• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    2017-10-11 05:33:29LIHaoWANGFangCUIWeichengChinaShipScientificResearchCenterWuxi408ChinaHadalScienceandTechnologyResearchCenterCollegeofMarineScienceShanghaiOceanUniversityShanghaiEngineeringResearchCenterofHadalScienceandTechnologyShang
    船舶力學(xué) 2017年9期
    關(guān)鍵詞:海深海洋大學(xué)耐壓

    LI Hao,WANG Fang,CUI Wei-cheng(.China Ship Scientific Research Center,Wuxi 408,China;.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 0306,China)

    Structural Design Exploration on Double Intersecting Spheres Manned Pressure Hull of Full Ocean Depth

    LI Hao1,WANG Fang2,CUI Wei-cheng2
    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Hadal Science and Technology Research Center,College of Marine Science,Shanghai Ocean University(Shanghai Engineering Research Center of Hadal Science and Technology),Shanghai 201306,China)

    Abstract:Titanium alloy spherical pressure hull is widely used for deep-sea manned submersible.However,due to constraint of strength of titanium alloy,if full-ocean-depth submersible is designed to have enough volume to take three occupants and Ti-6Al-4V ELI is used,pressure hull thickness will exceed current manufactural ability of most countries.To solve this problem and explore possible form of full-ocean-depth manned pressure hull,based on finite element analysis(by ANSYS),a novel pressure hull structure of double intersecting spheres is proposed,and an optimization for this structure is carried out.Strength under operating pressure and ultimate strength are used as design constraints to ensure structural strength of the whole structure.Also,a comparison between pressure hull forms of the double intersecting spheres and traditional single sphere is presented.

    Key words:deep manned submersible;pressure hull;titanium alloy;Ti-6Al-4V ELI;full ocean depth;double intersecting spheres

    0 Introduction

    Deep-sea manned submersible is the core equipment of ocean scientific research at deepsea space.Significant advantages of deep-sea manned submersibles comparing to unmanned submersibles are strong operational abilities at deep seabed and allowing researchers to be personally on the scene.Up to now several 4 500-7 000 m level deep-sea submersibles have already been used to carry out routine scientific research.Based on achievements of building 4 500-7 000 m level manned submersibles,more and more researchers pay attention to fullocean-depth manned submersible(FODMS)which is a logically derivative of 4 500-7 000 m level submersible,and the idea of‘Third-generation Full-ocean-depth Manned Submersible(third-generation FODMS)’is purposed[1].The most significant characteristics of the thirdgeneration FODMS which distinguish it from its previous counterparts include its strong operational ability and its capability to dive down and float up with a vertical speed of at least 3 knots.The first-generation FODMSs have no or very weak scientific operational ability and move slowly in ocean while the second-generation FODMSs dive down and float up with a vertical speed of less than 2 knots.

    These new characteristics,or called requirements,for FODMS bring new challenges to submersible designers.For design of manned pressure hull,it is required that manned pressure hull should have enough volume to contain 2-3 occupants to ensure operational ability of submersible and be strong enough to resist water pressure at full-ocean-depth seabed.It is also important to balance hull’s size and hydrodynamic performance of submersible due to high requirement for diving speed.To solve these new challenges,some organizations came up with novel ideas[2-4]on design of manned pressure hull,for example,full glass pressure hull,half glass-half titanium alloy pressure hull,carbon fiber pressure hull,and so on.

    Double intersecting spheres manned pressure hull(DSMPH)is also a promising design form of interests.Compared with single spherical hull and cylindrical hull,which are widely used on current manned submersibles,DSMPH has some important advantages.Firstly,it combines small volume density,the advantage of sphere hull,with high space utilization rate,the advantage of cylinder hull.Secondly,compared with single spherical hull of the same volume,DSMPH’s each spherical hull has smaller radial size and smaller hull thickness which makes manufacture easier.Thirdly,compared with single spherical hull of the same volume,DSMPH has a smaller length-diameter ratio,which is good for hydrodynamic performance and general arrangement of submersible.Fourthly,it is easy to insulate crew from dangerous equipment in DSMPH.

    Due to the advantages of DSMPH,some researchers have investigated possible structural forms of DSMPH.Liang et al[5]investigated a pressure hull optimum design of 3 000 m multiple intersecting spheres.This hull consisted of shells and shell stiffeners.Stresses,displacement,and ultimate strength of the structure were all calculated by analytical formulas in their research.Jen and Lai[6]further studied the transient response of this pressure hull subjected to underwater explosion in shallow water.Based on finite element analysis,Wu[7]presented a pressure hull design of three intersecting spheres.Formulas were proposed for calculating maximal stress and ultimate strength.Characteristic of Wu’s design was that there were not any stiffeners on both spherical hull and connecting part,and the whole hull consisted of smooth arc shell of uniform thickness.

