• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    2017-10-11 05:33:14XUGangBAIXuMAXiaojianZHURenqing
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:工程學(xué)院水池波浪

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Numerical Simulation of Fully Nonlinear NWT by DBIEM Method with MTF for the Downstream Boundary

    XU Gang,BAI Xu,MA Xiao-jian,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:Wave propagation in a three-dimensional nonlinear numerical wave tank(NWT)is studied based on the fully nonlinear velocity potential theory.The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved by using the indirect desingularized boundary integral equation method(DBIEM).The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used for the timestepping integration of the free surface boundary conditions.A smoothing algorithm,B-spline,is applied to eliminate the possible saw-tooth instabilities.An effective Multi-transmitting Formula method for radiation condition is employed to transmit wave out of computational region.The numerical results are compared with analytical solutions.The results show that MTF method can be used for simulating fully nonlinear wave propagation.

    Key words:NWT;DBIEM;Multi-transmitting formula

    0 Introduction

    When simulating the nonlinear wave propagation through an unbounded domain in the time domain,it is necessary to truncate the computational domain into a finite domain in order to reduce computational costs.Thus,non-reflecting radiation condition is required for the truncated surface,however,there is no exact non-reflecting condition in existence.The Sommerfeld-Orlanski’s condition has been widely used for linear simulation,this condition is local in both time and space and dependent on the phase velocity of out-going wave but cannot ensure good results for irregular wave problem.The global matching or shell function method is very accurate for linear irregular wave radiation but with relatively large computational effort on comparing with the local method and can not satisfy the nonlinear condition.Another common used method is Damping Zone(DZ),which can absorb high frequency waves efficiently.It is limited by the length of DZ and therefore not very efficient for low frequency waves.Clément[1]proposed a coupled method(piston-beach hybrid absorber)to absorb outgoing wave.Boo[2]proposed a numerical scheme,which combines an absorbing beach and the stretching technique,to simulate the open boundary.Wang and Wu[3]imposed a radiation condition via a combination of Damping Zone(DZ)and Sommerfeld-Orlanski equation.However,the efficiency of DZ method strongly depends on the ratio of the length of damping zone and wave length.The longer wave length requires a wider beach.It will result in much more meshes on the free surface,especially when dealing with irregular wave problem.

    In this work,the indirect desingularized boundary integral equation method(DBIEM),which has been successfully used previously in solving nonlinear water wave problems such as in the work by Zhang et al[4-5],is employed to solve the boundary value problem at each time step.Compared with the conventional BEM,the integral kernels of the DBIEM are no longer singular as the singularities are placed slightly outside the fluid domain.This is particularly advantageous when the direct differentiation is applied to the integral equation to obtain the velocity.The fourth-order predictor-corrector Adams-Bashforth-Moulton(ABM4)scheme and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.Since wave breaking is not considered in this work,the position of the nodes on free surface is tracked by applying semi-Lagrangian approach[6],in which the nodes on free surface are allowed to move only in vertical direction,with the horizontal motion of the nodes on the free surface held fixed.This approach has the advantage of avoiding the task of re-gridding the free surface at each time step.For stable time-step simulation,a B-spline smoothing scheme is applied in both longitudinal and transverse directions of the tank to prevent saw-tooth instability.During the simulation,Multi-transmitting Formula method[7-10]is employed as radiation condition to minimize wave reflection on the truncated surface.Numerical results obtained by the present method agree fairly with analytical solution and show that the present model is effective in the simulation for 3D fully nonlinear wave propagation.

    1 Mathematical model

    Fig.1 Sketch of a 3D numerical wave tank(left)and radiation condition(right)

    A Cartesian coordinate system oxyz is defined for 3D wave propagation problem,as shown in Fig.1.The origin of oxyz is placed on the plane of the undisturbed free surface with the x-axis positive in the propagation direction of incident waves prescribed at the vertical upstream boundary,and the z-axis positive in the opposite direction of gravity.In Fig.1,D denotes the fluid domain whiledenote the boundaries of instantaneous free surface,side wall,bottom,upstream and downstream,respectively.

    We assume the fluid is incompressible and inviscid,and the flow irrotational,the fluid motion can be described by a velocity potential φ,which satisfies the Laplace equation within the fluid domain D,

    All the boundary conditions can be desribed as follows:

    (1)On the instantaneous free surface ΓF,the dynamic and kinematic conditions can be written as:

    where g is the gravitational acceleration and η is the wave elevation.

