• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    2017-11-01 18:11:07王亞楠彭路梅方艷艷周曉文
    物理化學(xué)學(xué)報(bào) 2017年10期
    關(guān)鍵詞:中國(guó)科學(xué)院醋酸晶體

    王亞楠 馬 品 彭路梅 張 迪 方艷艷 周曉文 林 原,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    醋酸鉛作為鉛源合成CH3NH3PbBr3?xClx納米晶體顆粒

    王亞楠1,2馬 品1,2彭路梅1張 迪1,2方艷艷1周曉文1林 原1,2,*

    (1中國(guó)科學(xué)院化學(xué)研究所,光化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,中國(guó)科學(xué)院分子科學(xué)科教融合卓越中心,北京 100190;2中國(guó)科學(xué)院大學(xué),北京 100049)

    采用醋酸鉛作為鉛源,成功制備出CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3)發(fā)光納米晶體顆粒。醋酸鉛比鹵化物鉛鹽,尤其是氯化鉛,能更好地溶解在N?N-二甲基甲酰胺(DMF)溶劑中,解決了鹵化物鹽溶解度低的問(wèn)題。在MAPbBr3-xClx中,不同比例的Br/Cl可以產(chǎn)生不同的光譜性質(zhì),熒光光譜(PL)可以從399 nm調(diào)控到527 nm。所有熒光光譜的半峰寬(FWHM)在20 nm左右,說(shuō)明色譜比較純。制備的MAPbBr3-xClx納米晶體顆粒尺寸分布在~(11 ± 3) nm,可以很好地分散在甲苯中。其中,MAPbBr3納米晶體顆粒的熒光量子產(chǎn)率(PLQY)高達(dá)73%,其平均熒光壽命為97.4 ns。

    鈣鈦礦;CH3NH3PbBr3?xClx;納米晶體;醋酸鉛

    1 Introduction

    The field of solution processed organic-inorganic halide perovskite based solar cells has emerged in the last couple of years1?6. Intensive research has led to a rapid rise in powerconversion efficiency (PCE) since their original publication in 2009 to values reaching 22.1% in 20167, showing superiority over all other third generation photovoltaic devices. The most studied compound in photovoltaic is the methylammonium lead iodide CH3NH3PbI3(CH3NH3= MA) perovskite, due to its strong bandgap absorption of about 1.6 eV8,9. While the predominant research have since been oriented towards the use of these materials as active layer in light-harvesting devices,more recent studies have demonstrated photoelectronic applications of perovskite materials in light-emitting-devices(LEDs)10?14. In these studies, the compound of the perovskite is MAPbBr3with bandgap of about 2.3 eV. The above mentioned perovskite has a generic structure of APbX3(A = cationic organic molecules; X = halogens), which can be made from abundant and low-cost starting compounds.

    Nano-structured halide perovskite hold great promise for various optoelectronic applications, especially for electroluminescent devices and lasers15?21. Researchers have been developing synthesis approaches to create a variety of nanostructures of organic-inorganic halide perovskite to expand the property space and to achieve new properties. Pé rez-Prieto and co-workers did pioneering works about non-template synthesis of perovskite nanopaticles (NPs)22. Nanoscaled MAPbBr3NPs were first synthesized at mild temperature.MAPbBr3NPs can be prepared by fine-tuning the molar ratios of all the componments, which either form part of the framework (MABr and PbBr2) or act as the organic capping(octylammonium bromide and 1-octadecene, ODE)23. Zhong and co-workers demonstrated a strategy to prepare MAPbBr3NPs by ligand-assissted reprecipitation (LARP) technique in order to solve the poor solubility of perovskite precursors in ODE24. All precursors were dissolved into the DMF and dropped into the poor solvent. Typical products had an average diameter of 3.3 nm with a size deviation of ±0.7 nm and the PLQY up to 70%. Ogale and co-workers have recently reported the preparation of MAPbBr3NPs by electrospay antisolventsolvent extraction and intercalation25.

    The photoluminescence (PL) spectrum of halide perovskite also can be modified via controlling the ratio of halide26,27.However, tuning the band-gap in the blue-green region using solution processed chloride-bromide mixed halide perovskite has been a challenging task, given the low solubility of the chloride containing precursor (PbCl2) in solvent DMF. With the lead acetate to synthesis the perovskite NCs, the growth of perovskite crystal is much faster28. Lead acetate also has a high solubility in DMF. So we here use an organic lead source of lead acetate Pb(Ac)2to synthesis the perovskite NCs.

    In this work, we use an organic lead source of lead acetate as Pb precursor to synthesis the mixed halide perovskites MAPbBr3?xClx(0≤ x ≤3) (NCs), especially for the blue-green perovskite MAPbBr3?xClxNCs. The obtained colloidal MAPbBr3NCs with absolute quantum yield reaches 73% at room temperature, which is comparable to the reported MAPbBr3QDs24. We conducted surface characterization,optical properties and thermal stability to illustrate the MAPbBr3colloidal NCs obtained by the lead acetate. Finally,we tuned the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate.The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity.

