (110), (200),(210), (220) and (300) planes, respectively, corresponding to a cubic phase group29,30. In order to understand the chemical composition and the surface properties of the MAPbBr3NCs,the samples were subjected to XPS analyses and the results are shown in Fig.2(d?f). The XPS data in Fig.2d show two symmetric peaks of Pb 4f7/2and Pb 4f5/2at binding energy value 138.4 and 143.2 eV, respectively. No sign of metallic Pb was observed in the NCs. The Br 3d peak can be fitted into two peaks with binding energies of 68.5 and 69.5 eV, respectively.The N 1s XPS data are plotted in the Fig.2e. In the MAPbBr3NCs, N 1s peak can be fitted to two peaks at 399.3 and 402.1 eV, indicating existence two chemical states. The peak at 399.3 eV can be assigned to the presence of ―NH2from OLA, while the peak at binding 402.1 eV originates from methylamine.The ―NH2group as a ligand intercalate with the MAPbBr3NCs and control the size of the MAPbBr3NCs15?17.

    The optical properties of MAPbBr3NCs were investigated by steady-state absorption, photoluminescence (PL), and recombination lifetime. Fig.3a shows the PL behavior and absorption spectra MAPbBr3NCs. The abrupt absorption onsets and emission peaks at 527 nm correspond well with the band-to-band transition of bromide perovskite. Its FWHM is~20 nm. This is comparable to previous colloidal MAPbBr3quantum dots (QDs) solution results23,24, indicating better color purity. The absolute PLQY of colloidal solutions was 73%. The high PLQY indicated the reduction of nonradiative decay in high-quality MAPbBr3NCs. The recombination lifetime of MAPbBr3NCs was determined by measuring PL decay at the emission peak wavelength (λpeak). The PL decay curve of colloidal MAPbBr3NCs was shown in the Fig.3b. The curve is fitted with a triexponential function of time F(t), where τiis the decay time and aiis a prefactor.

    Fig.2 (a) Transmission electron micrograph of colloidal MAPbBr3 NCs, inset shows photograph of the NCs dispersion in toluene under ambient light. (b) Size distribution histogram of MAPbBr3 NCs. (c) X-ray diffraction patterns of MAPbBr3 NCs.(d?f) XPS spectra corresponding to Pb 4f (d), Br 3d (e), and N 1s (f) of MAPbBr3 NCs.

    Fig.3 (a) PL and UV-Vis spectra of green MAPbBr3 NCs, insets show photographs of a toluene dispersion of MAPbBr3 NCs under white light and UV-light. (b) PL decay (black circle) and fitting curves (red line) for excitation at 365 nm and emission at 527 nm of MAPbBr3 NCs, the inset table is the fitting result. color online.

    The average recombination lifetime (τave) was obtained from the triexponential decays according to the equation (2):

    The PL decay fitting result is shown in the table of Fig.3b. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate compared to the MAPbBr3QDs. The triexponential decay suggests that there are three components in the colloidal solution. The fast decay is related to trap-assisted recombination between the NCs, whereas the slow decay is related to exciton recombination inside the NCs13.

    We used circulating water controller system to test the thermal stability (Fig.4). The experimental temperature ranged from 20 to 80 °C. The PL intensity decrease when the temperature increased (Fig.4a). Along with the quenching of MAPbBr3NCs emission, the peak wavelength has a little blue shift and there is no obvious change about the FWHM. The intensity of the NCs emission increased with the cooling of the temperature (Fig.4b). After the temperature cooling to the original temperature, the peak wavelength and the FWHM can fully recover, but the PL intensity cannot recover. The relative intensity of MAPbBr3NCs is shown in Fig.4c. From Fig.4c, we can see that the PL intensity was decreased to about 75% after heat treatment. It is possibly due to some surface breakage that may promote the recombination which is similar to the conventional inorganic QDs33.