    In this paper,a novel structural design of DSMPH with titanium alloy Ti-6Al-4V ELI is proposed.Referring to Refs.[8-9],the strength and ultimate strength of pressure hull are checked by finite element analysis(using ANSYS).Subjected to constraints of strength and ultimate strength,with geometry parameters of pressure hull as variables and mass of structure as optimization objective,optimization of DSMPH is carried out(using Isight).Basic properties of optimized DSMPH are compared with those of a single sphere pressure hull of the same effectivevolume at the end.

    1 Design of DSMPH and strength analysis standard

    1.1 Pressure hull design of titanium alloy double intersecting spheres

    A standard design of 7 000 m-level manned pressure hull with a hatch is presented in Fig.1.This design form has been studied by many researchers,came into use for years and was proved reliable.The merit of this design is that if geometry parameters of transition part between hatch and main spherical hull are well designed,ultimate strength of main sphere will not be obviously damaged by the existence of hatch[10].

    Fig.1 Design of 7 000 m-level deep-sea manned pressure hull with a hatch

    Based on the design in Fig.1,a design of titanium alloy DSMPH consisting of two spherical hulls and connecting part is presented in Fig.2.For spherical hulls,geometry parameters are inner radiuses R1,R2and thickness t1,t2.For connecting part,geometry parameters include those representing the sizes of connecting part(length L,inner radius R,thickness T,θ1,θ2)and those representing the transition part between connecting part and spherical hulls(α1,α2,β1,β2).

    Fig.2 (a)Geometry design of DSMPH

    Fig.2 (b)Geometry parameters of connecting part

    1.2 Basic input parameters

    The maximum operating pressure:

    The maximum operating pressure for FODMS at 11 000 m-depth seabed is calculated by

    P= ρmgh=1 052×9.8×11 000=113.4 MPa

    where ρmis seawater density,kg/m3.

    Material:

    The material used in this investigation is Ti-6AL-4V ELI(See Tab.1).σyis the yielding stress,σuis the ultimate tensile stress.E is Young’s modulus.

    Tab.1 Material properties of Ti-6Al-4V ELI

    1.3 Strength analysis standard

    Referring to Rules for Building and Classing of Diving System and Submersible of China Classification Society(CCS)[8]and Ref.[9],herein strength and ultimate strength are used as strength analysis standard to check structural design of DSMPH.It is required as follows.

    Requirement on ultimate strength:

    Re.1 The ultimate strength of the whole structure should be greater than 1.5×P,i.e.,the safety factor for the ultimate strength is 1.5,where P is maximum operating pressure.

    Requirements on strength,or called stress limitations:

    Re.2 The average shell membrane stress at maximum operating pressure will be limited to 2/3 of the yield strength of material.

    Re.3 The highest combined value of average shell membrane stress and bending stress(excluding effects of local stress concentrations)at maximum operating pressure will be limited to 3/4 of the yield strength of material.

    Re.4 The maximum compressive peak stress at any point of the hull,including effects of local stress concentrations,will be limited to 4/3 of the yield strength of material and will not exceed the ultimate strength of material.The maximum tensile peak stress at any point of the hull,including effects of local stress concentrations,will be limited to the yield strength of material.

    Re.5 For cylindrical part of connecting part,average circumferential stress at midpoint of cylinder should be less than 0.85 of yield strength of material.

    Re.6 For cylindrical part of connecting part,average axial stress at endpoints of cylinder should be less than 1.15 of yield strength of material.

    Res.1-6 form the complete strength standard,or called strength constraints,for design of DSMPH.Similar standard is also used to check strength of a single sphere pressure hull in Chap.3 of this paper.

    1.4 Determination of some parameters

    Considering practical need of containing 2-3 occupants,the radii of spheres are set to be R1=800 mm and R2=650 mm.The bigger hull can contain two occupants and the smaller one can hold one occupant.

    Since additional parts like penetration holes and hatches will break the intactness of spherical hull and more or less damage the strength of spherical hull,the thickness of each spherical hull should be greater than minimal thickness of its intact counterpart.Tab.2 shows the minimal thickness of intact spherical hulls under constraint of just ultimate strength(Re.1),which is done using ANSYS.Thus,t1≥84 mm,t2≥68 mm.

