• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      速解復(fù)合函數(shù)中的零點(diǎn)個(gè)數(shù)問(wèn)題

      2017-09-15 13:04:41徐靖婷
      科教導(dǎo)刊·電子版 2017年24期
      關(guān)鍵詞:問(wèn)題

      徐靖婷

      摘 要 函數(shù)問(wèn)題中涉及復(fù)合函數(shù)的題目向來(lái)是高中數(shù)學(xué)考試乃至高考的熱點(diǎn)、重點(diǎn)、難點(diǎn),這種問(wèn)題考察了學(xué)生的邏輯思維能力以及綜合理解能力,需要學(xué)生冷靜的分析,理清層次,熟悉基本題型并能隨機(jī)應(yīng)變,復(fù)合函數(shù)的理解本身就是一個(gè)難點(diǎn),而復(fù)合函數(shù)中零點(diǎn)個(gè)數(shù)問(wèn)題,更是直接反映了學(xué)生對(duì)該類題的掌握能力,要求較高。

      關(guān)鍵詞 復(fù)合函數(shù) 零點(diǎn)個(gè)數(shù) 問(wèn)題

      中圖分類號(hào):G632 文獻(xiàn)標(biāo)識(shí)碼:A

      基本解題思路如下:

      (1)辨認(rèn)復(fù)合方程,如:當(dāng)復(fù)合函數(shù)F(x)=f2(x)+af(x)+b=0時(shí)的這個(gè)式子f2(x)+af(x)+b=0就是“復(fù)合方程”,而復(fù)合函數(shù)中零點(diǎn)個(gè)數(shù)就是這里復(fù)合方程的根。當(dāng)沒(méi)有明確指出有中間變量時(shí),需要觀察,幷設(shè)出。

      (2)理解并簡(jiǎn)化,映射x→f(x)→f2(x)+af(x)+b,設(shè)中間變量f(x)=u,最終變量f(x)=y,y=u2+au+b=0即。

      (3)畫(huà)圖并解出y=u2+au+b=0,解出u1,u2,又u1=f(x1),u2=f(x2)分別解得x1,x2

      而在具體問(wèn)題中,想要一點(diǎn)不出錯(cuò),也并不是一件易事,下面,就讓我們以幾個(gè)題目為例來(lái)探討一下如何才能對(duì)這類題做到“快、準(zhǔn)、狠”。

      例1、(2005年上??碱})設(shè)定義域?yàn)镽的函數(shù),則關(guān)于x的方程f2(x)+bf(x)+c有7個(gè)不同實(shí)數(shù)解的充要條件是。

      分析:由題意得,函數(shù)f(x)是具體的,應(yīng)先畫(huà)出,根據(jù)圖像分析方程f2(x)+bf(x)+c=0的解的情況,討論兩同根或兩異根,根據(jù)圖像寫(xiě)范圍,得解

      畫(huà)出圖像如下:

      f2(x)+bf(x)+c=0,設(shè)f(x)=u,

      則u2+bu+c=0

      I當(dāng)u1=u2=u0,不可能有7個(gè)x滿足,舍

      II當(dāng)有兩解u1,u2時(shí),u1=0,u2>0即,u1 u2=c=0,u1+u2=-b>0,故c=0,b<0

      綜上可知:充要條件是c=0,b<0。

      評(píng)注:解決本題關(guān)鍵是圖像要畫(huà)對(duì),幾十分類討論,利用根與系數(shù)關(guān)系得出最后答案,掌握了方法,此題很簡(jiǎn)單,也就是說(shuō),本題是——畫(huà)圖,觀察。

      例2、若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1,x2,且f(x1)=x1關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)是。

      分析:極值點(diǎn)是導(dǎo)函數(shù)的穿越點(diǎn)零點(diǎn),觀察并理解得:f(x)導(dǎo)函數(shù)的f'(x)x的圖像與目標(biāo)函數(shù)3(f(x))2+2af(x)+b=0的圖像形狀一樣,則極值點(diǎn)的值就是目標(biāo)函數(shù)的零點(diǎn)。

      解:f(x)求導(dǎo)得:f'(x)=3x2+2ax2+b,3x2+2ax+b=0,兩根為x1,x2,可列如下表格:

      由表格得以下圖像:

      設(shè):中間變量為u,則3u2+2au+bu=0的兩根u1=x1,u2=x2由右圖得:當(dāng)f(x)的函數(shù)值,即u為x1,x2時(shí),對(duì)應(yīng)的x值共有3個(gè)。

      評(píng)注:本題多了一個(gè)單調(diào)性的判斷,也就多了一個(gè)導(dǎo)函數(shù),更加令人條理不清,本題是——分析,畫(huà)圖,觀察。

      例3、(2006年湖北高考理科)關(guān)于的方程(x21)|x1|+k=0,給出下列四個(gè)命題:

      ①存在實(shí)數(shù)k,使得方程恰有2個(gè)不同的實(shí)根;

      ②存在實(shí)數(shù)k,使得方程恰有4個(gè)不同的實(shí)根;

