• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    2017-10-11 05:33:22KONGXiaobingHUANGXiaopingZHAOPengyuanZHANGDaokun
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:折角上海交通大學(xué)波浪

    KONG Xiao-bing,HUANG Xiao-ping,ZHAO Peng-yuan,ZHANG Dao-kun

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Fatigue Crack Growth Calculation of a Surface Crack in a Ship Angular Joint

    KONG Xiao-bing1,HUANG Xiao-ping1,ZHAO Peng-yuan1,ZHANG Dao-kun2

    (1.Collaborative Innovation Center for Advanced Ship and Deep Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Technology Development&Research Center,China Classification Society,Beijing 100007,China)

    Abstract:An angular joint in a container is taken as the research object.Hydrodynamic response and structural hot spot stress response of a container were forecasted by using the finite element software WALCS and PATRAN respectively.In order to avoid using 3D solid element in the hot spot area in PATRAN finite element model for calculating the stress intensity factor(SIF)of a surface crack,a SIF calculation method for surface cracks in ship structures under wave loads was proposed.The accuracy of the proposed method was validated by comparing the calculated results with those of widely accepted empirical formulas.Then,the method was applied to an angular joint in the bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced pressure were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Fatigue crack growth was calculated by using the unique crack growth rate curve model.Calculation results showed that the discussed hot spot did not meet the requirement of design life and further modification will be needed.

    Key words:wave load;angular type joint;surface crack;stress intensity factor;unique curve model

    0 Introduction

    Ships and marine structures suffer nearly one hundred million cycles random wave load during their service life.Crack defects,mostly in the form of surface cracks can be traced in the welded toes of key load carrying structures,which is the inevitable result of the structural fatigue damage[1-3].Large-scalization of ships and the wide use of the higher tensile steels in ship hulls make the fatigue problem imminent[4].It is of great significance to conduct fatigue crack propagation analysis on ships and marine structures which containing cracks to ensure the personal safety and property safety.

    Stress intensity factor(SIF)is one of the important parameters in evaluating the crackedcomponent failure.To calculate the SIFs of surface cracks in details under real loading conditions is the basis of forecasting the structural fatigue life accurately.At present,cracks in ship structure details are commonly assumed as semi-elliptical surface cracks.Newman-Raju’s formulas for calculating SIFs of surface cracks in a plate under the tensile and bending loads have been widely recognized[5].On the basis of the formula,Bowness[6]put forward formulas for calculating the toe magnification factors for cracks in the weld toe of T-butt joints and they were adopted by BS7910[7].However,the above formulas for calculating the SIFs are only suitable for relatively simple structures under the simple load conditions.It is clearly not appropriate to apply them to joints in the real ships and marine structures.This is because the actual structures are under wave loads and the stress distribution in most typical fatigue assessment details are very complicated.

    Aiming to solve this problem,Yan et al[8]has proposed a SIF calculation method for cracks in ship structures under wave loads.In that method,the hots pot areas are required to be modeled using 3D solid element in PATRAN,and then a macro-program patran2ansys.mac has been written to achieve the transformation boundary conditions from PATRAN whole model to the ANSYS submodel containing surface cracks.But it is extremely complex to model 3D solid element in the huge PATRAN ship model especially in the multiple plates intersecting joint area.Because of this shortcomings of the above method,this paper proposed a new method need not to model 3D solid element in PATRAN,and its calculation accuracy was validated by comparing the calculated results with those of widely accepted empirical formulas.

    In this paper,the ship hydrodynamic response and hot spot stress response were performed by using the finite element software WALCS and PATRAN respectively.Then the above SIF calculation method was applied to calculate SIFs of surfaces cracks in an angular joint in the middle bottom at the midship.SIFs of surface cracks with different sizes in the joint under the wave induced loads were calculated and dimensionless empirical formulas were summarized.The fatigue load spectrums were generated by using a method based on spectrum analysis.Combined with the unique curve model,the fatigue crack propagation of a surface crack in the detail was calculated.

    1 Hot spot stress response analysis

    1.1 Hydrodynamic response

    Ships and marine structures serve in ocean environment,and the main external load is wave load.The precision of the estimated structural response is depending on the precision of the calculated wave loads.Hydrodynamic software WALCS[9]can forecast the wave load of the ship and marine structures,which is based on three dimensional frequency domain linear hydrodynamics principle.It calculates three-dimensional hydrodynamic coefficient of radiation by combining the surface element method and the source distribution method.The wet surface model of the target ship in WALCS is shown in Fig.1 and the hydrodynamic analysis parame-ters are shown in Tab.1.

    Tab.1 Hydrodynamic analysis parameters

    Fig.1 Wet surface model of a ship

    1.2 Hot spot stress response

    The finite element model of the whole ship is modeled in PATRAN,including the whole hull structure,cargo tank and ship bow,etc.On the basis of the whole ship structure model,the lightweight and deadweight are automatically adjusted to the corresponding node of the structure model,making sure that the quality model is corresponding with the actual weight location in actual ship.The calculated wave pressures are transferred to the surface of the hull structure model,and the inertial release technology is used to make the hull structure in a state of dynamic balance.

