季新,李飛,晏云,孫紅正,張靜,李俊周,彭廷,杜彥修,趙全志
?
基于CRISPR/Cas9系統(tǒng)的水稻光敏色素互作因子基因編輯
季新,李飛,晏云,孫紅正,張靜,李俊周,彭廷,杜彥修,趙全志
(河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河南糧食作物協(xié)同創(chuàng)新中心/河南省水稻生物學(xué)重點(diǎn)實(shí)驗(yàn)室,鄭州 450002)
【目的】光作為一種環(huán)境信號(hào),可影響植物的基因表達(dá)、酶活性和形態(tài)建成。光敏色素互作因子在光信號(hào)傳導(dǎo)過程中起著重要作用。本研究旨在構(gòu)建水稻光敏色素互作因子的CRISPR/Cas9表達(dá)載體,創(chuàng)制突變體,挖掘水稻功能基因,豐富和完善水稻光信號(hào)調(diào)控分子機(jī)制?!痉椒ā恳罁?jù)CRISPR/Cas9技術(shù)原理,設(shè)計(jì)突變靶點(diǎn)。將所設(shè)計(jì)靶序列在水稻基因組中進(jìn)行比對(duì),排除非特異性靶位點(diǎn),同時(shí)使該靶序列含有常用酶切位點(diǎn),方便后期突變體鑒定?;瘜W(xué)合成靶位點(diǎn)寡核苷酸序列并與載體pBUN411連接構(gòu)建CRISPR/Cas9表達(dá)載體,利用農(nóng)桿菌介導(dǎo)法導(dǎo)入粳稻品種日本晴,以除草劑抗性標(biāo)記篩選獲得陽性轉(zhuǎn)基因植株。利用酶切法判斷T0代轉(zhuǎn)基因植株是否發(fā)生突變,結(jié)合測(cè)序結(jié)果分析突變單株的突變基因型。將靶點(diǎn)序列在水稻全基因組中進(jìn)行比對(duì)分析,選擇5個(gè)與靶序列同源性較高且錯(cuò)配在4 bp以內(nèi)的位點(diǎn)作為潛在脫靶位點(diǎn)進(jìn)行脫靶效應(yīng)評(píng)估,分析所設(shè)計(jì)靶序列特異性?!窘Y(jié)果】所構(gòu)建表達(dá)載體成功實(shí)現(xiàn)了對(duì)的定向編輯,酶切顯示在選取的25株T0代轉(zhuǎn)基因植株中獲得15株突變體,其中包括5株純合突變體、6株雙等位突變體和4株雜合突變體,共10種不同突變基因型和11個(gè)突變株系。突變類型以單堿基插入或缺失為主,同時(shí)也得到2種56和66 bp較大片段缺失株系。對(duì)部分純合突變、雙等位突變和雜合突變體的T1代植株進(jìn)行分析,結(jié)果表明,T0代產(chǎn)生的突變基因型絕大部分能穩(wěn)定遺傳給下一代。T0代純合突變體后代為純合突變單株,僅在株系14純合突變體后代中檢測(cè)到1株未突變單株;T0代雙等位突變體后代可得到2種純合突變型和1種雙等位突變型;T0代雜合突變體后代則可得到純合、雜合及未突變3種類型。對(duì)T0代未突變植株的后繼世代酶切分析顯示,62株T1代轉(zhuǎn)基因植株均未發(fā)生突變,表明CRISPR/Cas9在T1代轉(zhuǎn)基因陽性植株中未重新發(fā)揮基因編輯作用。對(duì)20株突變體的5個(gè)潛在脫靶位點(diǎn)進(jìn)行分析,5個(gè)潛在脫靶位點(diǎn)均未檢測(cè)出脫靶效應(yīng),表明所設(shè)計(jì)靶序列具有較高特異性。對(duì)選取的3組不同基因型T1代突變體表型進(jìn)行初步觀察,結(jié)果表明,突變體生育期和分蘗數(shù)未出現(xiàn)明顯變化,株高極顯著下降,籽粒粒長(zhǎng)極顯著增加,最大增幅達(dá)5.69%?!窘Y(jié)論】CRISPR/Cas9系統(tǒng)能對(duì)進(jìn)行定向編輯,獲得的10種不同突變基因型的突變體與野生型相比株高極顯著降低、籽粒粒長(zhǎng)極顯著增大。
水稻;CRISPR/Cas9;基因編輯;;脫靶效應(yīng)
【研究意義】光是作物生長(zhǎng)發(fā)育所需的最重要生態(tài)因子之一,是作物產(chǎn)量形成的基礎(chǔ),同時(shí)光也可作為一種重要的環(huán)境信號(hào),調(diào)節(jié)植物基因的表達(dá)、影響酶的活性以及植物的形態(tài)建成。在光信號(hào)途徑中,光敏色素互作因子起著承上啟下的作用,因此,利用CRISPR/Cas9基因編輯技術(shù)創(chuàng)制光敏色素互作因子的突變體,研究其在光信號(hào)調(diào)控途徑中的作用,對(duì)挖掘水稻功能基因,豐富和完善水稻光信號(hào)調(diào)控分子機(jī)制具有重要意義?!厩叭搜芯窟M(jìn)展】基因編輯技術(shù)指能夠?qū)δ繕?biāo)基因進(jìn)行“編輯”,實(shí)現(xiàn)對(duì)特定DNA片段的敲除、插入等。過去幾年,以鋅指核酸酶(zinc fnger nucleases,ZFNs)和類轉(zhuǎn)錄激活因子效應(yīng)物核酸酶(transcription activator-like nucleases,TALENs)為代表的序列特異性核酸酶技術(shù)可以高效率的定點(diǎn)編輯基因組,在基礎(chǔ)研究、基因治療和遺傳改良等方面發(fā)揮了重要作用[1-2]。