    We fabricated a series of colloidal MAPbBr3?xClxNCs with Pb(Ac)2. Fig.5a shows the photo of NCs with compositions varying from pure Br to pure Cl colloidal NCs. The colloidal samples show different emission colors from green to blue when illuminated with UV-lamp. We use XRD pattern to study the structural properties of the MAPbBr3?xClxNCs, and the result is shown in the Fig.5b. Multiple reflections demonstrate that all the MAPbBr3?xClxNCs associated with the cubic Pm3m space group. Most remarkably, we find that all Bragg peaks slightly shift towards a high angle along with the increase in the smaller Cl substitution ratio. The inset of Fig.5b shows a cubic lattice constant a as a function of x. The cubic lattice constant a is extracted from the angular position of the (100) Bragg reflection 2θ using λ/2a = sinθ. The monotonic trend in the lattice constants from MAPbBr3to MAPbCl3indicates an expansion of the perovskite cage. The normalized PL peak wavelength of the MAPbBr3?xClxNCs is shown in Fig.5c. The change in emission indicates the increase in the bandgap as Br is replaced with Cl. The PLQYs of the MAPbBr3?xClxNCs were measured using a fluorescence spectrometer equipped with an integrating sphere and excitation at a wavelength of 365 nm and the data were summarized in Table 1. It is surprising that such a slight variation in the MAPbBr3?xClxcan lead to such a remarkable difference in their PL emission intensity. The exact reason is still not clear, it might be associated with the orientation and vibration restraint of the MA cation in the MAPbBr3?xClxNCs30. In addition, Pb(Ac)2also can be used to synthesis the MAPbBr3?xIxNCs and the PL emission spectra are shown in the inset of Fig.5c. The PL decay curves of MAPbBr3?xClxNCs are shown in the Fig.5d. The fitting results are shown in Table 1. We can see that the corresponding τaveof MAPbBr3?xClxNCs decreases with the increase of Cl substitution ratio. This trend is the same as that of PLQY, indicating the reduction of nonradiative decay in high-quality MAPbBr3NCs.

    Fig.4 (a) PL spectra of MAPbBr3 NCs with the increase of temperature. (b) PL spectra of MAPbBr3 NCs with the decrease of temperature.(c) Temperature-dependent PL intensity of MAPbBr3 NCs. color online.

    Fig.5 (a) Photographs of MAPbBr3?xClx NCs under 365 nm UV-lamp. (b) X-ray diffraction patterns of MAPbBr3?xClx NCs.Inset: evolution of the lattice parameter as a function of x. (c) PL emission spectra of MAPbBr3?xClx NCs.Inset: PL emission spectra of MAPbBrxI3?x. (c) PL decay curves of MAPbBr3?xClx NCs for excitation at 365 nm.

    Table 1 Detailed information of halide substituted samples

    4 Conclusions

    In summary, mixed halide perovskites MAPbBr3-xClxNCs are successfully synthesized by using lead acetate. We also tune the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate. The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity. The NCs are uniformly dispersed in toluene with an average size of(11 ± 3) nm. The photoluminescence quantum yield of MAPbBr3NCs reaches ~73%. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate. Above all,Pb(Ac)2can be used to prepared MAPbBr3?xClxNCs, so it may be a promising lead source to fabricate the perovskite optoelectronic devices.

    (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc.2009, 131, 6050. doi: 10.1021/ja809598r

    (2) Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei,H.; Li, B.; Wan, J.; Yang, G.; Yan, Y. J. Am. Chem. Soc. 2015, 137,6730. doi: 10.1021/jacs.5b01994

    (3) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk,K.; Abate, A.; Giordano, F.; Correa Baena, J. P.; Decoppet, J. D.;Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr? tzel, M.; Hagfeldt, A.Sci. Adv. 2016, 2, 1. doi: 10.1126/sciadv.1501170

    (4) Wang, Y. Q.; Li, L.; Nie, L. H.; Li, N. N.; Shi, C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724. [王艷青, 李 龍, 聶林輝,李楠楠, 史成武. 物理化學(xué)學(xué)報(bào), 2016, 32 (11), 2724.]doi: 10.3866/pku.whxb201607272.

    (5) Mejí a Escobar, M. A.; Pathak, S.; Liu, J.; Snaith, H. J.; Jaramillo, F.ACS App. Mater. Inter. 2017, 9 , 2342. doi: 10.1021/acsami.6b12509.