    Tab.2 Minimal thickness of intact spherical hull under constraint of ultimate strength

    Inner radius of connecting part R is another important parameter,which decides to what extent the intactness of original intact spherical hull will be damaged.Based on 10 trial optimizations(similar to the optimization in Chap.2),it is found that optimization algorithm always prefer the smallest R in its variation range(for example 270-360 mm),which means the greater the value of R is,the heavier the structure is.So,it is reasonable to choose the smallest value of R,which also make it easy for occupants to go through the connecting part.Herein,R is set to be 285 mm.

    2 Optimization

    The mass of manned pressure hull makes up more than 1/3 of total mass of submersible.Decreasing mass of manned pressure hull has important contribution to realize the two core characteristics of the third-generation FODMS mentioned in Chap.0.Thus,reducing mass is a main goal of DSMPH design.

    In Chap.2,a design of DSMPH and a strength analysis standard are presented.However it is not easy to manually find a good set of parameters which satisfies strength analysis standard and is also material-saving.So,an optimization problem needs to be solved to find a goodset of parameters with which the DSMPH has small mass and strong structural strength.This optimization problem is summarized as follows.

    Objective:Minimizing mass

    Constraints:Stress distributions at maximum operating pressure(Res.2-6)

    Variables and range:Listed in Tab.3.

    Tab.3 Optimization variables and upper and lower bound

    It should be noted that Re.1 is used to calculate the lower bound of the sphere thickness t1and t2and then it is excluded from the constraints of this optimization problem.This could greatly reduce computational burden because calculating ultimate strength is a nonlinear problem and is time-consuming which costs about 50 minutes for one case.

    However,Re.1 is still a very important requirement for structural design.The way to make Re.1 satisfied is the following.For ultimate strength of each spherical hull,previous experience reveals if each originally intact spherical hull satisfied Re.1,existence of connecting part will not obviously damage ultimate strength of spherical hull as long as the whole structure satisfy strength requirement,that is,Res.2-6.For ultimate strength of connecting part,it is observed that size of connecting part is much smaller than those of two spherical hulls,which means the stability of it should be better than that of spherical hulls.As long as Res.2-6 are satisfied for connecting part,which to a large extent ensures the ultimate strength of connecting part,it is more likely that final collapse will first occur on spherical hulls.To double check ultimate strength of final optimized design,ultimate strength of the whole structure of optimized design is calculated(see Fig.3,Tab.5-b).

    The minimum values of variation range of t1,t2in Tab.3 are greater than their counterparts in Tab.2.It is because that trial calculation reveals that,for DSMPH and spherical models of this paper,strength requirement(Res.2-6)is stricter than ultimate strength requirement(Re.1).Thus,in order to satisfy Res.2-6,t1,t2are set to be greater than 84 mm and 68 mm correspondingly.

    In this optimization problem,relationship between the variables is complicated.And optimization space is discontinuous,because for some combination of variables,it fails to set up geometry model.To handle the complication of this optimization problem,Multi-Islands Genetic Algorithm(MIGA)is used,which has a strong ability to explore the whole optimization space and thus can prevent the calculation from dropping into local optimal solution too early.A widely accepted optimization software,Isight,is chosen to control the whole procedure(see Fig.3).

    The optimization parameters of MIGA are shown in Tab.4.MIGA explores 14002 cases and the history of optimization objective is illustrated in Fig.4.The optimal point is obtained at the 12900th run(marked by a star in Fig.4).

    Tab.4 Optimization parameters for Multi-Island Genetic Algorithm

    Fig.4 History of structural mass(kg).Star is the optimized point

    3 Result and discussion

    The design of final optimized point is shown in Fig.5 and Tab.5.It is observed from optimization history(not shown in this paper)that the core constraint which makes most unfeasible cases fail is Re.4.And the area with maximal stress is inner surface of connecting part.Some calculation details can be referred to Ref.[11].It means that a main work of designingDSMPH done by Isight is to configure a good set of geometry parameters to make the stress level of inner surface of connecting part small enough.

    Fig.5 Optimized DSMPH

    Tab.5 -a Optimized DSMPH

    Tab.5 -b Optimized DSMPH and optimized spherical hull with the same effective volume

    Optimized DSMPH provides 3.331 9 m3effective volume.To further study DSMPH,optimized DSMPH is compared with an optimized spherical hull(see Tab.5-b),which has the same effective volume.The thickness of spherical hull is determined by the same optimization procedure shown in Fig.3,with constraints Res.1-6,optimization objective-structural mass.From Tab.5,the optimized DSMPH is heavier than the optimized single spherical hull by 1.8%.In this case,adopting DSMPH can reduce radial size of pressure hull by 13.6%.The hull thickness of DSMPH is thinner than that of single spherical hull by 14 mm.All of these indicate that DSMPH can significantly benefit hydrodynamic performance and manufacture of submersible,and it increases mass by just 1.8%.