    2 Experimental

    2.1 Synthesis of CH3NH3Br and CH3NH3Cl

    The precursors CH3NH3Br and CH3NH3Cl were synthesized from HBr (48% in water, Aladdin) and HCl (37% in water,Beijing Chemical Works) respectively, by reaction with methylamine solution (27%?32% in ethanol, Sinopharm) as follows. First, acid solution (HBr or HCl) was added dropwise to CH3NH2solution at 0 °C with stirring for 2 h. The mixture was evaporated in a rotary evaporator under vacumme at 60 °C.The resulting solid was washed with diethyl ether (AR, Beijing Chemical Works) for three times and then recrystallized from ethanol (AR, Beijing Chemical Works). The obtained CH3NH3Br and CH3NH3Cl crystals were dried under vacuum and used without further purification.

    2.2 Synthesis of CH3NH3PbBr3?xClxnanoparticles

    For MAPbBr3, 36 mmol·L?1of Pb(Ac)2?3H2O (Ac =CH3COO, AR, Sinopharm) and 108 mmol·L?1of MABr were dissolved in 5 mL DMF (AR, Beijing Chemical Works) with 20 μL of n-octylamine (99%, Aladdin) and 0.5 mL of oleic acid(85%, Aladdin) to form a precursor solution. 0.2 mL of precursor solution was dropped into 5 mL of toluene (AR,Beijing Chemical Works) with vigorous stirring. Along with the mixing, strong green PL emission was observed. The MAPbCl3-based NCs were fabricated using the same strategy with 36 mmol·L?1of Pb(Ac)2?3H2O and 108 mmol·L?1of MACl as the precursor. For the synthesis of mixed-halid-based perovskite NCs, separate precursor solutions of MAPbBr3and MAPbCl3were mixed with different volume ratios.

    2.3 Characterization

    Transmission electron microscopy (TEM) images were captured using HITACHI HT7700 (Japan). X-ray diffraction(XRD) patterns were recorded on a Rigaku D/Max 2500 X-ray diffractometer (Cu Kαradiation, λ = 0.15402 nm, Japan). X-ray photoelectron spectroscopy (XPS) analysis was carried out using a VG Scientific ESCALab 220i-XL (England)spectrometer with standard Al Kαradiation. The UV-Visible spectra (UV-Vis) were recorded using HITACHI U3010 UV-Vis spectrophotometer (Japan). The steady-state PL spectra were performed at room temperature on a HITACHI F-7000 fluorescence spectrophotometer (Japan). The PL quantum yields of colloidal perovskites were measured by using a Edinburgh FLS980 (England) absolute PL quantum yield measurement system with monochromatic light source (Xe lamp, 150 W) and integrating sphere. The lifetime was measured using a Compact fluorescence lifetime spectrometer C11367 (Japan), Quantaurus-Tau, with LED excitation wavelength of 365 nm.

    Fig.1 (a) Schematic of MAPbBr3 NCs formation process by the reprecipitation technique.(b) Photographs taken under UV irradiation at indicated volume period with the precursor dropped into the toluene.

    3 Results and discussion

    Colloidal perovskite NCs were prepared by the modified ligand-assisted reprecipitation method as reported previously24.The scheme of the synthesis process is shown in Fig.1. In this work, Pb(Ac)2and MABr for the synthesis of MAPbBr3, were dissolved together with oleic acid (OA) and octylamine (OLA)in the good solvent dimethylformamide (DMF), resulting in a transparent solution (Fig.1a), which has no light emitting under 365 nm UV-lamp. The precursor solution was subsequently dropwise to the poor solvent toluene under vigorous stirring at room temperature (Fig.1a). Poor solvent means that in which both perovskite precursors are completely insoluble. Initially,the sample fluoresces blue, but with each addition of further precursor solution, the color shifts to green (Fig.1b). Finally,the semitransparent colloidal with green emitting under UV-lamp was formed. Smaller MAPbBr3NCs were formed when tiny amounts of the precursors (7 μL) were added into the toluene. The smaller MAPbBr3NCs exhibited blue-shifted emission due to quantum confinement analogous to conventional semiconductors. The change in photoluminescence with increasing amount of precursor indicates that the formation takes place via seed-mediated growth15,17.

    Fig.2a shows a typical TEM image of MAPbBr3NCs, it is observed that typical MAPbBr3NCs have an average diameter of 11 nm with a size deviation of ±3 nm (Fig.2b). The particle size distribution of MAPbBr3NCs is uniform without large crystals. In order to analyze the phase structure, XRD (Fig.2b)patterns were applied to characterize the obtained samples. The diffraction peaks of MAPbBr3NC at 15.07°, 21.26°, 30.28°,33.90°, 43.31°, 46.00° can be index to the (100), (110), (200),(210), (220) and (300) planes, respectively, corresponding to a cubic phase group29,30. In order to understand the chemical composition and the surface properties of the MAPbBr3NCs,the samples were subjected to XPS analyses and the results are shown in Fig.2(d?f). The XPS data in Fig.2d show two symmetric peaks of Pb 4f7/2and Pb 4f5/2at binding energy value 138.4 and 143.2 eV, respectively. No sign of metallic Pb was observed in the NCs. The Br 3d peak can be fitted into two peaks with binding energies of 68.5 and 69.5 eV, respectively.The N 1s XPS data are plotted in the Fig.2e. In the MAPbBr3NCs, N 1s peak can be fitted to two peaks at 399.3 and 402.1 eV, indicating existence two chemical states. The peak at 399.3 eV can be assigned to the presence of ―NH2from OLA, while the peak at binding 402.1 eV originates from methylamine.The ―NH2group as a ligand intercalate with the MAPbBr3NCs and control the size of the MAPbBr3NCs15?17.