    (6) Zhou, L.; Zhu, J.; Xu, Y. F.; Shao, Z. P.; Zhang, X. H.; Ye, J. J.;Huang, Y.; Zhang, C. N.; Dai, S. Y. Acta Phys.-Chim. Sin. 2016, 32 ,1207. [周 立, 朱 俊, 徐亞峰, 邵志鵬, 張旭輝, 葉加久, 黃陽(yáng), 張昌能, 戴松元. 物理化學(xué)學(xué)報(bào), 2016, 32 (5), 1207.]doi: 10.3866/pku.whxb201602241.

    (7) NREL, B. R. C. E. http://www.nrel.gov, accessed: November 2016.

    (8) Yin, X.; Xu, Z.; Guo, Y.; Xu, P.; He, M. ACS Appl. Mater. Inter.2016, 8, 29580. doi: 10.1021/acsami.6b09326.

    (9) Yin, X.; Guo, Y.; Xue, Z.; Xu, P.; He, M.; Liu, B. Nano Res. 2015, 8,1997. doi: 10.1007/s12274-015-0711-4.

    (10) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.;Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.;Friend, R. H. Nat. Nanotech. 2014, 9, 687.doi: 10.1038/nnano.2014.149

    (11) Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.;Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater.2017, 1606405-1/7. doi: 10.1002/adma.201606405

    (12) Yao, Q.; Fang, H.; Deng, K.; Kan, E.; Jena, P. Nanoscale 2016, 8, 17836. doi: 10.1039/c6nr05573g

    (13) Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee,C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. Science 2015, 350, 1222. doi: 10.1126/science.aad1818

    (14) Ling Y.; Yuan, Z.; Tian. Y.; Wang, X.; Wang, J. C.; Xin, Y.;Hanson, K.; Ma, B.; Gao, H. Adv. Mater. 2015, 17, 1.doi: 10.1002/adma.201503954

    (15) Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.;Milowska, K. Z.; Garcí a Cortadella, R.; Nickel, B.;Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann,J. Nano Lett. 2015, 15, 6521.doi: 10.1021/acs.nanolett.5b02985

    (16) Tyagi, P.; Arveson, S. M.; Tisdale, W. A. J. Phys. Chem. Lett.2015, 6, 1911. doi: 10.1021/acs.jpclett.5b00664

    (17) Tong, Y.; Ehrat, F.; Vanderlinden, W.; Cardenas-Daw, C.;Stolarczyk, J. K.; Polavarapu, L.; Urban, A. S. ACS Nano 2016, 10, 10936. doi: 10.1021/acsnano.6b05649.

    (18) Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.;Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Adv. Mater.2016, 28, 566. doi: 10.1002/adma.201503461.

    (19) Di, D.; Musselman, K. P.; Li, G.; Sadhanala, A.; Ievskaya, Y.;Song, Q.; Tan, Z. K.; Lai, M. L.; MacManus-Driscoll, J. L.;Greenham, N. C. J. Phys. Chem. Lett. 2015, 6 (3), 446.doi: 10.1021/jz502615e

    (20) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach,A. L. Adv. Sci. 2015, 2 (9), 1500194-1/5.doi: 10.1002/advs.201500194.

    (21) Bhaumik, S.; Veldhuis, S. A.; Ng, Y. F.; Li, M.; Muduli, S. K.;Sum, T. C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N.Chem. Commun. 2016, 52, 7118. doi: 10.1039/C6CC01056C.