    Comparing Tab.5 with Tab.2,it is observed that optimized design subjected to the strength requirements,that is,Res.2-6,can satisfy the requirement of ultimate strength,that is,Re.6,with a significant allowance.The same thing can also be found by checking optimization historyof variables(not shown in this paper)in the case of DSMPH.It means that it is a reasonable way to design and optimize full-ocean-depth pressure hull by strength requirements,and finally check the optimized design by ultimate strength.In this way,nonlinear problem needs just be solved once,and designers can focus on linear analyses which are much easier.

    Acknowledgment

    Professor Hu Yong and Doctor Pan Binbin both from Shanghai Ocean University,and Mr.Yu Jun,from China Ship Scientific Research Center,provided useful suggestions and help.We thank all of them.

    [1]Li Z W.Research on part of key technologies for the third generation of manned submersibles with full ocean depth[D].M.Sc thesis,China Ship Research and Development Academy,Beijing,China,2013.(in Chinese)

    [2]Jamieson A J,Fujii T,Mayor D J,Solan M,Priede I G.Hadal trenches:The ecology of the deepest places on Earth[J].Trends in Ecology&Evolution,2010,25(3):190-197.

    [3]Hawkes G.The old arguments of manned versus unmanned systems are about to become irrelevant:New technologies are game changers[J].Marine Technology Society Journal,2009,43(5):164-168.

    [4]Taylor L,Lawson T.Project deepsearch:An innovative solution for accessing the oceans[J].Marine Technology Society Journal,2009,43(5):169-178.

    [5]Liang C C,Shiah S W,Jen C Y,Chen H W.Optimum design of multiple intersecting spheres deep-submerged pressure hull[J].Ocean Engineering,2004,31:447-457.

    [6]Jen C Y,Lai W H.Transient response of multiple intersecting spheres of deep-submerged pressure hull subjected to underwater explosion[J].Theoretical and Applied Fracture Mechanics,2007,48:112-126.

    [7]Wu L.The response analysis and optimum design of great deep-submerged pressure hulls[D].Huazhong University of Science and Technology,Wuhan,China,2007.(in Chinese)

    [8]Rules for the classification and construction of diving systems and submersibles[S].China Classification Society(CCS),Beijing,China,2013.(in Chinese)

    [9]Pan B B,Cui W C.Structural optimization for a spherical pressure hull of a deep manned submersible based on an appropriate design standard[J].IEEE Journal of Oceanic Engineering,2012,37(3):564-571.

    [10]Lu B.Ultimate strength analysis of pressure spherical hull in deep-sea manned submersibles[D].Shanghai Jiao Tong U-niversity,Shanghai,China,2004.(in Chinese)

    [11]Li H.Research on resistance performance and structure of manned pressure hull of the third-generation full-oceandepth manned submersible[D].M.Sc Thesis,China Ship Research and Development Academy,Beijing,China,2014.(in Chinese)

    全海深雙球連接耐壓艙的結(jié)構(gòu)設(shè)計探索

    李 浩1,王 芳2,崔維成2
    (1.中國船舶科學(xué)研究中心,江蘇 無錫214082;2.上海海洋大學(xué) 深淵科學(xué)技術(shù)研究中心(上海深淵科學(xué)工程技術(shù)研究中心),上海201306)

    鈦合金耐壓球殼被廣泛地應(yīng)用于大深度載人潛水器。但是,由于受到材料強(qiáng)度的限制,若采用成熟的Ti-6Al-4VELI來設(shè)計3人型的全海深載人艙,其壁厚將超出很多國家的現(xiàn)有制造能力。為了解決這一矛盾,該文提出了一種新的雙球連接的方案,并以中國船級社最新的強(qiáng)度標(biāo)準(zhǔn)作為優(yōu)化約束條件,用有限元分析法對這種結(jié)構(gòu)形式進(jìn)行了優(yōu)化設(shè)計。最后,對雙球結(jié)構(gòu)方案與傳統(tǒng)單球方案作了比較。

    載人深潛器;載人艙;鈦合金;Ti-6Al-4V ELI;全海深;雙球連接殼

    U661.4

    A

    李 浩(1988-),男,中國船舶科學(xué)研究中心碩士研究生;王 芳(1979-),女,博士,上海海洋大學(xué)副研究員;崔維成(1963-),男,博士,上海海洋大學(xué)教授,博士生導(dǎo)師。

    10.3969/j.issn.1007-7294.2017.09.010

    Article ID: 1007-7294(2017)09-1160-10

    Received date:2017-03-03

    Foundation item:Supported by the State Key Program of National Natural Science of China(Project No.51439004);The general Program of National Natural Science Foundation of China(Project No.51679133);The scientific innovation program project by the Shanghai Committee of Science and Technology(Project No.15DZ1207000)

    Biography:LI Hao(1988-),male,master student of China Ship Scientific Research Center,E-mail:lihaocq@umich.edu;WANG Fang(1979-),female,Ph.D.,associate professor of Shanghai Ocean University;CUI Wei-cheng(1963-),male,Ph.D.professor/tutor of Shanghai Ocean University.