    (2)On side wall ΓWand bottom ΓB,the zero-normal flux condition can be expressed as:

    (3)On upstream boundary ΓU,the fluid motion is prescribed by giving the properties(surface elevation and normal velocity)of known incident wave forms.

    (4)For downstream boundary condition,the fluid domain has to be truncated at a finite downstream boundary of ΓDin the NWT.An appropriate radiation condition should be imposed on the ΓDto minimize the wave reflection during the simulation in time domain.In this work,an effective Multi-transmitting formular method(MTF)is employed to simulate downstream boundary condition.

    The above boundary value problem will be solved by the indirect desingularized boundary integral equation method(DBIEM),the details of this method can be found in Ref.[4].In order to obtain the velocity potential and free surface elevation at each time step,the fourthorder predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used.Using the total derivativethe fully nonlinear free surface conditions can be modified as follows in Lagrangian frame,

    ABM4 scheme[4]is selected for integrating Eq.(7)and Eq.(8)over time.

    2 Desingularized boundary integral equation method

    In this study,the indirect DBIEM is employed to solve the boundary value problem for the unknown velocity potentialat each time step.This method obtains the solution by distributing Rankine sources over a surface S outside the fluid domain D.This surface is at a small distance away from the corresponding real boundary of the fluid.The velocity potential in the fluid domain D can be written as follows:

    For the problem considered in this work,we construct the solution using a constantstrength source point within each element over the integration boundary SFand a constantstrength source point over the integration surface SW,where SFis the integration surface above the free surface ΓF,and SWis the integration surface outside the real boundary of the tank.That is

    By applying the boundary conditions,we obtain boundary integral equations for the unknown strength of the singularities,respectively:

    In the desingularized method,the source distribution is outside the fluid domain so that the source points never coincide with the field points and therefore the integrals are non-singular.In addition,because of the desingularization,we can use simple isolated Rankine sources andobtain the equivalent accuracy.This greatly reduces the complexity of the form of the influence coefficients that make up the elements of the kernel matrix[4].Then the integral equations in Eq.(12)and Eq.(13)can be replaced by a discrete summation of N-isolated singularities located at a small distance away from the corresponding control point on the boundaries,

    The desingularized distance between isolated source point and corresponding control point is given by

    where ldand β are constants and Dmis a measure of the local mesh size(typically the square root of the local mesh area).The accuracy and convergence of the solutions are sensitive to the choices of ldand β.Therefore,appropriate ldand β values need to be determined after numerical test.The recommended values are ld=0.5-1.0 and β=0.5.A detailed study with regard to the performance of DBIEM with the desingularization parameters was reported in Ref.[11].ldis fixed at 0.85 in our work.

    Once the above integral equations using isolated Rankine source are solved at each time step,the fluid velocity in Eq.(2)and Eq.(3)can be calculated from direct derivatives,

    3 Multi-transmitting Formula for radiation condition

    Liao[7]described a general expression of one-way wave propagation and developed a system of local non-reflecting boundary conditions using space-time extrapolation.Its initial aim is to deal with the propagation of earthquake wave out of truncated boundary.

    In this section,the MTF method for treating the velocity potential φ in water wave field will be introduced,as shown in Fig.1.Suppose that point O0is on the truncated surface ΓDand j is the point which is away from point O0along its normal vector to the fluid domain.The distance between point j and point O0is jCaΔt along the normal vector of point O0,where Ca,related to physical wave speed Cx,is the artificial wave speed and Δt is the time interval.Usually,we do not need set Caequal to Cx.

    According to the theory of MTF,the velocity potential on ΓDmay be written as

    where integer p represents the time level,N is the order of the MTF method and C is thebinomial coefficient.

    In order to eliminate the effect of the frequencies,which are near to zero including zero,a constant value γ2is used.Thus,the second order MTF can be written as Eq.(18),where γ2is additional factor and set to 0.025;

    4 Numerical results and discussions

    The present model is applied to simulate the wave propagation for linear incident wave and second-order Stokes wave in a fully nonlinear NWT.In our simulation,the length of NWT(L)is 2 m,depth-length ratio h/L=0.5,and breadth-length ratio B/L=0.25.The NWT is divided in x-direction by Nx=40 intervals,in y-direction by Ny=11 intervals and in z-direction by Nz=10 intervals.