    Fig.2 Hot spot stress interpolation calculation

    Angular joints widely exist in ship structures and are prone to fatigue failure,which are the key spots for fatigue assessments.In guidelines for fatigue strength of ship structure of CCS[10],hot spot stress method was adopted to assess the fatigue strength,which has clearly stated the requirement for the element size and determinnation of the hot spot stress.Because the shape of the weld toe is not considered in the finite element model,extrapolation method is used to get the stress of the weld toe.The common practice is to use stress at the locations away from the weld toe t/2 and 3t/2 for linear interpolation,as shown in Fig.2.The hot spot stress at the weld toe can be extrapolated using the following formula:

    where σhis hot spot stress, σt/2and σ3t/2are element stresses at a distance t/2 and 3t/2.

    The refine meshed model of an angular joint in the midship bottom is shown in Fig.3,thetransfer function of hot spot stress of the joint is shown in Fig.4.

    Fig.3 Bottom tank angle refine finite element model

    Fig.4 Transfer function of bottom tank angular

    2 Stress intensity factor calculation method validation

    2.1 Shell-to-solid submodel technology

    Ship structure strength analysis is generally conducted based on finite element model using the software PATRAN which is widely used in ship building industry.Shell element,beam element and bar element are always used,but 3D solid element is always avoided to be used.Three-dimensional surface cracks in the structure need to be modeled using 3D solid element and the singular element is needed in the crack tip area where the peak stress exists.There is no singular element in PATRAN,but it is provided in ANSYS.The need of different types element makes the problem difficult,because the node of shell element has three translational degrees and three rotational degrees,but the node of the 3D solid element has three translational degrees only.

    Fig.5 3D solid submodel superimposed on coarse shell model

    Fig.6 Node rotation(a)before cbdof command(b)after cbdof command

    A special submodel technology called shell-to-soild submodel is provided in ANSYS,which can transfer the loads from shell element to the solid element seamlessly.It means the coarse model is shell and the submodel is solid model.A 3D solid submodel superimposed on coarse shell model is shown in Fig.5.In a structural analysis,only the translational displace-ments are calculated for the nodes on the cut-boundary,but their values are based on the translations and rotations of the projected point.Also,the node is rotated such that the nodal UY direction is always perpendicular to shell plane,as shown in Fig.6.A UY constraint is calculated only for nodes that within 10 percent of the average shell element thickness from the shell plane,preventing over_constraint of the submodel in the transverse direction.

    Therefore,we can first transfer the calculated results(translation and rotation degree)into the shell model of ANSYS,then the shell-to-solid submodel technology is used to transfer the calculated results from shell elment to solid model containing semi-elliptical surface crack in ANSYS.

    2.2 Validaton with plate surface crack

    In order to prove the accuracy of the proposed method above,SIFs of semi-elliptical surface crack with different size in a plate are calculated,and the results are compared with those of Newman-Raju formulas which are widely accepted.

    A flat plate measures 5 m×2 m×20 mm and there exists a semi-elliptical surface crack in the middle section of the plate.It is subjected to uniformly distributed tensile stress 90(MPa)and bending stress 7(MPa)respectively.The coarse model of the plate modeled in PATRAN is shown in Fig.7.The elements in the crack location areas are refined and the refined plate model is shown in Fig.8.

    Fig.7 Coarse model of the plate(PATRAN)

    Fig.8 Refined plate model(PATRAN)

    Then,a shell model measuring 500 mm×400 mm×20 mm is modeled using four node element in ANSYS.A 3D solid plate model measuring 400 mm×200 mm×20 mm containing a semi-elliptical surface crack is modeled using element solid 95.The 3D solid model superimposed on coarse shell model in ANSYS is shown in Fig.9 and the crack tip element can also be seen.The boundary of the shell model is loaded using the information from PATRAN by the improved macroprogram patran2ansys.mac which can consider both the translation and rotation degree.Shell-to-solid submodel technology can transform the calculated results from shell model to solid model.

    SIFs of surface cracks with different sizes in the middle section of a plate are calculated and compared with those of the widely accepted Newman-Raju formulas which are shown in Figs.10-13.From the figures above,we can find that the calculated results by the above method are in good agreement with those of the empirical formulas under both tensile stress and bending stress.

    Fig.9 3-D solid submodel superimposed on coarse shell model in ANSYS

    Fig.10 Comparison of crack surface under tensile

    Fig.11 Comparison of crack surface under tensile

    Fig.12 Comparison of crack surface under bending

    Fig.13 Comparison of crack deepest point under bending

    3 Fatigue load generation based on spectral analysis

    3.1 Equivalent stress intensity factor

    When calculating the hot spot stress response amplitude of the structure,the method of‘real part and imaginary part’ is always used in the project.The stress response △σrealandcorresponding to 0°and 90°phase angle respectively are calculated and the equivalent stress response can be obtained by using the following formula:

    where△σrealis the dynamic stress response value caused by unit-height wave at the phase angle 0°,△σimageis the dynamic stress response value caused by unit-height wave at the phase angle 90°.

    Depending on the load types,a crack can be extended into three different modes in Fig.14.They are listed as follows:ModeⅠis the opening(tensile)mode where the crack surfaces move directly apart;ModeⅡis the sliding(in-plane shearing)mode where the crack surfaces slide over one another in the direction perpendicular to the leading edge of the crack;ModeⅢis the tearing(anti-plane shear)mode where the crack surfaces move relative to another and parallel to the leading edge of the crack.