    猜你喜歡
    海深海洋大學(xué)耐壓
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    全海深A(yù)RV水下LED調(diào)光驅(qū)動電路設(shè)計
    基于STM32全海深A(yù)RV監(jiān)控系統(tǒng)設(shè)計
    基于北斗定位與通信的全海深A(yù)RV回收控制系統(tǒng)設(shè)計
    Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis*
    国产高清不卡午夜福利| www.自偷自拍.com| 一边亲一边摸免费视频| 男女之事视频高清在线观看 | 哪个播放器可以免费观看大片| 日韩视频在线欧美| 一级a爱视频在线免费观看| 国产片内射在线| 在线观看免费日韩欧美大片| 亚洲,欧美,日韩| 老熟女久久久| 美女国产高潮福利片在线看| 精品少妇久久久久久888优播| 国产精品秋霞免费鲁丝片| 免费高清在线观看日韩| 精品一品国产午夜福利视频| 热re99久久精品国产66热6| 日韩免费高清中文字幕av| √禁漫天堂资源中文www| 中文字幕人妻熟女乱码| 男女之事视频高清在线观看 | 色婷婷久久久亚洲欧美| 日本爱情动作片www.在线观看| 黑人欧美特级aaaaaa片| 国产精品一区二区在线不卡| 精品国产一区二区久久| 两性夫妻黄色片| 亚洲第一区二区三区不卡| 91精品三级在线观看| 成人午夜精彩视频在线观看| 伊人久久大香线蕉亚洲五| 婷婷色av中文字幕| 国产黄色视频一区二区在线观看| 精品久久久精品久久久| 两个人看的免费小视频| 精品一区二区三区四区五区乱码 | 日韩一区二区三区影片| 毛片一级片免费看久久久久| 国产精品一区二区在线不卡| 在线观看三级黄色| 亚洲精品自拍成人| 日韩熟女老妇一区二区性免费视频| 男女床上黄色一级片免费看| 嫩草影视91久久| 丰满饥渴人妻一区二区三| 日韩欧美精品免费久久| 日韩成人av中文字幕在线观看| 国产精品偷伦视频观看了| 亚洲在久久综合| 中文字幕制服av| 国产亚洲av高清不卡| 亚洲四区av| 国产 精品1| 啦啦啦啦在线视频资源| 国产精品久久久久成人av| 欧美日韩视频高清一区二区三区二| 久久影院123| 成人影院久久| 一级片'在线观看视频| 久久久久视频综合| 最新在线观看一区二区三区 | 女性生殖器流出的白浆| 十八禁网站网址无遮挡| 午夜免费男女啪啪视频观看| 熟妇人妻不卡中文字幕| 国产黄色视频一区二区在线观看| 国产免费视频播放在线视频| 美女扒开内裤让男人捅视频| 日韩不卡一区二区三区视频在线| 亚洲精品久久久久久婷婷小说| 国产高清不卡午夜福利| 18禁国产床啪视频网站| 丁香六月天网| 欧美 日韩 精品 国产| 狂野欧美激情性bbbbbb| 男男h啪啪无遮挡| 国产亚洲最大av| 国产男人的电影天堂91| 成人国产麻豆网| 日韩大片免费观看网站| xxx大片免费视频| 2018国产大陆天天弄谢| 精品国产乱码久久久久久小说| av网站免费在线观看视频| 看十八女毛片水多多多| 亚洲第一青青草原| 久久国产精品男人的天堂亚洲| 国产在线一区二区三区精| 韩国高清视频一区二区三区| 九色亚洲精品在线播放| 亚洲欧美一区二区三区久久| 精品一区二区三区av网在线观看 | 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠躁躁| 欧美成人精品欧美一级黄| 亚洲五月色婷婷综合| 女性被躁到高潮视频| 好男人视频免费观看在线| 天堂8中文在线网| 美女扒开内裤让男人捅视频| 欧美日韩福利视频一区二区| 视频在线观看一区二区三区| 日韩人妻精品一区2区三区| 一级毛片黄色毛片免费观看视频| 国产成人精品在线电影| 黄色视频不卡| 亚洲视频免费观看视频| 精品一区二区三卡| 亚洲国产精品国产精品| 亚洲精品国产av蜜桃| 国产精品久久久久久久久免| 久久久久国产精品人妻一区二区| 2021少妇久久久久久久久久久| 亚洲精品国产av成人精品| 嫩草影院入口| 日日摸夜夜添夜夜爱| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲国产一区二区在线观看 | 搡老岳熟女国产| 高清在线视频一区二区三区| 纯流量卡能插随身wifi吗| 侵犯人妻中文字幕一二三四区| 欧美成人午夜精品| 国产成人欧美| 久久人人97超碰香蕉20202| 亚洲av成人不卡在线观看播放网 | av国产精品久久久久影院| 久久人人爽av亚洲精品天堂| 成人18禁高潮啪啪吃奶动态图| 国产日韩一区二区三区精品不卡| 国产日韩一区二区三区精品不卡| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 成人18禁高潮啪啪吃奶动态图| 99热网站在线观看| av又黄又爽大尺度在线免费看| 香蕉国产在线看| 色94色欧美一区二区| 少妇被粗大的猛进出69影院| 免费黄网站久久成人精品| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 精品国产一区二区三区四区第35| 久久毛片免费看一区二区三区| 蜜桃在线观看..