黃 斌, 鄧 旺, 王導(dǎo)新△
(1. 重慶醫(yī)科大學(xué)附屬第二醫(yī)院重癥醫(yī)學(xué)科, 重慶 400010; 2. 重慶醫(yī)科大學(xué)附屬第二醫(yī)院呼吸內(nèi)科, 重慶 400010)
p38絲裂原活化蛋白激酶在大鼠油酸型急性肺損傷中的作用*
黃 斌1, 鄧 旺2, 王導(dǎo)新2△
(1. 重慶醫(yī)科大學(xué)附屬第二醫(yī)院重癥醫(yī)學(xué)科, 重慶 400010; 2. 重慶醫(yī)科大學(xué)附屬第二醫(yī)院呼吸內(nèi)科, 重慶 400010)
目的研究p38絲裂原活化蛋白激酶(p38MAPK)通路抑制劑SB203580對油酸性急性肺損傷(ALI)大鼠炎癥反應(yīng)及肺水清除的影響,探討油酸性急性肺損傷中p38MAPK的作用機制,為p38MAPK抑制劑SB203580干預(yù)脂肪栓塞綜合征誘導(dǎo)肺損傷提供新途徑。方法24只SD雄性成年大鼠隨機分為對照組(8只)、油酸模型組(8只)和SB203580干預(yù)組(8只)。油酸模型組大鼠經(jīng)右頸靜脈注射油酸0.20 ml/kg,造成急性肺損傷模型;SB203580組大鼠在油酸造模前30 min靜脈注射SB203580;建模4 h后處死動物,檢測血氣分析、右下肺濕干重比(W/D)、肺系數(shù)(LI)、肺通透指數(shù)(PPI),ELISA法檢測支氣管肺泡灌洗液(BALF)中TNF-α含量,免疫組化和Western blot法檢測肺組織p38MAPK、p-p38MAPK蛋白表達水平,檢測肺組織病理變化。結(jié)果與對照組相比,油酸模型組大鼠PaO2及PaO2/FiO2明顯降低,右下肺濕干重、肺系數(shù)和肺通透指數(shù)、BALF中炎癥因子TNF-α的含量以及p-p38MAPK蛋白表達均明顯增加(P<0.01),肺組織病理學(xué)顯示明顯的急性肺損傷;與油酸模型組相比,以上指標在SB203580干預(yù)組則明顯改善(P<0.01)。結(jié)論p38MAPK 信號通路介導(dǎo)的炎性反應(yīng)在油酸性肺損傷的發(fā)病機制中具有重要作用,p38MAPK抑制劑SB203580顯著抑制炎癥因子的表達,減輕肺水腫,對油酸性肺損傷具有明顯的肺保護作用,意味著對p38MAPK的抑制可望為臨床上伴有脂肪栓塞綜合征(FES)的ALI的防治提供新途徑。
急性肺損傷; p38絲裂原活化蛋白激酶;炎性反應(yīng);油酸
急性肺損傷(acute lung injury, ALI)以及其進一步發(fā)展所致的急性呼吸窘迫綜合征(acute respiratory distress syndrome, ARDS)是指各種非心源性因素導(dǎo)致的肺組織損傷,其主要臨床表現(xiàn)為急性進行性呼吸衰竭[1,2]。ALI/ARDS發(fā)病機制復(fù)雜,且起病急、病情進展迅速,病死率高,到目前為止尚缺乏有效的臨床預(yù)防及干預(yù)手段[3]。脂肪栓塞綜合征( fat embolism syndrome,F(xiàn)ES) 常為長骨骨折、骨科手術(shù)公認的潛在致命的并發(fā)癥,可表現(xiàn)為 ALI,嚴重者可致 ARDS[4]。Bursten等[5,6]研究表明ALI/ARDS患者血液中油酸(oleic acid, OA)的比例較正常對照組明顯增加,油酸削弱了肺的跨上皮活性鈉轉(zhuǎn)運機制,因而促進肺泡水腫形成和防止水腫消退,從而有助于ARDS的發(fā)展。對油酸性急性肺損傷動物模型的研究顯示,其病因、病理生理表現(xiàn)與FES導(dǎo)致的ALI/ARDS相似[7]。有研究顯示,p38絲裂原活化蛋白激酶信號通路在脂多糖(LPS)、高氧、膿毒癥、肺缺血再灌注損傷等誘導(dǎo)的動物肺損傷中起著重要作用[8-12],但目前尚不清楚油酸性肺損傷模型中p38 MAPK的作用機制,是否與炎性調(diào)控有關(guān),抑制p38MAPK是否對肺損傷有保護作用。本課題通過測定油酸性肺損傷模型中p38MAPK的表達,評價p38MAPK抑制劑SB203580對炎性介質(zhì)、肺血管通透性、肺水清除的影響,并探討其作用機制,以期為FES的ALI的治療提供新途徑。