    (22) Gonzalez-Carrero, S.; Galian, R. E.; Pé rez-Prieto, J. J. Mater.Chem. A 2015, 3, 9187. doi: 10.1039/c4ta05878j

    (23) Schmidt, L. C.; Pertegs, A.; Gonzlez-Carrero, S.;Malinkiewicz, O.; Agouram, S.; Mnguez Espallargas, G.;Bolink, H. J.; Galian, R. E.; Prez-Prieto, J. J. Am. Chem. Soc.2014, 136, 850. doi: 10.1021/ja4109209

    (24) Zhang, F.; Zhong, H.; Chen, C.; Wu, X. G.; Hu, X.; Huang,H.; Han, J.; Zou, B.; Dong, Y. ACS Nano 2015, 9 (4), 4533.doi: 10.1021/acsnano.5b01154

    (25) Naphade, R.; Nagane, S.; Shanker, G. S.; Fernandes, R.;Kothari, D.; Zhou, Y.; Padture, N. P.; Ogale, S. ACS Appl.Mater. Inter. 2016, 8, 854. doi: 10.1021/acsami.5b10208.

    (26) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P.M.; Deschler, F.; Hoye, R. L. Z.; G? del, K. C.; Bein, T.;Docampo, P.; Dutton, S. E.; De Volder, M. F. L.; Friend, R. H.Nano Lett. 2015, 15, 6095. doi:10.1021/acs.nanolett.5b02369.

    (27) Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks,S. D.; Liu, J. W.; Eperon, G. E.; Ducati, C.; Wojciechowski,K.; Griffiths, J. T.; Haghighirad, A. A.; Pellaroque, A.; Friend,R. H.; Snaith H. J. Chem. Mater. 2015, 27, 8066.doi: 10.1021/acs.chemmater.5b03769

    (28) Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; H? rantner,M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.;Alexander-Webber, J. A.; Abate, A.; Sadhanala, A.; Yao, S.;Chen, Y.; Friend, R. H.; Estroff, L. A.; Wiesner, U.; Snaith, H.J. Nat. Commun.2015, 6, 6142. doi: 10.1038/ncomms7142

    (29) Zhuo, S.; Zhang, J.; Shi, Y.; Huang, Y.; Zhang, B. Angew.Chem. Inter. Edit. 2015, 54, 5693.doi: 10.1002/anie.201411956

    (30) Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z. H.;Sargent, E. H. J. Mater. Chem. C 2015, 3, 8839.doi: 10.1039/C5TC01718A

    (31) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donegá, C.; Meijerink, A. ACS Nano 2012, 6, 9058.doi: 10.1126/science.1243167

    Synthesis of Colloidal Perovskite CH3NH3PbBr3?xClxNanocrystals with Lead Acetate

    WANG Ya-Nan1,2MA Pin1,2PENG Lu-Mei1ZHANG Di1,2FANG Yan-Yan1ZHOU Xiao-Wen1LIN Yuan1,2,*
    (1Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;2University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

    Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClxlead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClxNCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3NCs have a long average recombination lifetime (τave= 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.

    Perovskite; CH3NH3PbBr3-xClx; Nanocrystal; Lead acetate

    April 3, 2017; Revised: May 2, 2017; Published online: May 11, 2017.

    O646

    10.3866/PKU.WHXB201705115 www.whxb.pku.edu.cn

    *Corresponding author. Email: linyuan@iccas.ac.cn; Tel: +86-10-82615031; Fax: +86-10-82617315.

    The project was supported by the National Natural Science Foundation of China (51303186, 51673204) and National Materials Genome Project, China(2016YFB0700600).