| 亚洲第一青青草原| 欧美人与善性xxx| 在线精品无人区一区二区三| 国产又色又爽无遮挡免| 日韩电影二区| 美女午夜性视频免费| 日本91视频免费播放| 在线观看一区二区三区激情| 赤兔流量卡办理| 亚洲,欧美,日韩| 美女高潮到喷水免费观看| av视频免费观看在线观看| 性高湖久久久久久久久免费观看| 夫妻性生交免费视频一级片| 你懂的网址亚洲精品在线观看| 亚洲av国产av综合av卡| 波多野结衣一区麻豆| 可以免费在线观看a视频的电影网站 | 777米奇影视久久| 欧美少妇被猛烈插入视频| 黑人欧美特级aaaaaa片| 青青草视频在线视频观看| 嫩草影院入口| 五月天丁香电影| 成年av动漫网址| 精品国产一区二区三区四区第35| 精品人妻一区二区三区麻豆| 国产一区有黄有色的免费视频| 国产野战对白在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久热这里只有精品99| 国产在线视频一区二区| 亚洲av日韩在线播放| 两性夫妻黄色片| 色婷婷av一区二区三区视频| av又黄又爽大尺度在线免费看| av国产精品久久久久影院| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品古装| 男人舔女人的私密视频| 国产亚洲av片在线观看秒播厂| 欧美av亚洲av综合av国产av | 制服诱惑二区| 各种免费的搞黄视频| 青青草视频在线视频观看| 老司机在亚洲福利影院| 亚洲专区中文字幕在线 | 免费在线观看黄色视频的| 男女国产视频网站| 久久久久网色| 国产一级毛片在线| 午夜福利视频在线观看免费| 无遮挡黄片免费观看| 成年动漫av网址| 深夜精品福利| 天天添夜夜摸| 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠久久av| 欧美日韩成人在线一区二区| 波多野结衣一区麻豆| 亚洲欧美成人综合另类久久久| 国产一区二区在线观看av| 一本色道久久久久久精品综合| 成人三级做爰电影| 国产视频首页在线观看| 观看美女的网站| 丝袜美足系列| 在线 av 中文字幕| 亚洲精品成人av观看孕妇| 美女视频免费永久观看网站| 久久久久久久大尺度免费视频| 韩国精品一区二区三区| 国产日韩欧美亚洲二区| 午夜影院在线不卡| 亚洲第一青青草原| 婷婷色av中文字幕| 国产无遮挡羞羞视频在线观看| 婷婷色综合大香蕉| 色吧在线观看| 亚洲精品久久午夜乱码| av电影中文网址| a 毛片基地| 国产亚洲av片在线观看秒播厂| 男女床上黄色一级片免费看| 狠狠婷婷综合久久久久久88av| 超色免费av| 久久精品久久久久久噜噜老黄| av又黄又爽大尺度在线免费看| 制服人妻中文乱码| 午夜福利影视在线免费观看| 在线免费观看不下载黄p国产| 国产爽快片一区二区三区| 一级爰片在线观看| 亚洲视频免费观看视频| 欧美日韩综合久久久久久| 中文天堂在线官网| 精品一区二区免费观看| 欧美精品av麻豆av| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 巨乳人妻的诱惑在线观看| 91精品三级在线观看| 欧美日韩视频精品一区| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 晚上一个人看的免费电影| 美女午夜性视频免费| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区 | 大话2 男鬼变身卡| 观看av在线不卡| av网站在线播放免费| 亚洲,一卡二卡三卡| 欧美国产精品va在线观看不卡| 久久久久久免费高清国产稀缺| 精品人妻一区二区三区麻豆| 考比视频在线观看| www.av在线官网国产| 国产成人精品无人区| 别揉我奶头~嗯~啊~动态视频 | 三上悠亚av全集在线观看| 欧美97在线视频| 精品人妻熟女毛片av久久网站| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 一级毛片我不卡| 欧美av亚洲av综合av国产av | 欧美另类一区| 国精品久久久久久国模美| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网 | 亚洲精品乱久久久久久| 久久97久久精品| 麻豆乱淫一区二区| 日韩欧美一区视频在线观看| 午夜福利免费观看在线| 国产精品成人在线| 免费久久久久久久精品成人欧美视频| 精品卡一卡二卡四卡免费| 国产精品久久久久久精品古装| 考比视频在线观看| 亚洲欧美一区二区三区黑人| 久久久久精品久久久久真实原创| 男女高潮啪啪啪动态图| 咕卡用的链子| 欧美亚洲日本最大视频资源| 欧美av亚洲av综合av国产av | 一边亲一边摸免费视频| 亚洲色图综合在线观看| 最近2019中文字幕mv第一页| 18禁观看日本| 人妻 亚洲 视频| 丝袜美腿诱惑在线| 69精品国产乱码久久久| 