1.1 實驗動物及分組
成年SD大鼠,雄性,健康,清潔級, 體質(zhì)量(220±20)g,購買于重慶醫(yī)科大學(xué)實驗動物中心。將實驗動物隨機分為3組(n=8):1)對照組(Control組): 經(jīng)右側(cè)頸靜脈注入生理鹽水(normal saline, NS)0.20 ml/kg, 30 min后再注射NS 0.20 ml/kg 。2)油酸組(Oleic acid model group,OA組):經(jīng)右側(cè)頸靜脈注入油酸0.20 ml/kg,復(fù)制大鼠ALI模型,建模前30 min從靜脈注射NS (劑量與SB203580組中的SB203580的液體劑量一致)。 3)SB203580干預(yù)組(SB203580 pretreatment group,SB203580組):經(jīng)右頸靜脈注射油酸0.20 ml/kg建立ALI模型前30 min,從頸靜脈注入SB203580 5 mg/kg。動物于實驗8 h前禁食, 4 h前禁水, 3.5%水合氯醛溶液1 ml/100 g腹腔注射麻醉,麻醉成功后經(jīng)右頸靜脈注入油酸建模,3組實驗動物均于建立模型后4 h頸動脈放血處死。采集血標本進行血氣分析。
1.2 試劑與儀器
油酸為Sigma-Aldrich (St. Louis, MO)產(chǎn)品。RIPA裂解液(RIPA Lysis Buffer)由上海申能博彩公司銷售,大鼠TNF-α酶聯(lián)免疫法試劑盒購買于四正柏生物公司,Polink-2plus免疫組化檢測試劑盒購買于北京中杉金橋生物技術(shù)有限公司。SB203580由Promega公司提供,考馬斯亮藍法蛋白測試盒購買于南京建成生物工程研究所。兔抗p38MAPK,p-p38MAPK由Cell Signaling Technology提供。山羊抗GAPDH多克隆抗體由Santa cruz公司提供。NOVA血氣分析儀 (Nova Biomedical, PHOX PLUS, USA)。日立7170全自動生化分析儀,Uv mini.1240紫外分光光度計(日本島津公司)。
1.3 血氣分析和呼吸頻率測定
在注射油酸4 h 殺死動物前測定動脈血血氣分析值(pH, PaO2, 與PaCO2)。 所用儀器為NOVA血氣分析儀,動脈血樣本量為1.0 ml。
1.4 右下肺濕干重比值、肺系數(shù)測定
放血處死大鼠,開胸迅速地摘取完整的雙側(cè)肺臟,并且仔細剔除肺以外的其它組織,用濾紙吸干表面的血污以后觀察其大體的改變,用電子天平稱取雙肺的濕重,計算出肺系數(shù)(lung index, LI,肺系數(shù)=肺重量/體重×100%);采用干濕重的方法測右下肺濕干重比值(wet/dry, W/D),取出右下肺,稱取其濕重,然后右下肺標本置于80℃的恒溫烤箱烘烤72 h至恒重后,稱取干重,計算右下肺濕重/干重比值(W/D)。
1.5 肺通透指數(shù)測定
放血處死大鼠后,留取動物的血清標本以待測血清蛋白含量。開胸,暴露氣管,立即行氣管切開,并用絲線結(jié)扎右支氣管,予氣管插管,用5 ml 4℃生理鹽水經(jīng)過氣管插管反復(fù)的灌洗左肺5次后吸出,合并收集到的支氣管肺泡灌洗液,回收率為80%~90%。BALF經(jīng)過雙層紗布過濾,用3 000 r/min離心15 min,取上清液到-70℃冰箱凍存以待測蛋白含量。血清蛋白的含量由全自動生化分析儀測定,BALF中蛋白含量通過考馬斯亮藍法來檢測,BALF中蛋白含量除以血清蛋白含量等于肺通透指數(shù)(pulmonary permeability index, PPI)。
1.6BALF中炎癥因子腫瘤壞死因子α含量的測定
用酶聯(lián)免疫吸附法測定BALF中腫瘤壞死因子α(tumour necrosis factor-alpha, TNF-α)的含量,實驗過程嚴格按照TNF-α酶聯(lián)免疫吸附法的說明書步驟進行。