    In the MTF method,we need to use an artificial wave speed Cato find the exact position of the inner points corresponding to the control point on the truncated surface,as shown in Fig.1.Normally,we do not need to set Caequal to the physical wave speed Cxand yet we can still get reasonable results when Cais in the certain range of Cx(Ca∈0.8 Cx~1.2Cx).The numerical results for different Caare presented in Fig.2 and Fig.3.We can find that the MTF method is effective to transmit waves out of truncated surface when Cais in the prescribed range.Thus,the MTF method is proposed as radiation condition to also accord greater flexibility for the simulation of fully nonlinear NWT.

    Fig.2 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=4.0 m)

    Fig.3 Comparison of wave elevation between linear analytical solution and numerical results with different artificial wave speed(λ=8.0 m)

    4.1 Simulation of linear regular incident wave

    The model is next applied to simulate the linear regular incident wave.We consider three cases:wave length λ=1 m,4 m and 8 m.For these simulations,the wave amplitude A is set to 0.02 m,time step Δt is taken as T/100 and Cais equal to Cx[9],where T is wave period.The numerical results are compared with corresponding linearized analytical solution,as shown in Figs.4-6.We can see that the numerical result obtained by present method agrees fairly with the theory after the initial transient effect.This indicates that the method works well with the given problem.It needs to be mentioned that a modulation function is used in the numerical simulation[12].

    Fig.4 Wave elevation for the case of wave length λ=4 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.5 Wave elevation histories for the case of wave length λ=8 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.6 Wave elevation histories for the case of wave length λ=1 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    Fig.7 Wave elevation histories at(x=0.475 m,y=0)for λ=1 m and A=0.02 m(black solid line:analytical solution;blue solid line:MTF as radiation condition)

    4.2 Simulation of second-order stokes incident wave

    The model is finally applied to simulate the wave propogation ofsecond-order Stokes waves,which have the basic characteristic of nonlinear waves of higher and sharper crest,lower and flatter trough.The parameters for simulating second-order Stokes waves propagation are taken as λ=1 m,A=0.02 m and Δt=T/100.Fig.7 shows the wave elevation histories at(x=0.475 m,y=0)and the numerical results are compared with second-order analytical solution.We can find that the results agree with the analytical solution and have strong stability.In order to illustrate the wave propagation,snapshots of free surface are shown in Fig.8 at four different times(t=4T,6T,8T and 10T).

    Fig.8 Free surface profiles(a)t=4T;(b)t=6T;(c)t=8T;(d)t=10T

    5 Conclusions

    In this paper,3D fully nonlinear NWT are solved by using a DBIEM coupled with MEL time marching scheme.The position of instantaneous free surface is tracked by applying semi-Lagrangian approach.An effective MTF method is employed as radiation condition to transmit wave out of truncated surface.It is found that the present model is accurate,numerically stable and can be used for the simulation of 3D fully nonlinear wave propagation due to linear incident wave and second-order incident wave.

    [1]Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves[J].Journal of Computational Physics,1996,126:139-151.

    [2]Boo S Y.Linear and nonlinear irregular waves and forces in a numerical wave tank[J].Ocean Engineering,2002,29:475-493.

    [3]Wang C Z,Wu G X.Time domain analysis of second-order wave diffraction by an array of vertical cylinders[J].Journal of Fluids and Structures,2007,23(4):605-631.

    [4]Zhang X T,Khoo B C,Lou J.Wave propagation in a fully nonlinear numerical wave tank:a desingularized method[J].O-cean Engineering,2006,33:2310-2331.

    [5]Zhang X T,Khoo B C,Lou J.Application of desingularized approach to water wave propagation over three-dimensional topography[J].Ocean Engineering,2007,34:1449-1458.

    [6]Koo W C,Kim M H.Fully nonlinear wave-body interactions with surface-piercing bodies[J].Ocean Engineering,2007,34:1000-1012.

    [7]Liao Z P.Extrapolation non reflecting boundary conditions[J].Wave Motion,1996,24:117-138.