欧美国产精品一级二级三级| 国语对白做爰xxxⅹ性视频网站| 另类精品久久| 国产精品香港三级国产av潘金莲 | 国产伦理片在线播放av一区| 日韩av不卡免费在线播放| 久久久国产一区二区| 秋霞在线观看毛片| kizo精华| 99香蕉大伊视频| 一二三四中文在线观看免费高清| 男人舔女人的私密视频| 成年人免费黄色播放视频| 观看av在线不卡| 天美传媒精品一区二区| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 国产成人啪精品午夜网站| 日韩免费高清中文字幕av| 国产一区有黄有色的免费视频| 欧美最新免费一区二区三区| 午夜老司机福利片| 亚洲国产欧美网| 欧美 日韩 精品 国产| 亚洲国产精品999| 免费高清在线观看视频在线观看| 黑人欧美特级aaaaaa片| 亚洲人成网站在线观看播放| 美女大奶头黄色视频| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 自线自在国产av| 国产一区二区激情短视频 | 我要看黄色一级片免费的| 天堂俺去俺来也www色官网| 亚洲第一青青草原| 伊人亚洲综合成人网| 国产男女内射视频| 欧美精品亚洲一区二区| 久久精品aⅴ一区二区三区四区| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 亚洲综合精品二区| 国产日韩欧美亚洲二区| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 看免费成人av毛片| 成人黄色视频免费在线看| 一本色道久久久久久精品综合| 丰满乱子伦码专区| 一级a爱视频在线免费观看| 在线观看一区二区三区激情| 啦啦啦 在线观看视频| 欧美激情高清一区二区三区 | 亚洲欧洲精品一区二区精品久久久 | 久久ye,这里只有精品| 秋霞在线观看毛片| 亚洲,欧美精品.| 久久性视频一级片| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| 午夜福利在线免费观看网站| 99热网站在线观看| 青青草视频在线视频观看| 美女视频免费永久观看网站| 国产成人精品福利久久| 又大又黄又爽视频免费| 亚洲国产欧美网| 日本91视频免费播放| 一级毛片黄色毛片免费观看视频| 一本—道久久a久久精品蜜桃钙片| 一区二区三区乱码不卡18| 国产亚洲一区二区精品| 久热这里只有精品99| 69精品国产乱码久久久| 久久 成人 亚洲| 亚洲精品国产av蜜桃| 尾随美女入室| 少妇人妻 视频| 国产精品久久久久久精品电影小说| 午夜福利,免费看| 各种免费的搞黄视频| 午夜激情av网站| 亚洲欧美成人精品一区二区| 亚洲美女黄色视频免费看| 人人澡人人妻人| www.自偷自拍.com| 亚洲av电影在线进入| 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 日韩电影二区| 久久性视频一级片| 亚洲精品av麻豆狂野| 久久久精品区二区三区| 欧美激情极品国产一区二区三区| bbb黄色大片| 日韩免费高清中文字幕av| 一级爰片在线观看| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线 | 国产国语露脸激情在线看| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| av网站免费在线观看视频| 国产精品一区二区在线不卡| 999久久久国产精品视频| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 精品国产国语对白av| 秋霞伦理黄片| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 人人妻人人添人人爽欧美一区卜| 天天躁夜夜躁狠狠躁躁| 看十八女毛片水多多多| 成人国语在线视频| 黄色视频在线播放观看不卡| 91精品三级在线观看| 国产成人欧美在线观看 | 十八禁网站网址无遮挡| 日本一区二区免费在线视频| 国产在视频线精品| 久久婷婷青草| 制服诱惑二区| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 超色免费av| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| av线在线观看网站| 国产女主播在线喷水免费视频网站| 日韩精品有码人妻一区| 亚洲免费av在线视频| 97人妻天天添夜夜摸| 久久鲁丝午夜福利片| 18禁裸乳无遮挡动漫免费视频| 99热全是精品| 亚洲欧美精品自产自拍| av在线播放精品| 久久国产精品男人的天堂亚洲| 国产一区二区三区av在线| 亚洲一区中文字幕在线| 久久久久久久久久久免费av| 久久久久精品国产欧美久久久 | 亚洲av在线观看美女高潮| 亚洲七黄色美女视频| 国产激情久久老熟女| a级毛片黄视频| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡动漫免费视频| 