    Fig.14 Three basic modes of farcture

    It is dangerous to considerⅠcrack only,so equivalent SIF is used here.The specific formula is as follows:

    where KⅠ,real,KⅠimage,KⅡ,real,KⅡimage,KⅢ,realand KⅢ,imagerespectively represent real part and image part SIF of the three types crack under wave pressure;μ is the material elastic modulus.

    3.2 Norminal stress

    It is well known that nominal stress is widely used in fracture mechanics,but methods on how to get it from finite element model are still not clearly defined.But there are specific rules and guidelines of the classification society on getting the hot spot stress,so stress concentration coefficient is used to determine norminal stress in this paper.The formula is shown as follows:

    where σnrepresents norminal stress,σhrepresents hot spot stress,kgrepresents stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2)

    Tab.2 Stress concentration factor of the bottom angular joint

    3.3 SIFs calculation of cracks in ship middle angular joints

    In ANSYS,the finite element of an angular joint in the bottom at the midship is modeled,as shown in Fig.15.The boundary of the shell model is loaded using the information getting from PATRAN with the improved macro-program patran2ansys.mac.Shell-to-solid submodel is used to transfer the result from shell model to solid model containing a semi-ellitical surface crack in ANSYS.

    Fig.15 3D solid submodel with crack superimposed on coarse shell model in ANSYS

    SIFs of a surface crack with different size(a/c=0.2,0.4,0.6,0.8)at the weld toe of an angular joint in the bottom at the midship are calculated.The SIFs of the surface point of crack are as shown in Fig.16,and the SIFs of the deepest point of crack as shown in Fig.17(wave direction 0,wave frequency 0.5).

    3.4 Empirical formulas of ship middle angular joints

    The crack tip stress intensity factor generally can be represented as:

    Fig.16 Stress intensity factor of crack surface point

    Fig.17 Stress intensity factor of crack deepest point

    where σnrepresents norminal stress,a represents crack depth,is a dimensionless parameter in terms of the crack geometry and type of load.

    SIFs of surface cracks with different sizes in the weld toe of an angular joint are calculated in different wave direction and wave frequencies.The hot spot stress of the angular joint is calculated according to the guidelines of the classification society above.The dimesionless parameter can be backstepped by using the follow formula:

    Dimensionless parameters of the surface point of the crack are shown in Fig.18 and the dimensionless parameters of the deepest point surface are shown in Fig.19.

    Fig.19 of the crack deepest point

    Through the above calculation,the empirical formulas for calculating SIFs of surface cracks with different sizes in an angular joint at the bottom in the midship are summarized as follows using MATLAB:

    where σhis the hot spot stress amplitude,a is crack depth,c is crack length,T is the thickness of the inner bottom,kgis the stress concentration factor(stress concentration factor of the bottom angular joint is shown in Tab.2).

    4 Fatigue life prediction of a bottom tank angle

    4.1 Crack propagation model

    The crack propagation rate is the core content of fatigue crack propagation analysis,many achievements have been made in this aspect.The Paris law[11]is widely studied and used in linear elastic fracture mechanics.Then,the modified formula of the fatigue crack was proposed by Forman[12],so as to consider the effect of mean stress.The above two formulas are widely used in engineering due to its simplicity.

    Many subsequent studies found residual stress,stress ratio and load sequence also had influence on the fatigue crack propagation rate.As a result,modified formulas and new ones were proposed.Described so far,the formulas of crack propagation rate are not less than one hundred,and a suitable model is needed which has calculating accuracy and can be easily applied to engineering practice.The unique crack growth rate curve method,which is based on the equivalent stress intensity factor range as the driving force under constant amplitude external loading,has been proposed by Huang[13-14].The model has many advantages.On one hand,it can consider the effect of R-ratio including residual stress and loading sequence,on the other hand,it can use constants C and m in Paris law which has been frequently tested for different material.Its basic expression is:

    where a is the crack length;N is the number of applied cycles;C,m are the Paris parameters;△Keq0,△Kth0,respectively are the equivalent SIF range and threshold of SIF range corresponding to the stress ratio R=0;MRis the correction factor for stress ratio; β and β1depend on the material and the environment.Kresis the SIF caused by residual stress;MPis the correction factor for load sequence and can be calculated by:

    where△Kuis the SIF range caused by underload follows an overload cycle;are the minimum SIF ranges of the current cycle and the prior cycle;aOLis the crack size when overload occurs;ryis the size of plastic zone at crack tip;rOLis the size of plastic zone at crack tip when overload occurs;r△is the increment of plastic zone size at crack tip caused by underload towards an overload;α is the plastic zone size factor;n is shaping exponent of plastic zone effect.

    4.2 Generation of the fatigue load spectrum

    To predict the fatigue life of structure accurately,fatigue load spectrums need to be as real as possible.The alternating stresses in ship and marine structures are wave-induced stresses.Huang[15]proposed a method for generating fatigue load spectrums based on spectrum analysis.The method is based on the real sea condition and loading condition,and it can consider the combination of different wave direction and frequency,having higher accuracy.It is used to generate fatigue load spectrums in this paper.