1.7 病理學(xué)觀察
大鼠被處死后,將右肺上葉迅速取出,固定于4%多聚甲醛中,予石蠟包埋,制備厚度為5 μm的切片,HE染色、用普通光鏡進行肺組織形態(tài)學(xué)觀察。
1.8 肺組織p-p38MAPK免疫組化測定
肺組織中p-p38MAPK的表達通過二步法免疫組化進行測定。切片脫蠟脫水,予3% H2O2去離子水進行孵育,時間為10 min。PBS沖洗,滴加一抗,磷酸化p38單克隆抗體(1∶50),4℃過夜.二抗為HRP標記抗兔IgG(Poly-HRP anti-Rabbit IgG),孵育溫度為37℃,時間為 20 min,DAB顯色,予蘇木素進行復(fù)染、封片。
1.9 免疫印跡法檢測肺組織p38MAPK蛋白水平
用含RIPA的組織裂解液對肺組織蛋白進行提取,所提取的蛋白濃度通過考馬斯亮藍法測定后進行免疫印跡測定。選用的第一抗體分別為兔抗p38MAPK、p-p38MAPK單克隆抗體,其稀釋度均為1∶1 000。蛋白條帶由Quantity one ChemiDocXRS圖像采集系統(tǒng)及其分析軟件(Bio.Rad公司)分析處理,以目的條帶校正容積與GAPDH校正容積的比值反映蛋白含量。
1.10 統(tǒng)計學(xué)處理
2.1 血氣分析和呼吸頻率的測定
與對照組相比,油酸組大鼠呼吸頻率增快,PaO2及氧合指數(shù)均降低(P<0.01);SB203580組有明顯的肺保護作用,與油酸組相比,PaO2及氧合指數(shù)均有明顯改善P<0.01,表1)。
GroupRR(beats/min)PaO2(mmHg)PaO2/FiO2(mmHg)Control85.13±4.0297.93±4.96466.33±23.63OA138.63±6.61??58.18±1.70??277.05±8.07??SB203580116.75±5.99##75.83±3.98##361.10±18.98##
Control: Control group; OA: Oleic acid model group; SB203580: SB203580 pretreatment group; RR: Respiratory rate; PaO2: Arterial partial pressure of oxygen
**P<0.01vscontrol group;##P<0.01vsOA group
2.2 右下肺濕干重比、肺系數(shù)的比較
與對照組相比,油酸組右下肺濕干重比、肺系數(shù)均明顯增加(P<0.01);與油酸組相比,SB203580組右下肺濕干重比、肺系數(shù)均明顯降低(P<0.01,表2)。
GroupW/D LI(%) Control4.51±0.140.56±0.07OA6.06±0.33??1.08±0.10??SB2035805.30±0.17##0.87±0.07##
Control: Control group; OA: Oleic acid model group; SB203580: SB203580 pretreatment group; W/D: Wet/dry weight ratio; LI: Lung index
**P<0.01vscontrol group;##P<0.01vsOA group
2.3肺通透指數(shù)、BALF中炎癥因子TNF-α含量的比較
與對照組相比,油酸組肺通透指數(shù)及BALF中炎癥因子TNF-α含量均明顯增加(P<0.01);與油酸組相比,SB203580組肺通透指數(shù)及BALF中炎癥因子TNF-α含量均明顯降低(P<0.01,表3)。
GroupPPI(×10?3)TNF?α(pg/ml)Control1.33±0.0753.63±5.61OA4.54±0.12??261.80±21.02??SB2035802.81±0.10##158.74±14.30##