    [8]Xu G,Duan W Y.Time domain simulation for water wave radiation by floating structures(Part A)[J].Journal of Marine Science and Application,2008;7:226-235.

    [9]Xu G,Duan W Y.Time-domain simulation of wave-structure interaction based on multi-transmitting formula coupled with damping zone method for radiation boundary condition[J].Applied Ocean Research,2013;42:136-143.

    [10]Duan W Y,Zhang T Y.Non-reflecting simulation for fully-nonlinear irregular wave radiation[C]//Proceedings of the 24th International Workshop on Water Wave and Floating Bodies.Bodies,Russia,2009.

    [11]Cao Y,Schultz W W,Beck R F.Three dimensional desingularized boundary integral methods for potential problems[J].International Journal for Numerical Methods in Fluids,1991,12:785-803.

    [12]Xu G.Time-domain simulation of second-order hydrodynamic force on floating bodies in irregular waves[D].Harbin:College of Shipbuilding Engineering,Harbin Engineering University,2010.(in Chinese)

    基于多次透射公式和無奇異邊界元法模擬全非線性數(shù)值波浪水池

    徐 剛,白 旭,馬小劍,朱仁慶
    (江蘇科技大學(xué) 船舶與海洋工程學(xué)院,江蘇 鎮(zhèn)江 212003)

    文章基于勢流理論對全非線性的三維數(shù)值水池進(jìn)行了模擬,其控制方程由無奇異邊界積分方程法(Desingularized Boundary Integral Equation Method,DBIEM)進(jìn)行離散求解,在求解全非線性的自由面微分方程時,文中采用混合歐拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四階Adams-Bashforth-Moulton(ABM4)預(yù)報—修正方法,為了避免結(jié)果發(fā)散即增強數(shù)值穩(wěn)定性,文中采用B樣條法來光順波面。同時,在遠(yuǎn)方輻射控制面上采用多次透射公式方法(Multitransmitting Formula,MTF)來進(jìn)行消波,文中得到的結(jié)果與理論解進(jìn)行了比較,結(jié)果表明該方法可用來有效模擬全非線性的數(shù)值波浪水池。

    數(shù)值波浪水池;無奇異邊界積分法;多次透射公式

    O35 U661.71

    A

    國家自然科學(xué)基金資助項目(51309125,51409128,51379094,51179077);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目資助

    徐 剛(1981-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;白 旭(1984-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;馬小劍(1982-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;朱仁慶(1965-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授。

    10.3969/j.issn.1007-7294.2017.09.002

    Article ID: 1007-7294(2017)09-1062-09

    Received date:2017-03-28

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51309125,51409128,51379094,51179077)and the Project Founded by Priority Academic Program Development of Jiangsu Higher Education Institutions

    Biography:XU Gang(1981-),male,Ph.D.,associate prof.of Jiangsu University of Science and Technology,E-mail:me_xug@qq.com;BAI Xu(1984-),male,Ph.D.,lecturer.