    The optical properties of MAPbBr3NCs were investigated by steady-state absorption, photoluminescence (PL), and recombination lifetime. Fig.3a shows the PL behavior and absorption spectra MAPbBr3NCs. The abrupt absorption onsets and emission peaks at 527 nm correspond well with the band-to-band transition of bromide perovskite. Its FWHM is~20 nm. This is comparable to previous colloidal MAPbBr3quantum dots (QDs) solution results23,24, indicating better color purity. The absolute PLQY of colloidal solutions was 73%. The high PLQY indicated the reduction of nonradiative decay in high-quality MAPbBr3NCs. The recombination lifetime of MAPbBr3NCs was determined by measuring PL decay at the emission peak wavelength (λpeak). The PL decay curve of colloidal MAPbBr3NCs was shown in the Fig.3b. The curve is fitted with a triexponential function of time F(t), where τiis the decay time and aiis a prefactor.

    Fig.2 (a) Transmission electron micrograph of colloidal MAPbBr3 NCs, inset shows photograph of the NCs dispersion in toluene under ambient light. (b) Size distribution histogram of MAPbBr3 NCs. (c) X-ray diffraction patterns of MAPbBr3 NCs.(d?f) XPS spectra corresponding to Pb 4f (d), Br 3d (e), and N 1s (f) of MAPbBr3 NCs.

    Fig.3 (a) PL and UV-Vis spectra of green MAPbBr3 NCs, insets show photographs of a toluene dispersion of MAPbBr3 NCs under white light and UV-light. (b) PL decay (black circle) and fitting curves (red line) for excitation at 365 nm and emission at 527 nm of MAPbBr3 NCs, the inset table is the fitting result. color online.

    The average recombination lifetime (τave) was obtained from the triexponential decays according to the equation (2):

    The PL decay fitting result is shown in the table of Fig.3b. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate compared to the MAPbBr3QDs. The triexponential decay suggests that there are three components in the colloidal solution. The fast decay is related to trap-assisted recombination between the NCs, whereas the slow decay is related to exciton recombination inside the NCs13.

    We used circulating water controller system to test the thermal stability (Fig.4). The experimental temperature ranged from 20 to 80 °C. The PL intensity decrease when the temperature increased (Fig.4a). Along with the quenching of MAPbBr3NCs emission, the peak wavelength has a little blue shift and there is no obvious change about the FWHM. The intensity of the NCs emission increased with the cooling of the temperature (Fig.4b). After the temperature cooling to the original temperature, the peak wavelength and the FWHM can fully recover, but the PL intensity cannot recover. The relative intensity of MAPbBr3NCs is shown in Fig.4c. From Fig.4c, we can see that the PL intensity was decreased to about 75% after heat treatment. It is possibly due to some surface breakage that may promote the recombination which is similar to the conventional inorganic QDs33.

    We fabricated a series of colloidal MAPbBr3?xClxNCs with Pb(Ac)2. Fig.5a shows the photo of NCs with compositions varying from pure Br to pure Cl colloidal NCs. The colloidal samples show different emission colors from green to blue when illuminated with UV-lamp. We use XRD pattern to study the structural properties of the MAPbBr3?xClxNCs, and the result is shown in the Fig.5b. Multiple reflections demonstrate that all the MAPbBr3?xClxNCs associated with the cubic Pm3m space group. Most remarkably, we find that all Bragg peaks slightly shift towards a high angle along with the increase in the smaller Cl substitution ratio. The inset of Fig.5b shows a cubic lattice constant a as a function of x. The cubic lattice constant a is extracted from the angular position of the (100) Bragg reflection 2θ using λ/2a = sinθ. The monotonic trend in the lattice constants from MAPbBr3to MAPbCl3indicates an expansion of the perovskite cage. The normalized PL peak wavelength of the MAPbBr3?xClxNCs is shown in Fig.5c. The change in emission indicates the increase in the bandgap as Br is replaced with Cl. The PLQYs of the MAPbBr3?xClxNCs were measured using a fluorescence spectrometer equipped with an integrating sphere and excitation at a wavelength of 365 nm and the data were summarized in Table 1. It is surprising that such a slight variation in the MAPbBr3?xClxcan lead to such a remarkable difference in their PL emission intensity. The exact reason is still not clear, it might be associated with the orientation and vibration restraint of the MA cation in the MAPbBr3?xClxNCs30. In addition, Pb(Ac)2also can be used to synthesis the MAPbBr3?xIxNCs and the PL emission spectra are shown in the inset of Fig.5c. The PL decay curves of MAPbBr3?xClxNCs are shown in the Fig.5d. The fitting results are shown in Table 1. We can see that the corresponding τaveof MAPbBr3?xClxNCs decreases with the increase of Cl substitution ratio. This trend is the same as that of PLQY, indicating the reduction of nonradiative decay in high-quality MAPbBr3NCs.

    Fig.4 (a) PL spectra of MAPbBr3 NCs with the increase of temperature. (b) PL spectra of MAPbBr3 NCs with the decrease of temperature.(c) Temperature-dependent PL intensity of MAPbBr3 NCs. color online.