Control: Control group; OA: Oleic acid model group; SB203580: SB203580 pretreatment group; PPI: Pulmonary permeability index; TNF-α:Tumour necrosis factor- alpha; BALF: Bronchalveolar lavage fluid
**P<0.01vscontrol group;##P<0.01vsOA group
2.4 肺組織病理學(xué)檢查
對照組:鏡下可見大鼠肺組織的結(jié)構(gòu)完好,肺泡腔內(nèi)清晰沒有滲出物,未見炎細胞浸潤。油酸組:鏡下可見肺泡腔內(nèi)滲出非常明顯,肺泡隔增厚,炎細胞明顯浸潤。SB203580組光鏡下觀察,肺組織損傷程度較油酸組明顯減輕(圖1, A~C,圖1見彩圖頁Ⅱ)。
2.5 肺組織p-p38MAPK免疫組化測定
胞核和或胞漿內(nèi)可見棕黃色染色顆粒為p-p38MAPK陽性表達。陰性組(negative group)則無p-p38MAPK蛋白陽性反應(yīng)細胞表達(圖2A,2B,圖2見彩圖頁Ⅱ)。對照組肺組織內(nèi)p-p38MAPK蛋白陽性細胞較少,分布于氣道粘膜上皮和肺泡上皮細胞(圖2C,2D);p-p38MAPK蛋白陽性表達在油酸組肺組織明顯增多,主要表現(xiàn)為血管內(nèi)皮、氣道上皮、肺泡上皮、浸潤炎細胞內(nèi)棕黃色顆粒明顯增多,且染色較深(圖2E,2F);SB203580組肺組織p-p38MAPK蛋白陽性細胞較油酸組明顯減少(圖2G,2H)。
2.6Westernblot測定肺組織p38MAPK蛋白表達
與對照組相比,油酸組p-p38MAPK蛋白表達相對含量明顯增加(P<0.01);與油酸組相比,SB203580組p-p38MAPK蛋白表達相對含量明顯降低(P<0.01).各組p38MAPK蛋白及GAPDH表達無差異(圖3, 表4)。
Fig.3The protein level of p38MAPK and p-p38MAPK in lung tissues of rats were determined by Western blot Control: Control group; OA: Oleic acid model group; SB203580: SB203580 pretreatment group
Groupp?p38MAPK/p38MAPKControl0.23±0.02OA0.79±0.02??SB2035800.39±0.01##
Control: Control group; OA: Oleic acid model group; SB203580: SB203580 pretreatment group
**P<0.01vscontrol group;##P<0.01vsOA group
油酸模型是ALI/ARDS的經(jīng)典模型,在病因上較好地模擬了嚴重創(chuàng)傷、多發(fā)骨折、脂肪栓塞所致的ALI/ARDS[13,14]。本課題結(jié)果顯示,與對照組相比,大鼠頸靜脈注入油酸后出現(xiàn)了呼吸頻率明顯增快以及光鏡下肺組織結(jié)構(gòu)的病理變化,在血氣分析方面,油酸組PaO2明顯下降,肺濕干重比值則明顯升高,上述結(jié)果與文獻報道[15]相符,說明成功建立油酸誘導(dǎo)急性肺損傷動物模型。
肺泡上皮、肺微血管內(nèi)皮廣泛受損以及由此所致的肺水轉(zhuǎn)運失衡為ALI的病理生理特征。LPI可作為評判ALI患者肺血管內(nèi)皮細胞功能和肺水腫程度的敏感指標[16]。在本實驗中,與對照組相比,油酸模型組肺通透指數(shù)、肺濕干重比值、肺系數(shù)均明顯升高,說明該組出現(xiàn)了肺毛細血管膜的通透性增加和明顯的肺水腫的典型ALI病理改變。
炎癥因子的過度釋放及炎癥級聯(lián)反應(yīng)為ALI的重要發(fā)病機制。TNF-α在炎癥的啟動中發(fā)揮了非常重要的作用[17,18]。本課題結(jié)果顯示,與對照組相比,在油酸型急性肺損傷BALF中炎癥因子TNF-α表達明顯增加,表明TNF-α可作為反應(yīng)肺損傷嚴重程度的指標。