    猜你喜歡
    工程學(xué)院水池波浪
    福建工程學(xué)院
    波浪谷和波浪巖
    福建工程學(xué)院
    小區(qū)的水池
    波浪谷隨想
    福建工程學(xué)院
    去看神奇波浪谷
    福建工程學(xué)院
    把住醫(yī)?;鹚亻l門
    找水池
    人人妻人人添人人爽欧美一区卜| 丝袜美足系列| 这个男人来自地球电影免费观看| а√天堂www在线а√下载| 免费女性裸体啪啪无遮挡网站| 国产一区二区激情短视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区三区四区久久 | 美女高潮到喷水免费观看| 精品人妻1区二区| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 国产亚洲欧美精品永久| 国产熟女午夜一区二区三区| 中亚洲国语对白在线视频| 最近最新中文字幕大全免费视频| 国产精品爽爽va在线观看网站 | 一二三四社区在线视频社区8| 欧美黑人精品巨大| 国产xxxxx性猛交| 成人三级黄色视频| 亚洲成人久久性| 欧美一区二区精品小视频在线| 每晚都被弄得嗷嗷叫到高潮| 变态另类成人亚洲欧美熟女 | 精品国内亚洲2022精品成人| 欧美精品一区二区免费开放| 国产精品久久视频播放| 日韩av在线大香蕉| а√天堂www在线а√下载| 国产精品久久久久久人妻精品电影| 亚洲aⅴ乱码一区二区在线播放 | 可以免费在线观看a视频的电影网站| 首页视频小说图片口味搜索| 久久精品国产99精品国产亚洲性色 | 免费日韩欧美在线观看| 窝窝影院91人妻| 精品久久蜜臀av无| 99久久国产精品久久久| 欧美乱妇无乱码| 久久久久九九精品影院| 亚洲国产欧美一区二区综合| 亚洲精品粉嫩美女一区| 一级a爱片免费观看的视频| 精品一区二区三区视频在线观看免费 | 日韩大尺度精品在线看网址 | 国产成人啪精品午夜网站| 亚洲一卡2卡3卡4卡5卡精品中文| 最近最新中文字幕大全免费视频| 国产高清激情床上av| 久久久久久人人人人人| 亚洲av五月六月丁香网| 黑人操中国人逼视频| 久久影院123| 中出人妻视频一区二区| 久久精品91无色码中文字幕| 国产欧美日韩一区二区精品| 日本一区二区免费在线视频| 丝袜美腿诱惑在线| 久久精品国产亚洲av香蕉五月| 成人国产一区最新在线观看| 欧美激情久久久久久爽电影 | aaaaa片日本免费| 99在线视频只有这里精品首页| 欧美丝袜亚洲另类 | 热99国产精品久久久久久7| 国产97色在线日韩免费| 欧美日韩一级在线毛片| 欧美人与性动交α欧美精品济南到| 这个男人来自地球电影免费观看| 久99久视频精品免费| 成年女人毛片免费观看观看9| 久久热在线av| 欧美日韩国产mv在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲欧美精品综合一区二区三区| 国产99白浆流出| 国产av精品麻豆| 一进一出抽搐gif免费好疼 | 黄片大片在线免费观看| 1024视频免费在线观看| 国产熟女午夜一区二区三区| 国产亚洲欧美98| 国产97色在线日韩免费| 黄色片一级片一级黄色片| 欧美日韩视频精品一区| 丝袜人妻中文字幕| 夜夜爽天天搞| a级毛片在线看网站| 国产成人精品久久二区二区91| 国产伦人伦偷精品视频| 中文字幕人妻丝袜制服| 国产成人精品无人区| 亚洲aⅴ乱码一区二区在线播放 | 国产午夜精品久久久久久| 欧美在线黄色| 亚洲伊人色综图| 亚洲精品中文字幕在线视频| 欧美日韩黄片免| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久久毛片| 韩国av一区二区三区四区| 国产精品一区二区免费欧美| 中文字幕色久视频| av福利片在线| 一级片免费观看大全| 久久亚洲精品不卡| 自线自在国产av| 午夜激情av网站| 可以在线观看毛片的网站| 亚洲人成伊人成综合网2020| 日韩欧美免费精品| 日韩欧美一区视频在线观看| 好男人电影高清在线观看| 热re99久久精品国产66热6| 老汉色∧v一级毛片| 色婷婷久久久亚洲欧美| 9热在线视频观看99| 变态另类成人亚洲欧美熟女 | 亚洲精品美女久久久久99蜜臀| 免费日韩欧美在线观看| 9热在线视频观看99| 黄网站色视频无遮挡免费观看| 精品国产亚洲在线| 神马国产精品三级电影在线观看 | 久久青草综合色| 国产激情欧美一区二区| 日韩欧美在线二视频| 婷婷丁香在线五月| www.