最近2019中文字幕mv第一页| 欧美日本中文国产一区发布| 精品久久久久久电影网| 国产片特级美女逼逼视频| 男女床上黄色一级片免费看| 操美女的视频在线观看| 亚洲欧美中文字幕日韩二区| 91精品三级在线观看| 日韩大片免费观看网站| 一级黄片播放器| 国产欧美亚洲国产| 国产男人的电影天堂91| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 考比视频在线观看| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 国产免费现黄频在线看| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 男女之事视频高清在线观看 | 欧美精品一区二区大全| 中文字幕最新亚洲高清| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 波多野结衣一区麻豆| av不卡在线播放| 久久久久精品人妻al黑| 美女扒开内裤让男人捅视频| 亚洲国产成人一精品久久久| 亚洲av欧美aⅴ国产| 天天躁日日躁夜夜躁夜夜| 黄色一级大片看看| 在线观看三级黄色| 中文字幕亚洲精品专区| 高清黄色对白视频在线免费看| 久久99热这里只频精品6学生| 男人添女人高潮全过程视频| 成人国产麻豆网| 最近2019中文字幕mv第一页| 国产精品一区二区在线观看99| 搡老乐熟女国产| 国产免费又黄又爽又色| 日日撸夜夜添| www.自偷自拍.com| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 亚洲激情五月婷婷啪啪| netflix在线观看网站| 亚洲欧美成人精品一区二区| 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 19禁男女啪啪无遮挡网站| 制服人妻中文乱码| 成年动漫av网址| 国产精品亚洲av一区麻豆 | 中文字幕人妻丝袜制服| 国产1区2区3区精品| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 欧美精品高潮呻吟av久久| 日本午夜av视频| 一二三四在线观看免费中文在| 丝袜美腿诱惑在线| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 啦啦啦在线观看免费高清www| 中文字幕制服av| 国产精品一国产av| 国产精品99久久99久久久不卡 | 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 人体艺术视频欧美日本| 国精品久久久久久国模美| 亚洲视频免费观看视频| 又粗又硬又长又爽又黄的视频| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 在线免费观看不下载黄p国产| 亚洲av日韩在线播放| 曰老女人黄片| 亚洲七黄色美女视频| 超碰成人久久| 免费女性裸体啪啪无遮挡网站| 亚洲婷婷狠狠爱综合网| 国产在线视频一区二区| 精品一区二区三区av网在线观看 | 卡戴珊不雅视频在线播放| 中文字幕人妻丝袜一区二区 | av在线app专区| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 在线免费观看不下载黄p国产| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 国产在线免费精品| 精品少妇久久久久久888优播| 久久毛片免费看一区二区三区| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 最新的欧美精品一区二区| 一级a爱视频在线免费观看| 制服丝袜香蕉在线| 亚洲综合精品二区| 天天添夜夜摸| 毛片一级片免费看久久久久| 看免费成人av毛片| 青春草亚洲视频在线观看| 午夜福利乱码中文字幕| 一级片'在线观看视频| 搡老岳熟女国产| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 久久人人97超碰香蕉20202| a级毛片在线看网站| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 不卡av一区二区三区| 中文天堂在线官网| 久热爱精品视频在线9| 国产极品天堂在线| 青春草国产在线视频| 国产成人精品福利久久| 久久99热这里只频精品6学生| videosex国产| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 超碰成人久久| 亚洲精品日韩在线中文字幕| 国产成人91sexporn| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影视91久久| 日韩一卡2卡3卡4卡2021年| 丁香六月天网| 又粗又硬又长又爽又黄的视频| 久热这里只有精品99| 国产视频首页在线观看| 国产伦理片在线播放av一区|