ALI/ARDS的發(fā)病機制錯綜復(fù)雜,雖經(jīng)過多年的研究,但至今對其可能參與的信號傳導(dǎo)機制尚未完全清楚。作為一種蛋白激酶,p38MAPK在炎癥、應(yīng)激等反應(yīng)中起著十分重要的作用[19]。
既往對肺損傷的研究發(fā)現(xiàn), p38MAPK通常認為具有誘導(dǎo)細胞死亡及炎癥的作用。在對MLE-12細胞株氧化性損傷的體外研究[20,21]顯示,無論是高氧誘導(dǎo)脹亡還是H2O2導(dǎo)致的凋亡,均存在p38MAPK和JNK1/2通路的活化,當用抑制劑抑制這兩條通路時,MLE-12細胞株的存活率明顯提高,意味著肺上皮細胞的這兩種氧化應(yīng)激導(dǎo)致的死亡過程與JNK、p38MAPK通路有關(guān)。Liu[22]等研究顯示SB203580 (p38MAPK抑制劑)抑制炎癥因子的產(chǎn)生,通過NF-κB通路減輕脂多糖誘導(dǎo)的動物肺損傷。
盡管p38MAPK被廣泛認為與細胞死亡及炎癥有關(guān),但亦有證據(jù)表明其激活同樣可對肺損傷起保護作用。Carvalho等[23]在原代ATII細胞,用H2O2誘導(dǎo)其凋亡,發(fā)現(xiàn)JNK、ERK、p38MAPK均被激活,當JNK、ERK、p38MAPK分別被反義寡核苷酸、PD98059、SB202190特異性抑制,研究結(jié)果表明活化的JNK具有促H2O2誘導(dǎo)的凋亡作用,而活化的p38和ERK1/2則具有抗凋亡、提高ATII細胞在氧化應(yīng)激下的存活率的作用。
p38MAPK信號通路在肺損傷時既可起促進肺損傷的發(fā)展,也可能起保護作用,這可能與不同的肺損傷因素、不同條件有關(guān),也可能與p38MAPK激活的持續(xù)時間不同有關(guān)。目前對于p38MAPK信號通路在油酸型急性肺損傷中的作用尚不清楚,亦未見通過p38MAPK抑制劑研究p38MAPK在油酸型急性肺損傷中作用的報道。作為p38MAPK特異性抑制劑,SB203580對炎癥因子的表達起有效的抑制作用[24]。在本課題中觀察到,與對照組相比,肺損傷組大鼠肺組織磷酸化p38MAPK的分布顯著增加,免疫印跡檢測顯示,急性肺損傷后肺組織磷酸化p38MAPK蛋白表達明顯增加,具有統(tǒng)計學(xué)意義,說明p38MAPK磷酸化參與油酸誘導(dǎo)的急性肺損傷過程。本實驗顯示,肺損傷組大鼠肺水腫明顯增加,SB203580干預(yù)后可以顯著減少肺損傷組大鼠肺系數(shù)、LPI和肺濕干重比值,顯著改善肺損傷大鼠呼吸功能,肺組織病理變化較對照組顯著好轉(zhuǎn),意味著SB203580可以顯著減輕油酸型急性肺損傷,改善預(yù)后;SB203580顯著抑制肺損傷組大鼠磷酸化p38MAPK水平,顯著減少油酸型急性肺損傷大鼠肺組織中的TNF-α水平,意味著激活的p38MAPK介入炎性反應(yīng),參與油酸性肺損傷的發(fā)生過程。本實驗中,油酸刺激導(dǎo)致的肺損傷中p38MAPK通路被顯著激活,p38MAPK信號通路對炎性反應(yīng)的調(diào)控機制可能與其磷酸化被激活,通過活化AP-1/NF-κB等轉(zhuǎn)錄因子,介導(dǎo)下游TNF-α、IL-l等大量炎性因子表達,引起炎癥調(diào)控失衡有關(guān)[25,26]。
總之,p38MAPK 信號通路介導(dǎo)的炎性反應(yīng)在油酸性肺損傷的發(fā)病機制中具有重要作用,p38MAPK抑制劑SB203580顯著抑制炎癥因子的表達,減輕肺水腫,對油酸性肺損傷具有明顯的肺保護作用,意味著對p38MAPK的抑制可望為臨床上伴有FES的ALI的防治提供新途徑。
[1] Sharp C, Millar AB, Medford AR. Advances in understanding of the pathogenesis of acute respiratory distress syndrome[J].Respiration, 2015, 89(5): 420-434.