    Double parameters P-M wave spectrum recommended by ISSC is used,the P-M spectrum expression is as follows:

    where Hsis the wave height and Tzis the average cross zero cycle.

    Spectral analysis method is based on the theory of linear system.The wave uses stationary Gaussian random process,and the alternating stress of the structure is also a stationary Gaussian random process.So the alternating stress of the structure can be expressed as:

    In the evaluation of the ship response due to external wave-induced pressures,the effect of wave diffraction and radiation is taken into consideration.

    The long-term state of ocean waves is composed of many short-term sequence sea conditions.Every sea condition is characterized by wave characteristic parameters and the frequency of sea conditions.In practical applications,alternating stress process is considered as a narrow band stationary stochastic process in a certain sea state and wave direction.According to the theory of stochastic process,the peak stress obeys Rayleigh distribution,and the probability density function is

    The transfer function of the angular joint in the middle bottom of the ship is shown in Fig.4.Global wave scatter diagram is used.The probability density of the fatigue load spectrums is shown in Fig.20 and a random load sequence diagram(fragment)is shown in Fig.21.

    Fig.20 Probability density of the fatigue load spectrum

    Fig.21 Random load sequence diagram(fragment)

    4.3 The fatigue life prediction

    In crack growth prediction,the unique curve model was applied and the Paris constants in this model were referred to the recommendation of International Institude of Welding(IIW)[16],namelyWeld radius is 10 mm and weld angle is 45°.

    The initial depth of the surface crack was 0.2 mm,and the initial length was 2 mm.The structure was failure when the surface crack penetrates the thickness of the target plate.SIFs of a surface crack with different sizes of a angular joint in the bottom at the midship were calculated by the empirical formulas summarized above and the fatigue spectrums were generated by the method mentioned above.Fatigue crack growth calculation was conducted usingcycle-by-cycle method using MATLAB program and the calculated crack growth curves are shown in Fig.22.We can know the fatigue life of the joint is only 7 years.

    Fig.22 Crack growth curve

    5 Conclusions

    The paper focused on the fatigue strength assessment of ship angular joint which widely exists in ship structures based on the finite element numerical analysis.The main conclusions are as follows:

    (1)A SIF calculation method for surface cracks in ship structures under wave loads has been proposed which avoids using 3D element in the hot spot area in PATRAN finite element model for calculating the SIFs of a surface crack with different sizes.

    (2)Dimensionless Empirical formulas for calculating SIFs of surface cracks in angular joint in the midship bottom of a container under wave-induced pressure are proposed.

    (3)The results of fatigue life prediction for angular joint in the midship bottom based on crack propagation showed that the fatigue strength did not meet the design requirement.To modify the structure size of the details is needed.

    Acknowledgements

    This work was financially supported by the National Science Foundation of China(Grant No.51279102)and project‘Study on the fatigue strength of Thick High Tensile Steel plate’financially supported by China Classification Society.The support is gratefully acknowledged.

    [1]Huang X,Jia G,Cui W,et al.Unique crack growth rate curve model for fatigue life prediction of marine steel structure[J].Journal of Ship Mechanics,2011,15(1):118-125.(in Chinese)

    [2]Fricke W,Lilienfeld-Toal A V,Paetzold H.Fatigue strength investigations of welded details of stiffened plate structures in steel ships[J].International Journal of Fatigue,2012,34(1):17-26.

    [3]Fricke W,Paetzold H.Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment[J].Marine Structures,2010,23(1):115-130.

    [4]Mao W,Li Z,Ogeman V,et al.A regression and beam theory based approach for fatigue assessment of containership structures including bending and torsion contributions[J].Marine Structures,2015,41(1):244-266.

    [5]Newman J C,Raju I S.Analysis of surface cracks in a finite plate under tension or bending loads[R].NASA TP-1579,1979.

    [6]Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joints[J].International Journal of Fatigue,2000,22(5):369-387.

    [7]BS7910.Guide to methods for assessing the acceptability of flaws in metallic structures[M].British Standards Institution,2005.

    [8]Yan X,Huang X,Cui W.Prediction of fatigue crack growth in a ship detail under wave-induced loading[J].Ocean Engineering,2016,113:246-254.

    [9]Tang S,Zhang H,Wu J,et al.Empirical formula for short-term forecast of bulk carriers and oil tanks’vertical wave loads[J].Ocean Engineering,2014,32(3):65-71.(in Chinese)

    [10]CCS.Guidelines for fatigue strength assessment of offshore engineering structures[M].China Classification Society,2014.

    [11]Paris P C,Gomez M,Anderson W.A rational analytic theory of fatigue[J].Trend Engng,1961,13:9-14.

    [12]Forman R G,Kearney V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structure[J].Sen-ito Kogyo,1993,49(3):459-464.

    [13]Huang X,Torgeir M.Improved modeling of the effect of R-ratio on crack growth rate[J].International Journal of Fatigue,2007,29(4):591-602.

    [14]Huang X,Moan T,Cui W.An engineering model of fatigue crack growth under variable amplitude loading[J].International Journal of Fatigue,2008,30(1):2-10.