    國(guó)家自然科學(xué)基金(51303186, 51673204)和國(guó)家重點(diǎn)研發(fā)計(jì)劃材料基因工程關(guān)鍵技術(shù)與支撐平臺(tái)(2016YFB0700600)資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    中國(guó)科學(xué)院醋酸晶體
    《中國(guó)科學(xué)院院刊》新媒體
    中國(guó)科學(xué)院院士
    ——李振聲
    醋酸鈣含量測(cè)定方法的對(duì)比與優(yōu)化
    云南化工(2021年11期)2022-01-12 06:06:20
    “輻射探測(cè)晶體”專題
    圖說(shuō)醋酸
    廣州化工(2020年8期)2020-05-19 06:23:56
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    醋酸甲酯與合成氣一步合成醋酸乙烯
    醋酸甲酯與合成氣一步合成醋酸乙烯
    光子晶體在兼容隱身中的應(yīng)用概述
    亚洲av国产av综合av卡| 亚洲色图综合在线观看| 黄色视频在线播放观看不卡| 在线观看人妻少妇| 岛国毛片在线播放| 久久天躁狠狠躁夜夜2o2o| 热99re8久久精品国产| 中国国产av一级| av不卡在线播放| 久久精品国产a三级三级三级| 十八禁网站网址无遮挡| 制服诱惑二区| 亚洲国产欧美在线一区| 欧美国产精品va在线观看不卡| 欧美日韩亚洲高清精品| 久久久水蜜桃国产精品网| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 91精品伊人久久大香线蕉| 欧美日韩黄片免| 午夜福利一区二区在线看| 免费观看av网站的网址| 狂野欧美激情性xxxx| 精品卡一卡二卡四卡免费| 999精品在线视频| 亚洲国产精品999| 老鸭窝网址在线观看| 国产精品亚洲av一区麻豆| 久久 成人 亚洲| 亚洲精品国产区一区二| 国产一卡二卡三卡精品| 超色免费av| 一级毛片电影观看| 亚洲欧美日韩另类电影网站| 久久亚洲国产成人精品v| av超薄肉色丝袜交足视频| 国产97色在线日韩免费| 精品国产国语对白av| 男人舔女人的私密视频| 久久女婷五月综合色啪小说| 成年人黄色毛片网站| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 日韩欧美一区二区三区在线观看 | 男女午夜视频在线观看| av有码第一页| 日本撒尿小便嘘嘘汇集6| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 99热网站在线观看| 免费日韩欧美在线观看| 午夜福利乱码中文字幕| 免费看十八禁软件| 91老司机精品| 交换朋友夫妻互换小说| e午夜精品久久久久久久| 黄色a级毛片大全视频| 麻豆乱淫一区二区| www.999成人在线观看| 亚洲人成电影观看| 免费在线观看日本一区| 亚洲av成人不卡在线观看播放网 | 人妻人人澡人人爽人人| 午夜影院在线不卡| 最近最新免费中文字幕在线| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| 精品视频人人做人人爽| 久久久久久久久久久久大奶| 正在播放国产对白刺激| 飞空精品影院首页| 视频区欧美日本亚洲| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 午夜免费成人在线视频| 纵有疾风起免费观看全集完整版| 91大片在线观看| 在线看a的网站| av片东京热男人的天堂| a级毛片黄视频| 国产xxxxx性猛交| 满18在线观看网站| 制服人妻中文乱码| 韩国高清视频一区二区三区| 黄色视频不卡| 首页视频小说图片口味搜索| 老司机影院成人| avwww免费| 69av精品久久久久久 | 又黄又粗又硬又大视频| 男女无遮挡免费网站观看| 国产成人精品久久二区二区91| 中文字幕色久视频| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 最黄视频免费看| 一级毛片精品| 国产精品影院久久| 老鸭窝网址在线观看| 国产高清videossex| 丰满饥渴人妻一区二区三| 在线永久观看黄色视频| 亚洲色图 男人天堂 中文字幕| 日本wwww免费看| 久久午夜综合久久蜜桃| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 夫妻午夜视频| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 两人在一起打扑克的视频| 午夜日韩欧美国产| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 亚洲国产欧美网| 欧美+亚洲+日韩+国产| 午夜福利在线免费观看网站| 2018国产大陆天天弄谢| 国产视频一区二区在线看| 黄片小视频在线播放| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 精品人妻在线不人妻| 超色免费av| 国精品久久久久久国模美| 成人国产一区最新在线观看| 国产成人精品久久二区二区91| av一本久久久久| 久久久久久免费高清国产稀缺| 黄色视频不卡| 亚洲精品国产一区二区精华液| 精品少妇一区二区三区视频日本电影| 岛国毛片在线播放| 人妻久久中文字幕网| 九色亚洲精品在线播放| 国产三级黄色录像| 欧美一级毛片孕妇| 成人av一区二区三区在线看 | 一边摸一边抽搐一进一出视频| 久久毛片免费看一区二区三区| 亚洲五月婷婷丁香| 精品久久久精品久久久| 免费在线观看完整版高清| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码| 欧美精品啪啪一区二区三区 | 亚洲第一欧美日韩一区二区三区 | 飞空精品影院首页| 免费观看人在逋| 久久久国产一区二区| 亚洲欧美精品综合一区二区三区| 性高湖久久久久久久久免费观看| www.