熟女人妻精品国产| 亚洲av片天天在线观看| 9热在线视频观看99| 亚洲熟女毛片儿| 久久精品91蜜桃| 国产精品免费视频内射| 国产精品国产高清国产av| 久久 成人 亚洲| 男男h啪啪无遮挡| 精品国产国语对白av| 成人精品一区二区免费| 不卡av一区二区三区| 国产乱人伦免费视频| 亚洲欧美精品综合一区二区三区| 美国免费a级毛片| 高潮久久久久久久久久久不卡| 精品久久久久久成人av| 99久久国产精品久久久| 免费人成视频x8x8入口观看| 99riav亚洲国产免费| 99香蕉大伊视频| 美女扒开内裤让男人捅视频| 欧美日韩亚洲国产一区二区在线观看| 性少妇av在线| 精品一区二区三区四区五区乱码| av网站在线播放免费| 久久国产亚洲av麻豆专区| 美女国产高潮福利片在线看| 欧美日韩瑟瑟在线播放| 女同久久另类99精品国产91| 日韩免费av在线播放| 99久久人妻综合| 亚洲国产看品久久| 国产免费av片在线观看野外av| av在线天堂中文字幕 | 中文字幕色久视频| 久久精品亚洲精品国产色婷小说| 婷婷精品国产亚洲av在线| 免费高清视频大片| 国产成人精品无人区| 狂野欧美激情性xxxx| 精品国产国语对白av| 国产无遮挡羞羞视频在线观看| 老司机靠b影院| 午夜福利一区二区在线看| 久久中文字幕一级| 国产国语露脸激情在线看| 丰满迷人的少妇在线观看| 老司机亚洲免费影院| 国产亚洲av高清不卡| 韩国精品一区二区三区| 男女午夜视频在线观看| 国产一区在线观看成人免费| 日本精品一区二区三区蜜桃| 久久久久久大精品| 国产成人精品久久二区二区91| 日韩高清综合在线| 日韩有码中文字幕| 国产成人欧美在线观看| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜添小说| 高清在线国产一区| 国产成人精品久久二区二区免费| 咕卡用的链子| 手机成人av网站| 精品国产超薄肉色丝袜足j| 黑人巨大精品欧美一区二区蜜桃| 亚洲av成人不卡在线观看播放网| 乱人伦中国视频| 久久国产乱子伦精品免费另类| 亚洲国产毛片av蜜桃av| 在线观看免费视频网站a站| 美女高潮喷水抽搐中文字幕| 久久中文字幕一级| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 99久久综合精品五月天人人| 亚洲精品国产色婷婷电影| 91老司机精品| 国产成人免费无遮挡视频| 午夜福利影视在线免费观看| 久久久久久久久中文| 国产亚洲精品一区二区www| 久久久久国产精品人妻aⅴ院| 国产精品亚洲一级av第二区| 国产成人欧美| 亚洲自拍偷在线| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 高清黄色对白视频在线免费看| 国产黄色免费在线视频| 欧美色视频一区免费| 免费在线观看亚洲国产| 欧美成人免费av一区二区三区| 国产高清国产精品国产三级| 黄色毛片三级朝国网站| 成年版毛片免费区| 天天影视国产精品| 黄片小视频在线播放| 丝袜美腿诱惑在线| 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 欧美日韩亚洲国产一区二区在线观看| 淫妇啪啪啪对白视频| 亚洲午夜精品一区,二区,三区| 久久狼人影院| 日本五十路高清| 国产欧美日韩一区二区三| 亚洲狠狠婷婷综合久久图片| 91国产中文字幕| 成人18禁高潮啪啪吃奶动态图| 日韩精品中文字幕看吧| www.自偷自拍.com| 99在线人妻在线中文字幕| 黄片大片在线免费观看| 丰满迷人的少妇在线观看| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 欧美在线一区亚洲| 免费看十八禁软件| 中文字幕色久视频| 成人18禁高潮啪啪吃奶动态图| 亚洲av片天天在线观看| 欧美日韩精品网址| 国产高清视频在线播放一区| 精品一品国产午夜福利视频| 十八禁网站免费在线| 亚洲国产欧美一区二区综合| 久99久视频精品免费| 精品久久久久久久久久免费视频 | 午夜福利影视在线免费观看| 久久欧美精品欧美久久欧美| 99国产精品免费福利视频| 老鸭窝网址在线观看| 精品无人区乱码1区二区| 久久青草综合色| 一边摸一边做爽爽视频免费| 啦啦啦免费观看视频1| 叶爱在线成人免费视频播放| 后天国语完整版免费观看| 老司机福利观看| 在线国产一区二区在线| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人国产一区在线观看| 精品福利永久在线观看| www.精华液| 最新美女视频免费是黄的| 热re99久久国产66热| 国产精品1区2区在线观看.| avwww免费| 视频在线观看一区二区三区| 久久国产精品人妻蜜桃| 老司机靠b影院| 视频区欧美日本亚洲| 国产极品粉嫩免费观看在线| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 看片在线看免费视频| 久久人人97超碰香蕉20202| 国产一区在线观看成人免费| 啦啦啦 在线观看视频| 青草久久国产| 久久伊人香网站| 久热爱精品视频在线9| 国产xxxxx性猛交| 亚洲中文av在线| 国产av又大| 欧美黄色淫秽网站| 亚洲欧美一区二区三区久久| 纯流量卡能插随身wifi吗| 一a级毛片在线观看| 成人亚洲精品一区在线观看| 18禁黄网站禁片午夜丰满| 91精品国产国语对白视频| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 国产精品综合久久久久久久免费 | 99久久人妻综合| 91av网站免费观看| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| av中文乱码字幕在线| 99国产精品一区二区蜜桃av| 伦理电影免费视频| 国产精品一区二区精品视频观看| 亚洲,欧美精品.