    [15]Yan X,Huang X,Cui W.An engineering method to predict fatigue crack propagation life for marine structures[J].Journal of Ship Mechanics,2016,20(3):323-334.

    [16]IIW.Recommendations for fatigue design of welded joints and components[M].International Institute of Welding,2004.

    船舶折角型節(jié)點(diǎn)的疲勞裂紋擴(kuò)展計(jì)算

    孔小兵1,黃小平1,趙鵬遠(yuǎn)1,張道坤2
    (1.上海交通大學(xué) 高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海 200240;2.中國船級社研發(fā)中心,北京 100007)

    文章以船舶折角型節(jié)點(diǎn)為研究對象,運(yùn)用有限元軟件WALCS和PATRAN分別預(yù)報(bào)某船的水動力響應(yīng)和結(jié)構(gòu)熱點(diǎn)應(yīng)力響應(yīng)。為避免計(jì)算表面裂紋應(yīng)力強(qiáng)度因子時(shí)需要在PATRAN有限元模型中疲勞熱點(diǎn)區(qū)域采用體單元建模,文中提出了一種計(jì)算波浪載荷下船海結(jié)構(gòu)物三維表面裂紋應(yīng)力強(qiáng)度因子而無需在PATRAN中建立體模型的方法,并通過與廣泛認(rèn)可的經(jīng)驗(yàn)公式對比驗(yàn)證其精度。將此方法應(yīng)用于該船船舯底邊艙折角處表面裂紋應(yīng)力強(qiáng)度因子計(jì)算,計(jì)算并總結(jié)出波浪載荷下該類節(jié)點(diǎn)處表面裂紋應(yīng)力強(qiáng)度因子的無量綱計(jì)算經(jīng)驗(yàn)公式。應(yīng)用一種基于譜分析構(gòu)建結(jié)構(gòu)疲勞載荷譜的方法,結(jié)合單一曲線模型對該節(jié)點(diǎn)進(jìn)行裂紋擴(kuò)展計(jì)算。計(jì)算結(jié)果表明:該船船舯底邊艙折角疲勞壽命不滿足設(shè)計(jì)要求,建議對節(jié)點(diǎn)進(jìn)行改進(jìn)。

    波浪載荷;折角型節(jié)點(diǎn);表面裂紋;應(yīng)力強(qiáng)度因子;單一曲線模型

    U661.4

    A

    國家自然科學(xué)基金資助項(xiàng)目(51279102)和中國船級社高強(qiáng)度鋼超厚板疲勞強(qiáng)度研究項(xiàng)目

    孔小兵(1991-),男,上海交通大學(xué)碩士研究生;黃小平(1963-),男,通訊作者,上海交通大學(xué)副教授,E-mail:xphuang@sjtu.edu.cn;趙鵬遠(yuǎn)(1992-),男,上海交通大學(xué)碩士研究生;張道坤(1978-),男,工程師。

    10.3969/j.issn.1007-7294.2017.09.006

    Article ID: 1007-7294(2017)09-1114-14

    Received date:2017-05-19

    Foundation item:Supported by National Natural Science Foundation of China(Project No.51279102)

    Biography:KONG Xiao-bing(1991-),male,master student of Shanghai Jiao Tong University;HUANG Xiao-ping(1963-),male,Ph.D.,associate professor of Shanghai Jiao Tong University,corresponding author,E-mail:xphuang@sjtu.edu.cn;ZHAO Peng-yuan(1992-),male,master student of Shanghai Jiao Tong University.