    Fig.5 (a) Photographs of MAPbBr3?xClx NCs under 365 nm UV-lamp. (b) X-ray diffraction patterns of MAPbBr3?xClx NCs.Inset: evolution of the lattice parameter as a function of x. (c) PL emission spectra of MAPbBr3?xClx NCs.Inset: PL emission spectra of MAPbBrxI3?x. (c) PL decay curves of MAPbBr3?xClx NCs for excitation at 365 nm.

    Table 1 Detailed information of halide substituted samples

    4 Conclusions

    In summary, mixed halide perovskites MAPbBr3-xClxNCs are successfully synthesized by using lead acetate. We also tune the color by varying the chloride to bromide ratios in the MAPbBr3?xClx(0 ≤ x ≤ 3) perovskite using lead acetate. The PL emission peak can be tuned from 399 to 527 nm. Their FWHM are about 20 nm, indicating better color purity. The NCs are uniformly dispersed in toluene with an average size of(11 ± 3) nm. The photoluminescence quantum yield of MAPbBr3NCs reaches ~73%. The τaveof MAPbBr3NCs is 97.4 ns, indicating a low recombination rate. Above all,Pb(Ac)2can be used to prepared MAPbBr3?xClxNCs, so it may be a promising lead source to fabricate the perovskite optoelectronic devices.

    (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc.2009, 131, 6050. doi: 10.1021/ja809598r

    (2) Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei,H.; Li, B.; Wan, J.; Yang, G.; Yan, Y. J. Am. Chem. Soc. 2015, 137,6730. doi: 10.1021/jacs.5b01994

    (3) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk,K.; Abate, A.; Giordano, F.; Correa Baena, J. P.; Decoppet, J. D.;Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr? tzel, M.; Hagfeldt, A.Sci. Adv. 2016, 2, 1. doi: 10.1126/sciadv.1501170

    (4) Wang, Y. Q.; Li, L.; Nie, L. H.; Li, N. N.; Shi, C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724. [王艷青, 李 龍, 聶林輝,李楠楠, 史成武. 物理化學(xué)學(xué)報(bào), 2016, 32 (11), 2724.]doi: 10.3866/pku.whxb201607272.

    (5) Mejí a Escobar, M. A.; Pathak, S.; Liu, J.; Snaith, H. J.; Jaramillo, F.ACS App. Mater. Inter. 2017, 9 , 2342. doi: 10.1021/acsami.6b12509.

    (6) Zhou, L.; Zhu, J.; Xu, Y. F.; Shao, Z. P.; Zhang, X. H.; Ye, J. J.;Huang, Y.; Zhang, C. N.; Dai, S. Y. Acta Phys.-Chim. Sin. 2016, 32 ,1207. [周 立, 朱 俊, 徐亞峰, 邵志鵬, 張旭輝, 葉加久, 黃陽(yáng), 張昌能, 戴松元. 物理化學(xué)學(xué)報(bào), 2016, 32 (5), 1207.]doi: 10.3866/pku.whxb201602241.

    (7) NREL, B. R. C. E. http://www.nrel.gov, accessed: November 2016.

    (8) Yin, X.; Xu, Z.; Guo, Y.; Xu, P.; He, M. ACS Appl. Mater. Inter.2016, 8, 29580. doi: 10.1021/acsami.6b09326.

    (9) Yin, X.; Guo, Y.; Xue, Z.; Xu, P.; He, M.; Liu, B. Nano Res. 2015, 8,1997. doi: 10.1007/s12274-015-0711-4.

    (10) Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.;Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.;Friend, R. H. Nat. Nanotech. 2014, 9, 687.doi: 10.1038/nnano.2014.149

    (11) Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.;Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater.2017, 1606405-1/7. doi: 10.1002/adma.201606405

    (12) Yao, Q.; Fang, H.; Deng, K.; Kan, E.; Jena, P. Nanoscale 2016, 8, 17836. doi: 10.1039/c6nr05573g

    (13) Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee,C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. Science 2015, 350, 1222. doi: 10.1126/science.aad1818

    (14) Ling Y.; Yuan, Z.; Tian. Y.; Wang, X.; Wang, J. C.; Xin, Y.;Hanson, K.; Ma, B.; Gao, H. Adv. Mater. 2015, 17, 1.doi: 10.1002/adma.201503954

    (15) Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.;Milowska, K. Z.; Garcí a Cortadella, R.; Nickel, B.;Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann,J. Nano Lett. 2015, 15, 6521.doi: 10.1021/acs.nanolett.5b02985

    (16) Tyagi, P.; Arveson, S. M.; Tisdale, W. A. J. Phys. Chem. Lett.2015, 6, 1911. doi: 10.1021/acs.jpclett.5b00664

    (17) Tong, Y.; Ehrat, F.; Vanderlinden, W.; Cardenas-Daw, C.;Stolarczyk, J. K.; Polavarapu, L.; Urban, A. S. ACS Nano 2016, 10, 10936. doi: 10.1021/acsnano.6b05649.

    (18) Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.;Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Adv. Mater.2016, 28, 566. doi: 10.1002/adma.201503461.

    (19) Di, D.; Musselman, K. P.; Li, G.; Sadhanala, A.; Ievskaya, Y.;Song, Q.; Tan, Z. K.; Lai, M. L.; MacManus-Driscoll, J. L.;Greenham, N. C. J. Phys. Chem. Lett. 2015, 6 (3), 446.doi: 10.1021/jz502615e

    (20) Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F.; Rogach,A. L. Adv. Sci. 2015, 2 (9), 1500194-1/5.doi: 10.1002/advs.201500194.