| 日韩av在线大香蕉| www.精华液| 久久久久国产精品人妻aⅴ院| 亚洲精品一区av在线观看| 国产成年人精品一区二区 | 我的亚洲天堂| 一级黄色大片毛片| 日韩 欧美 亚洲 中文字幕| 少妇裸体淫交视频免费看高清 | av在线天堂中文字幕 | 黄色a级毛片大全视频| 日韩有码中文字幕| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 国产成人一区二区三区免费视频网站| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 精品第一国产精品| 国产精品1区2区在线观看.| 天天影视国产精品| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 美女福利国产在线| 精品电影一区二区在线| 人人妻人人爽人人添夜夜欢视频| 亚洲五月天丁香| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 久久香蕉国产精品| 亚洲免费av在线视频| 精品国内亚洲2022精品成人| 亚洲专区国产一区二区| 一a级毛片在线观看| 日韩欧美免费精品| 中出人妻视频一区二区| 日日爽夜夜爽网站| 欧美一区二区精品小视频在线| 亚洲精品美女久久久久99蜜臀| 日韩人妻精品一区2区三区| 老司机福利观看| 无限看片的www在线观看| 三上悠亚av全集在线观看| 亚洲第一青青草原| 一级,二级,三级黄色视频| 精品欧美一区二区三区在线| netflix在线观看网站| 男人舔女人的私密视频| 长腿黑丝高跟| 99riav亚洲国产免费| 黄色丝袜av网址大全| 亚洲av五月六月丁香网| 日韩成人在线观看一区二区三区| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器 | 国产伦人伦偷精品视频| 人人妻人人澡人人看| 午夜免费鲁丝| 丰满饥渴人妻一区二区三| 亚洲精品久久成人aⅴ小说| 午夜福利在线观看吧| av网站在线播放免费| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 成年人免费黄色播放视频| 久9热在线精品视频| 日日夜夜操网爽| 亚洲熟女毛片儿| 亚洲视频免费观看视频| 电影成人av| 久久伊人香网站| 精品少妇一区二区三区视频日本电影| 丰满的人妻完整版| 久久精品成人免费网站| svipshipincom国产片| 欧美日韩黄片免| 视频区欧美日本亚洲| 欧美中文日本在线观看视频| 不卡av一区二区三区| 美女午夜性视频免费| 一级片免费观看大全| 国产激情欧美一区二区| 新久久久久国产一级毛片| 日本a在线网址| 亚洲精品国产色婷婷电影| 成人国产一区最新在线观看| 精品福利永久在线观看| 99国产精品99久久久久| 国产精品久久久人人做人人爽| 国产av又大| 国产亚洲精品综合一区在线观看 | 成人永久免费在线观看视频| 国产又爽黄色视频| 在线看a的网站| 亚洲精品国产色婷婷电影| 99久久久亚洲精品蜜臀av| 丝袜美腿诱惑在线| 日韩一卡2卡3卡4卡2021年| 黄色成人免费大全| 大陆偷拍与自拍| 国产精品一区二区免费欧美| 在线视频色国产色| 99精品久久久久人妻精品| 又黄又粗又硬又大视频| 国产欧美日韩精品亚洲av| 亚洲男人的天堂狠狠| 在线看a的网站| tocl精华| 在线观看免费高清a一片| 波多野结衣av一区二区av| 亚洲黑人精品在线| 9色porny在线观看| 日本免费一区二区三区高清不卡 | 日韩欧美三级三区| 亚洲五月婷婷丁香| 日日夜夜操网爽| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 夫妻午夜视频| 少妇粗大呻吟视频| 久久久国产精品麻豆| 国产单亲对白刺激| 国产一区二区激情短视频| 国产国语露脸激情在线看| 国产成+人综合+亚洲专区| 久久国产精品男人的天堂亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 精品福利观看| 亚洲av美国av| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 亚洲成人免费av在线播放| 午夜亚洲福利在线播放| av网站在线播放免费| 欧美成人午夜精品| 亚洲成av片中文字幕在线观看| 