    猜你喜歡
    折角上海交通大學(xué)波浪
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    波浪谷和波浪巖
    鈍角區(qū)腰線折角為零的月牙肋岔管研究
    GFRP箍筋彎折強(qiáng)度試驗(yàn)及理論研究*
    大管徑大折角熱水供熱管道設(shè)計(jì)方案
    煤氣與熱力(2021年5期)2021-07-22 09:02:02
    波浪谷隨想
    上海交通大學(xué)參加機(jī)器人比賽
    去看神奇波浪谷
    Z字型百葉窗翅片折角對汽車空調(diào)冷凝器換熱性能的影響
    波浪中并靠兩船相對運(yùn)動的短時(shí)預(yù)報(bào)
    中國航海(2014年1期)2014-05-09 07:54:24
    女的被弄到高潮叫床怎么办| 在线观看一区二区三区激情| 99re6热这里在线精品视频| 老司机影院毛片| 成人黄色视频免费在线看| 亚洲精品国产色婷婷电影| 一区二区三区免费毛片| 九九爱精品视频在线观看| 在线精品无人区一区二区三 | 一区二区三区免费毛片| 国产 一区 欧美 日韩| 亚洲色图av天堂| 国产乱人视频| 欧美少妇被猛烈插入视频| 99久国产av精品国产电影| 99热这里只有精品一区| 网址你懂的国产日韩在线| 免费高清在线观看视频在线观看| 在线观看国产h片| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 亚洲成色77777| 美女主播在线视频| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| 久热这里只有精品99| 亚洲欧美一区二区三区黑人 | 久久国内精品自在自线图片| 老师上课跳d突然被开到最大视频| 人妻制服诱惑在线中文字幕| 日本色播在线视频| 最近中文字幕高清免费大全6| 久久精品久久久久久久性| a级一级毛片免费在线观看| 亚洲av日韩在线播放| 一级毛片 在线播放| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 久久99蜜桃精品久久| 欧美少妇被猛烈插入视频| 一级av片app| 人妻 亚洲 视频| 尾随美女入室| 精品酒店卫生间| 日本黄大片高清| 成人黄色视频免费在线看| 3wmmmm亚洲av在线观看| 黄片wwwwww| av国产免费在线观看| 国产精品av视频在线免费观看| 日韩中文字幕视频在线看片 | 亚洲精品乱码久久久v下载方式| 国产视频内射| 香蕉精品网在线| 亚洲精品乱码久久久v下载方式| 国产一区有黄有色的免费视频| 午夜免费观看性视频| 小蜜桃在线观看免费完整版高清| a级一级毛片免费在线观看| 免费看光身美女| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 久久国内精品自在自线图片| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 一边亲一边摸免费视频| 99热这里只有是精品在线观看| 免费人成在线观看视频色| 大话2 男鬼变身卡| 国产男女内射视频| 欧美丝袜亚洲另类| 十八禁网站网址无遮挡 | 久久人人爽av亚洲精品天堂 | 国产成人免费观看mmmm| 久久久久网色| av在线老鸭窝| 天堂中文最新版在线下载| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美精品免费久久| 日韩电影二区| 日日啪夜夜撸| 久久99热这里只频精品6学生| 国产一级毛片在线| 亚洲中文av在线| 国内揄拍国产精品人妻在线| 日韩亚洲欧美综合| 免费人成在线观看视频色| 在线观看av片永久免费下载| 一级毛片久久久久久久久女| 亚洲图色成人| 三级国产精品欧美在线观看| 久久ye,这里只有精品| 久久人人爽人人片av| 日韩在线高清观看一区二区三区| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 97在线人人人人妻| av网站免费在线观看视频| 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 午夜免费男女啪啪视频观看| 最黄视频免费看| 卡戴珊不雅视频在线播放| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| xxx大片免费视频| 久久久久网色| 国产av一区二区精品久久 | 2021少妇久久久久久久久久久| 黄色欧美视频在线观看| 欧美日韩在线观看h| 久久97久久精品| 亚洲不卡免费看| 欧美区成人在线视频| 大码成人一级视频| 久久久久性生活片| 成人亚洲精品一区在线观看 | 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| 国产精品欧美亚洲77777| 韩国av在线不卡| 99国产精品免费福利视频| 久久精品国产自在天天线| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 男女免费视频国产| a级毛片免费高清观看在线播放| 性色av一级| 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 精华霜和精华液先用哪个| 国产成人a∨麻豆精品| 国产一区有黄有色的免费视频| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 色哟哟·www| 少妇 在线观看| 又爽又黄a免费视频| 亚洲中文av在线| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 午夜视频国产福利| 街头女战士在线观看网站| 视频中文字幕在线观看| av线在线观看网站| 免费观看av网站的网址| 我要看日韩黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 亚洲精品国产色婷婷电影| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| .国产精品久久| 777米奇影视久久| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 国产亚洲欧美精品永久| 精品99又大又爽又粗少妇毛片| 久久久久国产网址| 街头女战士在线观看网站| 成人影院久久| 一区二区三区免费毛片| 久久久久久久国产电影| 97超碰精品成人国产| 国产高清不卡午夜福利| 激情 狠狠 欧美| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 国产午夜精品久久久久久一区二区三区| 男男h啪啪无遮挡| 日韩电影二区| 精品久久久久久电影网| 三级国产精品片| 成人亚洲精品一区在线观看 | 国产深夜福利视频在线观看| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 国产高清三级在线| av国产免费在线观看| 国产精品久久久久成人av| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 午夜激情福利司机影院| 久久人妻熟女aⅴ| 国产视频首页在线观看| 久久久a久久爽久久v久久| 国产极品天堂在线| 大香蕉97超碰在线| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| a级毛色黄片| 老司机影院毛片| 男女国产视频网站| 又黄又爽又刺激的免费视频.