      ③存在實(shí)數(shù)k,使得方程恰有5個(gè)不同的實(shí)根;

      ④存在實(shí)數(shù)k,使得方程恰有8個(gè)不同的實(shí)根;

      其中假命題的個(gè)數(shù)是( )

      分析:本題沒(méi)有直接指明復(fù)合函數(shù)的存在,但原函數(shù)不可能直接畫(huà)出判斷根,仍要設(shè)出中間變量,變?yōu)閺?fù)合函數(shù)便討論。

      解:設(shè)f(x)=|x21|=u,畫(huà)出圖像F(x)=u2u+k。方程u2u+k,△=14k,

      k>時(shí),△<0,無(wú)解

      時(shí)k=時(shí),u=,x有4解,

      當(dāng)k<時(shí),有u1,u2兩解,設(shè)u1

      00, u1 u2=1, (下轉(zhuǎn)第214頁(yè))(上接第152頁(yè))∴0

      k=0時(shí),u1 u2=0,u1+u2=1,∴u1=0,u21=1,x有5解

      k<0時(shí),∴u1 u2<0,u1<0,u2>1,x有2解

      綜上所述:其中假命題的個(gè)數(shù)是0個(gè)。

      評(píng)述:必須把復(fù)合函數(shù)的思想牢記在心,準(zhǔn)確畫(huà)出中間變量的圖形,并對(duì)參數(shù)進(jìn)行討論,善用根與系數(shù)關(guān)系,思維縝密才可全部解除。本題為——設(shè)中間變量,畫(huà)圖,討論。

      再明白以上三個(gè)例題以后,對(duì)于復(fù)合函數(shù)中零點(diǎn)個(gè)數(shù)問(wèn)題,相信讀者們已經(jīng)不再害怕了,只需清理映射關(guān)系,畫(huà)出中間變量的函數(shù)圖像,再加以討論即可,而題目往往會(huì)在幾個(gè)關(guān)鍵之處設(shè)陷,需要學(xué)生抓住題目本質(zhì),對(duì)復(fù)合函數(shù)的模型很熟悉。下面,讓我們通過(guò)一個(gè)練習(xí)鞏固以上知識(shí)。

      練習(xí):函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于直線x=對(duì)稱。據(jù)此可推測(cè),對(duì)任意的非零實(shí)數(shù)a,b,c,m,n,p,關(guān)于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是?( )

      A.{1,2} B.{1,4} C.{1,2,3,4} D.{1,4,16,64}

      分析:本題條件相當(dāng)抽象,兩個(gè)人任意二次函數(shù)的映射。但很明顯是復(fù)合函數(shù)。觀察選項(xiàng)可知:本題考的是二次函數(shù)的相關(guān)性質(zhì),及對(duì)稱性。如果是兩個(gè)解,中間變量定只有一解,任意都可以取,對(duì)稱軸任意;如果有四個(gè)解,中間變量就是兩個(gè)解,這四個(gè)的某個(gè)組合必須出現(xiàn)兩個(gè)相同的對(duì)稱抽。

      解:由分析可知:兩個(gè)解必滿足。排除A,B

      C中1+4=2+3,二者對(duì)稱軸相同,滿足f(x)圖像,同理,D不滿足。

      故選擇D

      評(píng)述:如果對(duì)復(fù)合函數(shù)理解到位了,此題手到擒來(lái),必能做到“快準(zhǔn)狠”。由此可見(jiàn),復(fù)合函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題,只要掌握了以上方法,是可以速解的。

      猜你喜歡
      問(wèn)題
      保障性住房選址問(wèn)題分析及選址建議
      科技視界(2016年20期)2016-09-29 12:22:45
      高??蒲袆?chuàng)新團(tuán)隊(duì)建設(shè)存在的問(wèn)題及對(duì)策研究
      科技視界(2016年20期)2016-09-29 12:14:21
      避開(kāi)“問(wèn)題”銀行股
      試析中小企業(yè)成本核算的管理及控制
      淺談制造業(yè)企業(yè)成本控制有效性
      淺談財(cái)務(wù)管理存在的問(wèn)題及完善措施
      完善事業(yè)單位會(huì)計(jì)集中核算的探討
      演員出“問(wèn)題”,電影怎么辦(聊天室)
      韓媒稱中俄冷對(duì)朝鮮“問(wèn)題”貨船
      “問(wèn)題”干部“回爐”再造
      南方周末(2015-05-07)2015-05-07 04:39:36
      中西区| 白沙| 丹寨县| 达尔| 祁连县| 南平市| 噶尔县| 凌源市| 万全县| 蓝山县| 东乡族自治县| 阿拉善左旗| 凌云县| 柳林县| 吉水县| 九江市| 滕州市| 仙桃市| 乌恰县| 五家渠市| 安泽县| 阿荣旗| 邢台县| 玛多县| 绥德县| 安多县| 北安市| 连南| 玉门市| 炎陵县| 柘城县| 墨玉县| 渭南市| 宕昌县| 怀宁县| 寿宁县| 襄垣县| 六枝特区| 军事| 奉新县| 昌吉市|