精华液| 欧美亚洲日本最大视频资源| 在线看a的网站| 久久午夜综合久久蜜桃| 免费黄频网站在线观看国产| 久久久久国内视频| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 久久狼人影院| 女警被强在线播放| 九色亚洲精品在线播放| 午夜福利免费观看在线| 正在播放国产对白刺激| 好男人电影高清在线观看| 在线看a的网站| 黄片播放在线免费| 欧美成人午夜精品| 国产有黄有色有爽视频| 50天的宝宝边吃奶边哭怎么回事| 少妇精品久久久久久久| 欧美日韩视频精品一区| 国产老妇伦熟女老妇高清| 久久亚洲国产成人精品v| 一区二区av电影网| 久久人人爽人人片av| 国产精品.久久久| 777米奇影视久久| 天堂俺去俺来也www色官网| 欧美日韩中文字幕国产精品一区二区三区 | 新久久久久国产一级毛片| 69av精品久久久久久 | 国产视频一区二区在线看| 视频区欧美日本亚洲| 欧美另类亚洲清纯唯美| 伊人久久大香线蕉亚洲五| 精品福利永久在线观看| 午夜福利视频精品| av欧美777| 两性夫妻黄色片| 精品久久久精品久久久| 国产精品二区激情视频| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 69av精品久久久久久 | 丰满饥渴人妻一区二区三| 女性生殖器流出的白浆| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩一级在线毛片| 在线 av 中文字幕| 国产一区二区三区在线臀色熟女 | 亚洲精品粉嫩美女一区| 国产精品欧美亚洲77777| 老司机影院毛片| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| 香蕉国产在线看| 咕卡用的链子| 免费在线观看完整版高清| e午夜精品久久久久久久| 亚洲精品第二区| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx| 亚洲精品国产区一区二| 大型av网站在线播放| 国精品久久久久久国模美| 国产淫语在线视频| 免费不卡黄色视频| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 99久久国产精品久久久| 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av| 亚洲欧洲精品一区二区精品久久久| 久久人人97超碰香蕉20202| 亚洲黑人精品在线| 国产亚洲精品一区二区www | 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 国产亚洲一区二区精品| cao死你这个sao货| 亚洲专区字幕在线| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 国产av国产精品国产| 人妻 亚洲 视频| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 成人影院久久| 亚洲第一av免费看| 色婷婷av一区二区三区视频| 99久久国产精品久久久| 亚洲精品中文字幕在线视频| 亚洲激情五月婷婷啪啪| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 成人18禁高潮啪啪吃奶动态图| 亚洲成人免费av在线播放| 国产精品成人在线| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 欧美精品啪啪一区二区三区 | 淫妇啪啪啪对白视频 | 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 超色免费av| 岛国在线观看网站| 免费观看av网站的网址| 女人爽到高潮嗷嗷叫在线视频| 久久久久精品人妻al黑| 成人18禁高潮啪啪吃奶动态图| 在线观看一区二区三区激情| 最黄视频免费看| 黑人巨大精品欧美一区二区mp4| 国内毛片毛片毛片毛片毛片| 91精品伊人久久大香线蕉| 亚洲,欧美精品.| 欧美一级毛片孕妇| 午夜影院在线不卡| 国产成人欧美在线观看 | 妹子高潮喷水视频| 久久久久国内视频| 一级黄色大片毛片| 中亚洲国语对白在线视频| 无限看片的www在线观看| 大香蕉久久网| 人人澡人人妻人| 一区二区日韩欧美中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 成人三级做爰电影| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码| 中文字幕制服av| 18在线观看网站| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| www.av在线官网国产| 伦理电影免费视频| 热99久久久久精品小说推荐| 丰满人妻熟妇乱又伦精品不卡| 国产成人系列免费观看| 一本色道久久久久久精品综合| www.