[2] Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review[J].ArchPatholLabMed, 2016, 140(4): 345-350.
[3] Villar J, Sulemanji D, Kacmarek RM. The acute respiratory distress syndrome: incidence and mortality, has it changed?[J].CurrOpinCritCare, 2014, 20(1): 3-9.
[4] Kao SJ, Yeh DY, Chen HI. Clinical and pathological features of fat embolism with acute respiratory distress syndrome[J].ClinSci(Lond), 2007, 113(6): 279-285.
[5] Bursten SL, Federighi DA, Parsons P,etal. An increase in serum C18 unsaturated free fatty acids as a predictor of the development of acute respiratory distress syndrome[J].CritCareMed, 1996, 24(7): 1129-1136.
[6] Vadász I, Morty RE, Kohstall MG,etal. Oleic acid inhibits alveolar fluid reabsorption: a role in acute respiratory distress syndrome [J]?AmJRespirCritCareMed, 2005, 171(5): 469-479.
[7] Ito K, Mizutani A, Kira S,etal. Effect of Ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in rats via the inhibition of activated leukocytes[J].Injury, 2005, 36(3): 387-394.
[8] Porzionato A, Sfriso MM, Mazzatenta A,etal. Effects of hyperoxic exposure on signal transduction pathways in the lung[J].RespirPhysiolNeurobiol, 2015, 209: 106-114.
[9] Yu X, Yu S, Chen L,etal. Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK,AKT, and NF-κB signaling pathways[J].BiomedPharmacother, 2016, 82: 489-497.
[10]Zhao H, Zhao M, Wang Y,etal. Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats[J].JHistochemCytochem, 2016, 64(2): 125-137.
[11]Wei CY, Sun HL, Yang ML,etal. Protective effect of wogonin on endotoxin- induced acute lung injuryviareduction of p38 MAPK and JNK phosphorylation[J].EnvironToxicol, 2017, 32(2): 397-403.
[12]陳海娥, 馬迎春, 何金波, 等. 缺血后處理對肺缺血/再灌注損傷的保護作用及其機制[J]. 中國應(yīng)用生理學(xué)雜志, 2014, 30(3): 251-256.
[13]Akella A, Sharma P, Pandey R,etal. Characterization of oleic acid-induced acute respiratory distress syndrome model in rat[J].IndianJExpBiol, 2014, 52(7): 712-719.
[14]Goncalves-de-Albuquerque CF, Silva AR, Burth P,etal. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation[J].MediatorsInflamm, 2015, 2015: 260465.
[15]Wang C, Huang Q, Wang C,etal. Hydroxysafflor yellow A suppresses oleic acid-induced acute lung injuryviaprotein kinase A[J].ToxicolApplPharmacol, 2013, 272(3): 895-904.
[16]Jiang W, Li M, He F,etal. Protective effects of asiatic acid against spinal cord injury-induced acute lung injury in rats[J].Inflammation, 2016, 39(6): 1853-1861.
[17]Lai TS, Wang ZH, Cai SX. Mesenchymal stem cell attenuates neutrophil-predominant inflammation and acute lung injury in aninvivorat model of ventilator-induced lung injury[J].ChinMedJ(Engl), 2015, 128(3): 361-367.
[18]王芳芳, 方以群, 攸 璞, 等. 不同壓力氧氣對大鼠潛水減壓病的預(yù)防作用[J]. 中國應(yīng)用生理學(xué)雜志, 2015, 31(5): 401-404.
[19]鄭嫵媚, 初海平, 王 燕, 等. 力竭運動后不同時相大鼠心肌p-p38MAPK、NF-kB、COX-2表達的動態(tài)變化[J]. 中國應(yīng)用生理學(xué)雜志, 2016, 32(1): 88-91.