    (21) Bhaumik, S.; Veldhuis, S. A.; Ng, Y. F.; Li, M.; Muduli, S. K.;Sum, T. C.; Damodaran, B.; Mhaisalkar, S.; Mathews, N.Chem. Commun. 2016, 52, 7118. doi: 10.1039/C6CC01056C.

    (22) Gonzalez-Carrero, S.; Galian, R. E.; Pé rez-Prieto, J. J. Mater.Chem. A 2015, 3, 9187. doi: 10.1039/c4ta05878j

    (23) Schmidt, L. C.; Pertegs, A.; Gonzlez-Carrero, S.;Malinkiewicz, O.; Agouram, S.; Mnguez Espallargas, G.;Bolink, H. J.; Galian, R. E.; Prez-Prieto, J. J. Am. Chem. Soc.2014, 136, 850. doi: 10.1021/ja4109209

    (24) Zhang, F.; Zhong, H.; Chen, C.; Wu, X. G.; Hu, X.; Huang,H.; Han, J.; Zou, B.; Dong, Y. ACS Nano 2015, 9 (4), 4533.doi: 10.1021/acsnano.5b01154

    (25) Naphade, R.; Nagane, S.; Shanker, G. S.; Fernandes, R.;Kothari, D.; Zhou, Y.; Padture, N. P.; Ogale, S. ACS Appl.Mater. Inter. 2016, 8, 854. doi: 10.1021/acsami.5b10208.

    (26) Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P.M.; Deschler, F.; Hoye, R. L. Z.; G? del, K. C.; Bein, T.;Docampo, P.; Dutton, S. E.; De Volder, M. F. L.; Friend, R. H.Nano Lett. 2015, 15, 6095. doi:10.1021/acs.nanolett.5b02369.

    (27) Pathak, S.; Sakai, N.; Wisnivesky Rocca Rivarola, F.; Stranks,S. D.; Liu, J. W.; Eperon, G. E.; Ducati, C.; Wojciechowski,K.; Griffiths, J. T.; Haghighirad, A. A.; Pellaroque, A.; Friend,R. H.; Snaith H. J. Chem. Mater. 2015, 27, 8066.doi: 10.1021/acs.chemmater.5b03769

    (28) Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; H? rantner,M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.;Alexander-Webber, J. A.; Abate, A.; Sadhanala, A.; Yao, S.;Chen, Y.; Friend, R. H.; Estroff, L. A.; Wiesner, U.; Snaith, H.J. Nat. Commun.2015, 6, 6142. doi: 10.1038/ncomms7142

    (29) Zhuo, S.; Zhang, J.; Shi, Y.; Huang, Y.; Zhang, B. Angew.Chem. Inter. Edit. 2015, 54, 5693.doi: 10.1002/anie.201411956

    (30) Comin, R.; Walters, G.; Thibau, E. S.; Voznyy, O.; Lu, Z. H.;Sargent, E. H. J. Mater. Chem. C 2015, 3, 8839.doi: 10.1039/C5TC01718A

    (31) Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; de Mello Donegá, C.; Meijerink, A. ACS Nano 2012, 6, 9058.doi: 10.1126/science.1243167

    Synthesis of Colloidal Perovskite CH3NH3PbBr3?xClxNanocrystals with Lead Acetate

    WANG Ya-Nan1,2MA Pin1,2PENG Lu-Mei1ZHANG Di1,2FANG Yan-Yan1ZHOU Xiao-Wen1LIN Yuan1,2,*
    (1Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;2University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

    Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx(MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClxlead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClxNCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3NCs have a long average recombination lifetime (τave= 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.

    Perovskite; CH3NH3PbBr3-xClx; Nanocrystal; Lead acetate

    April 3, 2017; Revised: May 2, 2017; Published online: May 11, 2017.

    O646

    10.3866/PKU.WHXB201705115 www.whxb.pku.edu.cn

    *Corresponding author. Email: linyuan@iccas.ac.cn; Tel: +86-10-82615031; Fax: +86-10-82617315.

    The project was supported by the National Natural Science Foundation of China (51303186, 51673204) and National Materials Genome Project, China(2016YFB0700600).