| 亚洲精品视频女| 久久韩国三级中文字幕| 免费人成在线观看视频色| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 一个人看的www免费观看视频| 午夜激情久久久久久久| 久久久久久人妻| 久久热精品热| 欧美日韩国产mv在线观看视频 | 高清不卡的av网站| 18+在线观看网站| 久久久成人免费电影| 久久精品国产亚洲网站| 纵有疾风起免费观看全集完整版| 亚洲色图综合在线观看| 欧美一级a爱片免费观看看| 日本av免费视频播放| 春色校园在线视频观看| 国产在线免费精品| 国产综合精华液| 亚洲av成人精品一区久久| 欧美日韩在线观看h| 国内精品宾馆在线| 五月开心婷婷网| 色哟哟·www| 国产深夜福利视频在线观看| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 国产精品三级大全| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 久久久色成人| 最近中文字幕2019免费版| 国产精品精品国产色婷婷| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 亚洲精品第二区| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 国产乱人偷精品视频| 午夜福利在线在线| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 国产免费一区二区三区四区乱码| 高清视频免费观看一区二区| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 在线观看免费日韩欧美大片 | 高清不卡的av网站| 久久久久久久久久成人| 舔av片在线| 免费少妇av软件| 视频区图区小说| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 日本一二三区视频观看| 大香蕉久久网| 综合色丁香网| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 视频区图区小说| 国产精品一二三区在线看| 我的老师免费观看完整版| 久久 成人 亚洲| 欧美变态另类bdsm刘玥| 国产精品免费大片| 国产 一区 欧美 日韩| 美女主播在线视频| 国产一级毛片在线| 91aial.com中文字幕在线观看| 女性被躁到高潮视频| 亚洲av二区三区四区| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 日韩大片免费观看网站| 国产久久久一区二区三区| 免费高清在线观看视频在线观看| 少妇 在线观看| 三级国产精品欧美在线观看| 丰满少妇做爰视频| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 久久久久久伊人网av| 欧美 日韩 精品 国产| freevideosex欧美| 国产黄色视频一区二区在线观看| 国产精品一区二区性色av| 欧美日韩国产mv在线观看视频 | 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 嫩草影院入口| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| av一本久久久久| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 国产欧美日韩一区二区三区在线 | 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说 | 日韩欧美 国产精品| 91精品国产国语对白视频| 久久久久久久久久成人| 观看美女的网站| av视频免费观看在线观看| 欧美精品国产亚洲| 国产日韩欧美在线精品| 在线观看三级黄色| 成人综合一区亚洲| 各种免费的搞黄视频| 亚洲精品乱码久久久v下载方式| 亚洲熟女精品中文字幕| 超碰97精品在线观看| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 黄色配什么色好看| 久久精品久久精品一区二区三区| 免费看光身美女| 偷拍熟女少妇极品色| 蜜桃在线观看..| 国产精品免费大片| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 免费黄频网站在线观看国产| 亚州av有码| 内地一区二区视频在线| 久久99热这里只有精品18| 十分钟在线观看高清视频www | 久久国产精品男人的天堂亚洲 | 久久久欧美国产精品| 日韩中文字幕视频在线看片 | 97在线视频观看| 国产免费又黄又爽又色| 777米奇影视久久| 国产一区有黄有色的免费视频| 高清日韩中文字幕在线| 国产 一区 欧美 日韩| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 最新中文字幕久久久久| av线在线观看网站| av免费在线看不卡| 少妇精品久久久久久久| 日韩大片免费观看网站| 精品久久久噜噜| 亚洲自偷自拍三级| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 国产亚洲91精品色在线| 人妻 亚洲 视频| 多毛熟女@视频| 久久这里有精品视频免费| 又粗又硬又长又爽又黄的视频| 国产日韩欧美在线精品| 有码 亚洲区| 青春草视频在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 永久免费av网站大全| 大香蕉97超碰在线| 男的添女的下面高潮视频| 下体分泌物呈黄色| 中文字幕av成人在线电影| 国产 精品1| 91久久精品电影网| 免费在线观看成人毛片| 街头女战士在线观看网站| 免费看av在线观看网站| 日韩伦理黄色片| 国产欧美日韩一区二区三区在线 | 亚洲美女黄色视频免费看| 美女高潮的动态| 欧美日韩视频精品一区| 精品99又大又爽又粗少妇毛片| 成人国产麻豆网| 亚洲人成网站在线播| 成人国产麻豆网| 久久精品国产a三级三级三级| www.色视频.com| 国产亚洲av片在线观看秒播厂| 一本—道久久a久久精品蜜桃钙片| 又黄又爽又刺激的免费视频.