[20]Li Y, Arita Y, Koo HC,etal. Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury[J].AmJRespirCellMolBiol, 2003, 29(6): 779-783.
[21]Romashko J 3rd, Horowitz S, Franek WR,etal. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells[J].FreeRadicBiolMed, 2003, 35(8): 978-993.
[22]Liu S, Feng G, Wang GL,etal. p38MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway[J].EurJPharmacol, 2008, 584(1): 159-165.
[23]Carvalho H, Evelson P, Sigaud S,etal. Mitogen—activated protein kinases modulate H(2)O(2) induced apoptosis in primary rat alveolar epithelial cells [J].JCellBiochem, 2004, 92(3): 502-513.
[24]Wong J, Korcheva V, Jacoby DB,etal. Proinflammatory responses of human airway cells to ricin involve stress-activated protein kinases and NF-kappaB [J].AmJPhysiolLungCellMolPhysio, 2007, 293(6): 1385-1394.
[25]Rahman I, Gilmour PS, Jimenez LA,etal. Oxidative stress and TNF-α induce histone acetylation and NF-κB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation [J].MolCellBiochem, 2002, 234-235(1-2): 239-248.
[26]Tirumurugaan KG, Jude JA, Kang BN,etal. TNF-α induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF-kappaB and AP-1[J].AmJPhysiolLungCellMolPhysiol, 2007, 292(6): 1385-1395.
Effectsofp38mitogen-activatedproteinkinaseinratswitholeicacid—inducedacutelunginjury
HUANG Bin1, DENG Wang2, WANG Dao-xin2△
(1. Department of Critical Care Medicine of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010; 2. Department of Respiratory Medicine of the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China)
Objective: To study the effects of p38 mitogen-activated protein kinase (p38MAPK) signal transduction pathway inhibitor SB203580 on the inflammatory reaction and lung water clearance, and to explore the role of p38MAPK in acute lung injury, to provide new way for p38MAPK inhibitor -SB203580 intervene fat embolism syndrome induced lung injury.MethodsTwenty-four adult male SD rats were randomly assigned to normal control group (OA group) (n=8), oleic acid—induced lung injury group (OA group,n=8)and SB203580 pretreatment group (n=8) . OA-group was administered oleic acid (0.20 ml/kg)viaright jugular vein; In SB203580—group, SB203580(5 mg/kg) was injectedviajugular vein, followed 30 min before by OA infusion; At the 4 hours animals were sacrificed. Arterial blood gas, the wet/dry weight(W/D)of the right lower lung were examined, lung index(LI), pulmonary permeability index(PPI) and levels of tumor necrosis factor α(TNF-α) in bronchoalveolar lavage fluid(BALF) were examined. The expressions of p38MAPK and phospho—p38MAPK (p-p38MAPK) were determined by Western blot and immunohistochemical method. Pathological changes of the lung tissue were examined with light microscrope.ResultsCompared to control group, arterial oxygen partial pressure (PaO2) and PaO2/FiO2were decreased in the animals of OA- group, while right lower lung wet/dry ratio, lung index, PPI, levels of TNF-α in BALF and the protein expression of p-p38MAPK were increased significantly (P<0.01). The pathological changes were observed significantly in injured lung tissue. Compared to OA-group, those indexes were improved in SB203580 pretreated group.Conclusionp38MAPK signal transaction path mediated inflammatory response process and played an important role in acute lung injury. SB203580 could inhibit the expression of inflammatory cytokines, reduce lung edema, protect lung tissue of rats from OA-induced lung injury obviously. Therefore, inhibition of p38MAPK activity provides a new way for the clinical treatment of fat embolism syndrome induced lung injury.
acute lung injury; p38MAPK; inflammatory reaction; oleic acid
R563.8
A
1000-6834(2017)04-334-06
重慶市衛(wèi)生局2009年度醫(yī)學(xué)科研計劃項目(2009-2-165);國家自然科學(xué)基金資助課題(81270141)
2017-01-11
2017-05-12
△
Tel: 023-63693093; E-mail: wangdaoxincq@yeah.net
10.12047/j.cjap.5552.2017.081