    國(guó)家自然科學(xué)基金(51303186, 51673204)和國(guó)家重點(diǎn)研發(fā)計(jì)劃材料基因工程關(guān)鍵技術(shù)與支撐平臺(tái)(2016YFB0700600)資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    中國(guó)科學(xué)院醋酸晶體
    《中國(guó)科學(xué)院院刊》新媒體
    中國(guó)科學(xué)院院士
    ——李振聲
    醋酸鈣含量測(cè)定方法的對(duì)比與優(yōu)化
    云南化工(2021年11期)2022-01-12 06:06:20
    “輻射探測(cè)晶體”專題
    圖說(shuō)醋酸
    廣州化工(2020年8期)2020-05-19 06:23:56
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    醋酸甲酯與合成氣一步合成醋酸乙烯
    醋酸甲酯與合成氣一步合成醋酸乙烯
    光子晶體在兼容隱身中的應(yīng)用概述
    人妻久久中文字幕网| 精品国产三级普通话版| 一级毛片久久久久久久久女| 午夜激情欧美在线| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| 国产精品国产三级国产av玫瑰| 最近中文字幕高清免费大全6 | 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| a级毛片免费高清观看在线播放| 国产亚洲av嫩草精品影院| 99久国产av精品| 日日摸夜夜添夜夜添av毛片 | 国产精品一区www在线观看 | 日韩欧美 国产精品| 在线观看舔阴道视频| 中国美白少妇内射xxxbb| 亚洲性久久影院| 成人国产一区最新在线观看| 久久精品综合一区二区三区| 三级毛片av免费| 免费在线观看日本一区| 欧美人与善性xxx| 亚洲,欧美,日韩| 国产探花在线观看一区二区| 国产高潮美女av| 免费不卡的大黄色大毛片视频在线观看 | 观看美女的网站| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 日韩中字成人| av视频在线观看入口| 成人二区视频| 色综合色国产| 亚洲综合色惰| 日韩亚洲欧美综合| a级一级毛片免费在线观看| 在线a可以看的网站| 男女下面进入的视频免费午夜| av视频在线观看入口| av女优亚洲男人天堂| 免费在线观看成人毛片| 日韩 亚洲 欧美在线| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 两人在一起打扑克的视频| 午夜精品久久久久久毛片777| 成人性生交大片免费视频hd| 国产美女午夜福利| 蜜桃亚洲精品一区二区三区| 日韩欧美国产在线观看| 国产亚洲精品综合一区在线观看| 久久久午夜欧美精品| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 精品久久久久久久久久免费视频| 1000部很黄的大片| 亚洲狠狠婷婷综合久久图片| 极品教师在线视频| 日本成人三级电影网站| 免费av毛片视频| 久久久久国内视频| 免费观看精品视频网站| 日本五十路高清| 日本与韩国留学比较| 亚洲av.av天堂| 成人无遮挡网站| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 国产蜜桃级精品一区二区三区| 嫩草影院入口| 亚洲三级黄色毛片| 午夜福利在线在线| 69人妻影院| 欧美极品一区二区三区四区| 国产亚洲精品久久久久久毛片| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 大型黄色视频在线免费观看| 校园人妻丝袜中文字幕| 国产久久久一区二区三区| 亚洲av五月六月丁香网| 亚洲av美国av| 免费在线观看成人毛片| 成年版毛片免费区| 国产亚洲91精品色在线| 日本欧美国产在线视频| 在线播放无遮挡| 午夜福利18| 男女之事视频高清在线观看| 别揉我奶头 嗯啊视频| av天堂中文字幕网| 色哟哟·www| 国产中年淑女户外野战色| 成人精品一区二区免费| 最新中文字幕久久久久| 久久久久九九精品影院| 欧美高清成人免费视频www| 精品人妻1区二区| 搡老妇女老女人老熟妇| 乱码一卡2卡4卡精品| 亚洲中文字幕一区二区三区有码在线看| 国产成人福利小说| 桃色一区二区三区在线观看| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 日韩 亚洲 欧美在线| 尾随美女入室| 99热网站在线观看| 能在线免费观看的黄片| av在线亚洲专区| 97人妻精品一区二区三区麻豆| 久久久久久久精品吃奶| 色视频www国产| 尤物成人国产欧美一区二区三区| 午夜精品一区二区三区免费看| 国产黄片美女视频| 国产成年人精品一区二区| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| 午夜影院日韩av| 久久久久久久精品吃奶| 国产探花在线观看一区二区| 神马国产精品三级电影在线观看| 嫩草影院入口| 看黄色毛片网站| 村上凉子中文字幕在线| 性色avwww在线观看| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 少妇猛男粗大的猛烈进出视频 | 干丝袜人妻中文字幕| 国产白丝娇喘喷水9色精品| 香蕉av资源在线| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 亚洲美女黄片视频| 俄罗斯特黄特色一大片| 成人av在线播放网站| 久久久久性生活片| 欧洲精品卡2卡3卡4卡5卡区| 搡老熟女国产l中国老女人| 美女免费视频网站| 99久久精品国产国产毛片| 小蜜桃在线观看免费完整版高清| 精品国产三级普通话版| 美女 人体艺术 gogo| 亚洲,欧美,日韩| 色综合亚洲欧美另类图片| 久久久久九九精品影院| 亚洲国产精品久久男人天堂| 午夜精品一区二区三区免费看| 日韩,欧美,国产一区二区三区 | 啦啦啦观看免费观看视频高清| 男人舔奶头视频| 一夜夜www| 亚洲第一电影网av| 色哟哟哟哟哟哟| 国产精品自产拍在线观看55亚洲| 日韩欧美国产在线观看| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看 | 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 99在线人妻在线中文字幕| 性欧美人与动物交配| 在线观看66精品国产| 国产成人福利小说| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 久久久久久久久久久丰满 | 亚洲欧美清纯卡通| 日本熟妇午夜| 国产精品日韩av在线免费观看| 