自偷自拍.com| 三级毛片av免费| 免费在线观看影片大全网站| 亚洲熟女精品中文字幕| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 免费在线观看影片大全网站| 国产熟女午夜一区二区三区| 国产日韩欧美视频二区| 国产黄色免费在线视频| 欧美日韩av久久| 亚洲欧美精品自产自拍| 色婷婷久久久亚洲欧美| 欧美xxⅹ黑人| 岛国在线观看网站| 国产精品久久久久久人妻精品电影 | 欧美性长视频在线观看| 国产一区二区三区在线臀色熟女 | 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 亚洲精品美女久久久久99蜜臀| 欧美另类一区| 久热这里只有精品99| 欧美黄色淫秽网站| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 国产在线一区二区三区精| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 老熟女久久久| 两人在一起打扑克的视频| 国产深夜福利视频在线观看| 少妇人妻久久综合中文| 亚洲少妇的诱惑av| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 免费不卡黄色视频| 久久国产亚洲av麻豆专区| 一本一本久久a久久精品综合妖精| 正在播放国产对白刺激| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| 在线精品无人区一区二区三| 精品国产乱子伦一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩精品亚洲av| 国产精品一区二区在线不卡| 亚洲第一青青草原| 黄色怎么调成土黄色| 深夜精品福利| 午夜免费鲁丝| 国产亚洲欧美在线一区二区| 99国产精品99久久久久| 大陆偷拍与自拍| 在线观看舔阴道视频| 国产精品自产拍在线观看55亚洲 | 久久久久精品国产欧美久久久 | 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| av又黄又爽大尺度在线免费看| 亚洲伊人色综图| 少妇人妻久久综合中文| 男女午夜视频在线观看| 777米奇影视久久| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区 | 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 十八禁网站免费在线| 中文字幕最新亚洲高清| 99国产精品免费福利视频| 久久久久久久精品精品| 国产在线免费精品| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 免费在线观看日本一区| 女性生殖器流出的白浆| 一本久久精品| 精品国产一区二区三区久久久樱花| 天天躁日日躁夜夜躁夜夜| 老司机影院毛片| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| 大片免费播放器 马上看| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 国内毛片毛片毛片毛片毛片| 久久久久网色| 满18在线观看网站| 精品久久久精品久久久| 亚洲av电影在线进入| 91九色精品人成在线观看| 十八禁网站免费在线| 午夜久久久在线观看| videos熟女内射| 少妇的丰满在线观看| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 久久精品国产亚洲av香蕉五月 | 大片电影免费在线观看免费| 美女午夜性视频免费| 亚洲精品国产一区二区精华液| 80岁老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品少妇久久久久久888优播| 捣出白浆h1v1| 亚洲色图综合在线观看| 俄罗斯特黄特色一大片| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 亚洲少妇的诱惑av| 国产精品免费大片| 高清视频免费观看一区二区| 亚洲中文日韩欧美视频| 亚洲国产精品一区二区三区在线| 秋霞在线观看毛片| 免费在线观看黄色视频的| 亚洲av成人不卡在线观看播放网 | 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| av福利片在线| 亚洲成人免费av在线播放| 高清av免费在线| 亚洲成人国产一区在线观看| 脱女人内裤的视频| 日韩欧美免费精品| 国产精品1区2区在线观看. | 国产在线视频一区二区| 一区二区三区乱码不卡18| 永久免费av网站大全| 国产视频一区二区在线看| 久久香蕉激情| 天天躁狠狠躁夜夜躁狠狠躁| 夫妻午夜视频| 日韩三级视频一区二区三区| 我要看黄色一级片免费的| 电影成人av| 性色av一级| 一进一出抽搐动态| 久久国产精品男人的天堂亚洲| 