| 丰满人妻一区二区三区视频av| videos熟女内射| 亚洲精品乱久久久久久| 免费人成在线观看视频色| 色哟哟·www| 人人妻人人看人人澡| 丰满迷人的少妇在线观看| 欧美+日韩+精品| 午夜免费鲁丝| 国产精品.久久久| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| av女优亚洲男人天堂| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 国产精品无大码| 18禁动态无遮挡网站| 精品国产三级普通话版| 国产精品麻豆人妻色哟哟久久| 国产成人精品婷婷| 赤兔流量卡办理| 深爱激情五月婷婷| 黄色一级大片看看| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 久久久久性生活片| 26uuu在线亚洲综合色| 亚洲精品一区蜜桃| 国产男人的电影天堂91| 赤兔流量卡办理| 国产精品女同一区二区软件| 亚洲色图av天堂| 国产在视频线精品| 日韩欧美 国产精品| 亚洲精品成人av观看孕妇| 久久99蜜桃精品久久| 免费看日本二区| 国产精品av视频在线免费观看| 观看免费一级毛片| 国国产精品蜜臀av免费| 欧美人与善性xxx| 亚洲,一卡二卡三卡| 看十八女毛片水多多多| 一级毛片我不卡| 身体一侧抽搐| 久久99热6这里只有精品| 国产一区二区在线观看日韩| av黄色大香蕉| 日韩av免费高清视频| kizo精华| 国产成人a∨麻豆精品| 肉色欧美久久久久久久蜜桃| 免费黄色在线免费观看| 看非洲黑人一级黄片| 高清在线视频一区二区三区| 亚洲内射少妇av| 亚洲国产精品999| 久久97久久精品| 最近中文字幕2019免费版| 精品一区二区三区视频在线| 亚洲欧美精品专区久久| 伊人久久国产一区二区| 色哟哟·www| 国产精品99久久久久久久久| 久久精品人妻少妇| 日韩一区二区三区影片| av免费观看日本| 99久久人妻综合| 亚洲自偷自拍三级| 亚洲国产精品999| 久久韩国三级中文字幕| 高清黄色对白视频在线免费看 | 国产精品国产av在线观看| 久久99热这里只频精品6学生| 夫妻性生交免费视频一级片| 成年人午夜在线观看视频| 只有这里有精品99| 国产在线一区二区三区精| 久久人人爽人人爽人人片va| 麻豆成人av视频| 好男人视频免费观看在线| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| 免费播放大片免费观看视频在线观看| av在线老鸭窝| 99九九线精品视频在线观看视频| 老司机影院毛片| 国产人妻一区二区三区在| 亚洲精品,欧美精品| 欧美高清性xxxxhd video| 各种免费的搞黄视频| 国产又色又爽无遮挡免| 午夜福利视频精品| 欧美精品一区二区大全| 极品教师在线视频| 一本—道久久a久久精品蜜桃钙片| 赤兔流量卡办理| 亚洲aⅴ乱码一区二区在线播放| 天堂中文最新版在线下载| 国产精品国产三级国产专区5o| 少妇被粗大猛烈的视频| 大又大粗又爽又黄少妇毛片口| 深爱激情五月婷婷| 精品国产露脸久久av麻豆| 久久久久国产精品人妻一区二区| 国内揄拍国产精品人妻在线| 久久婷婷青草| 日日摸夜夜添夜夜爱| 三级国产精品欧美在线观看| 亚洲精品中文字幕在线视频 | 噜噜噜噜噜久久久久久91| 欧美激情极品国产一区二区三区 | 中文欧美无线码| av在线app专区| 国产亚洲午夜精品一区二区久久| 国产一区二区三区综合在线观看 | 久久国产乱子免费精品| 99热这里只有是精品50| 人人妻人人添人人爽欧美一区卜 | av卡一久久| 成年美女黄网站色视频大全免费 | 国产精品久久久久久精品电影小说 | 老司机影院成人| 日本与韩国留学比较| 亚洲国产精品国产精品| 搡老乐熟女国产| 国产黄片美女视频| 最近的中文字幕免费完整| 成人国产麻豆网| 纯流量卡能插随身wifi吗| xxx大片免费视频| 内射极品少妇av片p| 一本久久精品| 街头女战士在线观看网站| 观看免费一级毛片| 综合色丁香网| 亚洲av日韩在线播放| 国产一级毛片在线| 国产亚洲91精品色在线| 黄色配什么色好看| 乱系列少妇在线播放| 成人国产麻豆网| 国产av一区二区精品久久 | 一个人看视频在线观看www免费| 久久国内精品自在自线图片| 欧美日韩视频精品一区| 久久国产精品男人的天堂亚洲 | 三级国产精品欧美在线观看| 特大巨黑吊av在线直播| 免费久久久久久久精品成人欧美视频 | av国产免费在线观看| 欧美97在线视频| 亚洲欧美日韩卡通动漫| 国产永久视频网站| 久久久久久久久久久丰满| 噜噜噜噜噜久久久久久91| 国产av精品麻豆| 国产精品一二三区在线看| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| 成年人午夜在线观看视频| 男女下面进入的视频免费午夜| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 国内少妇人妻偷人精品xxx网站| 一级av片app| 色吧在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品国产av成人精品| 国产 一区精品| 日韩电影二区| 99久久综合免费| 免费高清在线观看视频在线观看| 国产色爽女视频免费观看| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版| 内地一区二区视频在线| 久久久久人妻精品一区果冻| h日本视频在线播放| 国产精品一区www在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美成人精品一区二区| 大香蕉97超碰在线| 欧美bdsm另类| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 欧美日韩精品成人综合77777| 人妻 亚洲 视频| 能在线免费看毛片的网站| 在线观看免费日韩欧美大片 | av在线app专区| 欧美日韩视频高清一区二区三区二| 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久v下载方式| 成人18禁高潮啪啪吃奶动态图 | 国产欧美日韩精品一区二区| 国产免费一区二区三区四区乱码| av播播在线观看一区| 男女无遮挡免费网站观看| 亚洲婷婷狠狠爱综合网| 国产午夜精品久久久久久一区二区三区| 欧美97在线视频| 美女内射精品一级片tv| 日本av免费视频播放| 久久这里有精品视频免费| 一级毛片我不卡| 欧美日韩精品成人综合77777| 亚洲人成网站在线观看播放| 一区二区三区乱码不卡18| 亚洲精品日韩av片在线观看| 成人午夜精彩视频在线观看| 最近手机中文字幕大全| 国产一区二区三区av在线| 午夜免费观看性视频| 亚洲综合精品二区| av免费观看日本| 午夜免费男女啪啪视频观看| 美女cb高潮喷水在线观看| 久久久久精品久久久久真实原创| 日韩成人伦理影院| 热99国产精品久久久久久7|