男人狂女人下面高潮的视频| 两个人的视频大全免费| 久久久久久久精品吃奶| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 女的被弄到高潮叫床怎么办 | 久久久久性生活片| 永久网站在线| 毛片一级片免费看久久久久 | 美女黄网站色视频| 免费看日本二区| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 欧美极品一区二区三区四区| 午夜福利在线在线| 久久午夜亚洲精品久久| 亚洲av二区三区四区| 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 亚洲专区中文字幕在线| 男插女下体视频免费在线播放| 中文资源天堂在线| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 日韩欧美在线乱码| 夜夜看夜夜爽夜夜摸| 91av网一区二区| 成人特级av手机在线观看| 好男人在线观看高清免费视频| 九色国产91popny在线| 全区人妻精品视频| 亚州av有码| 可以在线观看的亚洲视频| 国产精品国产高清国产av| 哪里可以看免费的av片| 老司机福利观看| 国产精品一区二区性色av| 亚洲av第一区精品v没综合| 中文字幕久久专区| 久久99热这里只有精品18| 热99re8久久精品国产| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看 | 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 久久午夜福利片| 小蜜桃在线观看免费完整版高清| www.色视频.com| 国产视频内射| 一进一出抽搐gif免费好疼| 久久6这里有精品| 成人欧美大片| 亚洲精品色激情综合| 久久草成人影院| 99久久久亚洲精品蜜臀av| 啪啪无遮挡十八禁网站| av黄色大香蕉| 波野结衣二区三区在线| 国产一区二区三区av在线 | 一夜夜www| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| x7x7x7水蜜桃| 亚洲专区中文字幕在线| 久久久久国内视频| 天天一区二区日本电影三级| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 51国产日韩欧美| 一级黄色大片毛片| av视频在线观看入口| 成人精品一区二区免费| 国产黄a三级三级三级人| 欧美国产日韩亚洲一区| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 国产亚洲精品久久久久久毛片| 搡老妇女老女人老熟妇| 色5月婷婷丁香| 99在线人妻在线中文字幕| 日本在线视频免费播放| 深夜a级毛片| 熟女人妻精品中文字幕| 在线天堂最新版资源| 日本爱情动作片www.在线观看 | 99国产极品粉嫩在线观看| 日本欧美国产在线视频| 日本成人三级电影网站| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 精品久久久久久久久久久久久| 久久人人精品亚洲av| 真人一进一出gif抽搐免费| 国产黄片美女视频| 亚洲av熟女| 在线播放无遮挡| 天堂√8在线中文| 级片在线观看| 免费av毛片视频| 婷婷丁香在线五月| 精品久久久久久,| 国产成人av教育| 午夜福利在线观看免费完整高清在 | 婷婷色综合大香蕉| 成年免费大片在线观看| 此物有八面人人有两片| 简卡轻食公司| 色哟哟哟哟哟哟| 午夜老司机福利剧场| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院精品99| 国产成人a区在线观看| 日本 av在线| 男人狂女人下面高潮的视频| 国产精品无大码| 美女 人体艺术 gogo| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片| 国产毛片a区久久久久| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 亚洲自偷自拍三级| 99热这里只有是精品50| 国产成年人精品一区二区| 亚洲第一电影网av| 99热网站在线观看| 天堂影院成人在线观看| 久久久久久久久大av| 精品久久久久久成人av| 久久精品久久久久久噜噜老黄 | 免费不卡的大黄色大毛片视频在线观看 | 欧美一级a爱片免费观看看| 草草在线视频免费看| 老司机福利观看| 日韩欧美精品v在线| 亚洲欧美激情综合另类| 男人舔奶头视频| 午夜爱爱视频在线播放| 99久久久亚洲精品蜜臀av| 久久国内精品自在自线图片| 在线天堂最新版资源| 国产精品久久视频播放| 国产老妇女一区| 国产高清有码在线观看视频| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 亚洲精品影视一区二区三区av| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 亚洲国产日韩欧美精品在线观看| a级毛片a级免费在线| 99热精品在线国产| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| 中文字幕久久专区| 色哟哟·www| 99精品在免费线老司机午夜| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 十八禁网站免费在线| 老师上课跳d突然被开到最大视频| 亚洲美女视频黄频| 亚洲男人的天堂狠狠| 午夜福利在线在线| 桃红色精品国产亚洲av| 麻豆av噜噜一区二区三区| 午夜久久久久精精品| 国产熟女欧美一区二区| 欧美一区二区亚洲| 一本精品99久久精品77| 日韩人妻高清精品专区| 22中文网久久字幕| 丰满乱子伦码专区| 高清在线国产一区| 深夜a级毛片| 天堂网av新在线| 日本免费一区二区三区高清不卡| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 成人高潮视频无遮挡免费网站| 国产精品无大码| 国产美女午夜福利| 国产视频一区二区在线看| av在线天堂中文字幕| 久久久久久久亚洲中文字幕| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 亚洲中文字幕日韩| or卡值多少钱| 九色国产91popny在线| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 欧美日韩国产亚洲二区| 亚洲乱码一区二区免费版| 欧美成人a在线观看| 欧美日韩国产亚洲二区| 精品久久久久久久久av| 成人精品一区二区免费| 亚洲av一区综合| 日本熟妇午夜| 国产精品久久视频播放| av天堂中文字幕网| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 人妻少妇偷人精品九色| 