99热国产这里只有精品6| 搡老熟女国产l中国老女人| 午夜a级毛片| aaaaa片日本免费| 一级a爱视频在线免费观看| 在线免费观看的www视频| 亚洲成国产人片在线观看| 亚洲熟女毛片儿| 久久香蕉国产精品| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 91麻豆精品激情在线观看国产 | 韩国av一区二区三区四区| 亚洲欧美日韩无卡精品| 国产精品 国内视频| 色综合婷婷激情| 亚洲国产看品久久| 午夜免费激情av| 亚洲国产欧美网| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 美女国产高潮福利片在线看| 十八禁网站免费在线| 99久久精品国产亚洲精品| 激情视频va一区二区三区| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 麻豆国产av国片精品| 成人永久免费在线观看视频| 99国产精品免费福利视频| av网站在线播放免费| 又黄又粗又硬又大视频| 日韩欧美三级三区| 高清毛片免费观看视频网站 | 亚洲 欧美一区二区三区| 亚洲 国产 在线| 中亚洲国语对白在线视频| 亚洲欧美日韩高清在线视频| 日本 av在线| 91国产中文字幕| 久久精品亚洲精品国产色婷小说| 国产精品二区激情视频| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 精品久久久久久,| 成人黄色视频免费在线看| 精品福利观看| 久久久久久大精品| 最新美女视频免费是黄的| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟女乱码| 久久国产精品影院| 亚洲av第一区精品v没综合| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| 波多野结衣av一区二区av| 久久这里只有精品19| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 免费av毛片视频| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 国产99久久九九免费精品| 啦啦啦免费观看视频1| 中文字幕人妻熟女乱码| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 亚洲国产精品999在线| 免费在线观看黄色视频的| 色老头精品视频在线观看| 久久久久久大精品| www.熟女人妻精品国产| 日本五十路高清| 午夜精品久久久久久毛片777| 757午夜福利合集在线观看| 五月开心婷婷网| 狂野欧美激情性xxxx| 97碰自拍视频| 两性夫妻黄色片| 九色亚洲精品在线播放| 午夜亚洲福利在线播放| 脱女人内裤的视频| 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 日本五十路高清| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 久久这里只有精品19| 999久久久国产精品视频| a在线观看视频网站| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 日韩一卡2卡3卡4卡2021年| 国产视频一区二区在线看| 在线看a的网站| 91九色精品人成在线观看| 在线永久观看黄色视频| 可以免费在线观看a视频的电影网站| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 免费日韩欧美在线观看| 女生性感内裤真人,穿戴方法视频| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久国产精品视频| 青草久久国产| 亚洲色图av天堂| 性色av乱码一区二区三区2| 可以在线观看毛片的网站| a级片在线免费高清观看视频| av网站在线播放免费| 涩涩av久久男人的天堂| 女警被强在线播放| 不卡一级毛片| av在线天堂中文字幕 | 欧美乱码精品一区二区三区| 五月开心婷婷网| 日日爽夜夜爽网站| 美女高潮到喷水免费观看| 淫妇啪啪啪对白视频| e午夜精品久久久久久久| 国产深夜福利视频在线观看| 国产极品粉嫩免费观看在线| 欧美一区二区精品小视频在线| 成人黄色视频免费在线看| 动漫黄色视频在线观看| 久久性视频一级片| 在线观看免费视频日本深夜| 亚洲国产欧美一区二区综合| 久久精品亚洲熟妇少妇任你| 国产伦人伦偷精品视频| 老司机亚洲免费影院| 在线看a的网站| 又黄又爽又免费观看的视频| 满18在线观看网站| www日本在线高清视频| 久久精品国产亚洲av高清一级| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区| 日韩国内少妇激情av| 亚洲精品中文字幕一二三四区|