男女国产视频网站| av有码第一页| 女性被躁到高潮视频| 老鸭窝网址在线观看| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 精品人妻熟女毛片av久久网站| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av高清一级| 99热全是精品| 国产麻豆69| 日韩电影二区| 亚洲欧美日韩高清在线视频 | 成人国语在线视频| 国产欧美日韩一区二区三 | 欧美老熟妇乱子伦牲交| 正在播放国产对白刺激| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频| 精品少妇黑人巨大在线播放| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 精品久久蜜臀av无| 国产亚洲精品一区二区www | 日韩电影二区| 一级毛片电影观看| 日本黄色日本黄色录像| 亚洲情色 制服丝袜| 黄片小视频在线播放| 国产高清国产精品国产三级| 亚洲精品美女久久久久99蜜臀| 久久久久久久精品精品| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 男女边摸边吃奶| 黑人巨大精品欧美一区二区mp4| 亚洲av国产av综合av卡| 欧美亚洲日本最大视频资源| 视频区图区小说| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 午夜福利,免费看| 99久久99久久久精品蜜桃| 男女免费视频国产| 一区二区三区激情视频| 操出白浆在线播放| 国产在线观看jvid| 大片电影免费在线观看免费| 黄片小视频在线播放| 亚洲成人手机| 最近最新中文字幕大全免费视频| 国产无遮挡羞羞视频在线观看| 欧美日韩福利视频一区二区| 波多野结衣av一区二区av| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久久久99蜜臀| 久久精品国产综合久久久| 狠狠狠狠99中文字幕| 久久久久国产精品人妻一区二区| 亚洲男人天堂网一区| 亚洲国产欧美一区二区综合| 99国产精品一区二区蜜桃av | 午夜老司机福利片| 99久久99久久久精品蜜桃| 80岁老熟妇乱子伦牲交| 免费观看a级毛片全部| 久久精品亚洲熟妇少妇任你| 久久久欧美国产精品| 欧美黄色淫秽网站| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 老司机午夜福利在线观看视频 | 午夜激情久久久久久久| 999精品在线视频| 亚洲国产精品一区二区三区在线| 欧美少妇被猛烈插入视频| 宅男免费午夜| 亚洲av成人一区二区三| 永久免费av网站大全| 国产亚洲一区二区精品| 免费不卡黄色视频| 久久毛片免费看一区二区三区| 久久 成人 亚洲| 狠狠狠狠99中文字幕| 丝袜在线中文字幕| 大片电影免费在线观看免费| 欧美激情极品国产一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲一区中文字幕在线| tocl精华| 国产一区有黄有色的免费视频| 制服人妻中文乱码| 国产精品自产拍在线观看55亚洲 | 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| 久久久久精品人妻al黑| 岛国在线观看网站| 麻豆国产av国片精品| 国产在线观看jvid| 啦啦啦中文免费视频观看日本| 久久99一区二区三区| 欧美亚洲日本最大视频资源| 婷婷丁香在线五月| 国产一区二区三区综合在线观看| 一边摸一边抽搐一进一出视频| 亚洲色图 男人天堂 中文字幕| 久久国产精品男人的天堂亚洲| 天堂8中文在线网| 肉色欧美久久久久久久蜜桃| 韩国高清视频一区二区三区| 可以免费在线观看a视频的电影网站| 另类亚洲欧美激情| 国产免费一区二区三区四区乱码| 视频在线观看一区二区三区| 久久精品国产a三级三级三级| 欧美国产精品一级二级三级| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看www视频免费| 不卡一级毛片| 午夜福利免费观看在线| e午夜精品久久久久久久| 久久国产精品影院| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 婷婷色av中文字幕| 日韩欧美免费精品| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲人成77777在线视频| 亚洲avbb在线观看| 欧美激情久久久久久爽电影 | 丝袜美腿诱惑在线| 窝窝影院91人妻| kizo精华| 午夜成年电影在线免费观看| 自线自在国产av| 桃红色精品国产亚洲av| 又黄又粗又硬又大视频| 国产一区二区激情短视频 | 天天影视国产精品| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 久久久国产精品麻豆| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久小说| 欧美黑人精品巨大| 真人做人爱边吃奶动态| 日本a在线网址| 精品国产超薄肉色丝袜足j| 国产区一区二久久| 欧美黄色片欧美黄色片| 又黄又粗又硬又大视频| 麻豆国产av国片精品| 国产主播在线观看一区二区|