免费看a级黄色片| 色视频www国产| 成人三级黄色视频| 内地一区二区视频在线| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清| 亚洲内射少妇av| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 在线国产一区二区在线| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 免费看光身美女| 亚洲国产精品成人综合色| 亚洲av五月六月丁香网| 日本一二三区视频观看| 老熟妇仑乱视频hdxx| 国产成人av教育| 自拍偷自拍亚洲精品老妇| 中出人妻视频一区二区| 丰满的人妻完整版| 天堂网av新在线| 国产一区二区亚洲精品在线观看| 亚洲无线观看免费| 啪啪无遮挡十八禁网站| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 最好的美女福利视频网| 99热这里只有精品一区| 亚洲av免费在线观看| 欧美潮喷喷水| 免费观看人在逋| 国内精品一区二区在线观看| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站| 精品无人区乱码1区二区| 自拍偷自拍亚洲精品老妇| 婷婷丁香在线五月| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 深爱激情五月婷婷| 亚洲av五月六月丁香网| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 黄色欧美视频在线观看| 国产精品爽爽va在线观看网站| 伦精品一区二区三区| 久久6这里有精品| 国产高清不卡午夜福利| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 99热精品在线国产| 制服丝袜大香蕉在线| 国语自产精品视频在线第100页| 桃红色精品国产亚洲av| 日韩欧美国产一区二区入口| 亚洲av电影不卡..在线观看| 国产精品人妻久久久影院| 天堂av国产一区二区熟女人妻| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 国产又黄又爽又无遮挡在线| 久久精品影院6| 国产亚洲精品av在线| 69av精品久久久久久| 熟女电影av网| 可以在线观看的亚洲视频| 国产精品无大码| 高清在线国产一区| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 久久午夜福利片| 老熟妇仑乱视频hdxx| 午夜激情欧美在线| 亚洲 国产 在线| 99久久无色码亚洲精品果冻| 亚洲人与动物交配视频| 日韩中文字幕欧美一区二区| 日本 欧美在线| 看免费成人av毛片| 欧美性感艳星| 韩国av一区二区三区四区| 中文字幕熟女人妻在线| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 免费不卡的大黄色大毛片视频在线观看 | 搡女人真爽免费视频火全软件 | 桃色一区二区三区在线观看| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 精品无人区乱码1区二区| 亚洲av中文av极速乱 | 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 亚洲乱码一区二区免费版| 欧美3d第一页| 91av网一区二区| 欧美成人免费av一区二区三区| 日韩中字成人| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 级片在线观看| 美女黄网站色视频| 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 成人欧美大片| 国产精品爽爽va在线观看网站| 色5月婷婷丁香| 亚洲av熟女| 国产精品久久久久久久电影| 欧美色视频一区免费| 日韩人妻高清精品专区| 国产成人av教育| 亚洲精品一区av在线观看| 美女高潮的动态| 国产三级在线视频| 99热这里只有是精品在线观看| 成人av一区二区三区在线看| 成年人黄色毛片网站| 全区人妻精品视频| 久久九九热精品免费| 我的老师免费观看完整版| 熟女人妻精品中文字幕| 亚洲 国产 在线| 在线看三级毛片| 午夜影院日韩av| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 国产精品久久久久久久久免| 成人三级黄色视频| 亚洲avbb在线观看| 日本 av在线| av黄色大香蕉| 欧美黑人欧美精品刺激| 黄色欧美视频在线观看| 亚洲精品粉嫩美女一区| 国产亚洲精品av在线| 69人妻影院| 亚洲专区国产一区二区| 国产亚洲av嫩草精品影院| 老熟妇仑乱视频hdxx| 很黄的视频免费| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av天美| 97超视频在线观看视频| 内射极品少妇av片p| 亚洲欧美日韩高清专用| 少妇丰满av| 精品久久久久久久人妻蜜臀av| 欧美成人免费av一区二区三区| 亚洲av成人av| 成年版毛片免费区| 一级黄片播放器| 99久久中文字幕三级久久日本| 欧美日韩国产亚洲二区| 午夜精品在线福利| 一a级毛片在线观看| 欧美潮喷喷水| 久久午夜福利片| 亚洲精品一区av在线观看| 日本一本二区三区精品| 成人午夜高清在线视频| ponron亚洲| 久久精品国产鲁丝片午夜精品 | 亚洲色图av天堂| 国产麻豆成人av免费视频| 色综合亚洲欧美另类图片| 色5月婷婷丁香| 好男人在线观看高清免费视频| 在线观看一区二区三区| 赤兔流量卡办理| 高清毛片免费观看视频网站| 一级a爱片免费观看的视频| 窝窝影院91人妻| 久久午夜福利片| 亚洲美女黄片视频| 联通29元200g的流量卡| 中亚洲国语对白在线视频| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清| 99久久无色码亚洲精品果冻| 国产av在哪里看| 亚洲欧美日韩高清在线视频| 久久亚洲真实| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 天天躁日日操中文字幕| 人人妻,人人澡人人爽秒播| 亚洲人成网站高清观看| 免费人成视频x8x8入口观看| 99国产极品粉嫩在线观看| 亚洲在线自拍视频| 亚洲黑人精品在线| 国产精品久久久久久亚洲av鲁大| 国产在线精品亚洲第一网站| 丝袜美腿在线中文| 亚洲真实伦在线观看| 免费观看精品视频网站| videossex国产| 美女大奶头视频| 小蜜桃在线观看免费完整版高清| 日本一二三区视频观看| 男人舔女人下体高潮全视频| 亚洲精华国产精华液的使用体验 | 亚洲五月天丁香| 亚洲欧美日韩无卡精品| 真人做人爱边吃奶动态| 国产亚洲精品久久久com| 国产主播在线观看一区二区|