近年來,一種名為CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9,Cas9)的基因組定向編輯技術(shù)備受矚目。2013年初,《Science》兩篇文章首次報(bào)道了Cas9核酸酶用于人類和小鼠細(xì)胞基因組編輯[3-4],其作為第三代基因編輯技術(shù)受到人們廣泛關(guān)注。CRISPR/Cas9技術(shù)是利用核酸酶Cas9蛋白與單導(dǎo)向RNA(single guide RNA,sgRNA)形成復(fù)合體,sgRNA通過堿基互補(bǔ)配對(duì)決定靶序列特異性,Cas9蛋白作為核酸酶切割與sgRNA上的間隔序列(spacers)互補(bǔ)的基因組DNA,造成雙鏈DNA損傷,隨后通過體內(nèi)的NHEJ(non-homologous end joining)修復(fù)機(jī)制引入基因突變[5]。隨著CRISPR/ Cas9系統(tǒng)在人類和動(dòng)物細(xì)胞中建立與應(yīng)用,CRISPR/ Cas9系統(tǒng)在擬南芥、煙草、水稻、小麥、玉米、高粱、番茄和甜橙等植物中均實(shí)現(xiàn)了基因組的定向編輯[6-7]。光敏色素互作因子PIF(phytochrome-interacting factor)或稱PIL(phytochrome interacting factor-like)是bHLH轉(zhuǎn)錄因子家族中的一類轉(zhuǎn)錄因子,其主要特性是能與光敏色素互作直接或間接調(diào)控光響應(yīng)基因。作為bHLH蛋白的一種,所有PIF家族的蛋白都包含在N端與光敏色素互作的APB(active phytochrome B-binding)或APA(active phytochrome A-binding)結(jié)構(gòu)域和C端bHLH-DNA結(jié)合結(jié)構(gòu)域及核定位結(jié)構(gòu)域[8-9]。擬南芥PIF能夠與靶基因啟動(dòng)子區(qū)域的G-box(5′-CACGTG-3′)或PBE-box(PIF- binding E-box, 5′-CACATG-3′)相結(jié)合[10],可調(diào)控種子萌發(fā)[11]、幼苗去黃化[12]、避陰反應(yīng)[13]和晝夜節(jié)律[14]等植物生長(zhǎng)發(fā)育的各個(gè)方面。Nakamura等[15]通過同源性分析在水稻基因組中鑒定了6個(gè)PIF轉(zhuǎn)錄因子(OsPIL11—OsPIL16),相對(duì)于擬南芥而言,PIFs在水稻生長(zhǎng)發(fā)育過程中的作用研究相對(duì)較少。參與紅光誘導(dǎo)的幼苗去黃化反應(yīng)[16];在水稻中超表達(dá)后能夠促進(jìn)水稻節(jié)間的伸長(zhǎng),反之低表達(dá)則抑制其節(jié)間伸長(zhǎng)[17];超表達(dá)的水稻種子在黑暗環(huán)境中的萌發(fā)受到抑制[18];能夠負(fù)調(diào)控進(jìn)而調(diào)控籽粒大小[19]?!颈狙芯壳腥朦c(diǎn)】筆者前期通過高通量測(cè)序研究發(fā)現(xiàn),在水稻籽粒抽穗后10、15、21、27和35 d這5個(gè)灌漿時(shí)期的強(qiáng)勢(shì)粒和弱勢(shì)粒中,6個(gè)水稻光敏色素互作因子有3個(gè)被鑒定出,其中和只在弱勢(shì)粒某個(gè)時(shí)期表達(dá),則在強(qiáng)弱勢(shì)粒的5個(gè)灌漿時(shí)期均表達(dá)[20],而目前有關(guān)在水稻籽粒灌漿中的調(diào)控作用還不清楚?!緮M解決的關(guān)鍵問題】本研究擬利用CRISPR/Cas9系統(tǒng)對(duì)水稻光敏色素互作因子進(jìn)行編輯,轉(zhuǎn)化粳稻品種日本晴,對(duì)其突變位點(diǎn)和潛在脫靶位點(diǎn)進(jìn)行分析鑒定,通過對(duì)突變體表型進(jìn)行觀察,了解功能及其調(diào)控路徑。
1.1 試驗(yàn)材料
使用粳稻品種日本晴(sspcv. Nipponbare)作為轉(zhuǎn)基因受體材料,CRISPR/Cas9載體pBUN411由中國(guó)農(nóng)業(yè)大學(xué)陳其軍教授惠贈(zèng)[21],試驗(yàn)所用引物(表1)和測(cè)序分析由蘇州金唯智生物科技有限公司完成。
表1 本研究所用引物
引物序列中小寫字母為Ⅰ限制性內(nèi)切酶的黏性末端接頭 The lowercase stand for sticky ends ofⅠ
1.2 靶位點(diǎn)設(shè)計(jì)和CRISPR/Cas9表達(dá)載體構(gòu)建
根據(jù)水稻(GenBank登錄號(hào)AK102252.1)外顯子序列設(shè)計(jì)sgRNA靶點(diǎn)序列。在盡量靠近外顯子編碼蛋白質(zhì)的N端,選取PAM(protospacer-adjacent motif)序列(NGG)5′端的一段堿基序列作為靶位點(diǎn),將該段序列在水稻基因組數(shù)據(jù)庫中進(jìn)行比對(duì),以排除非特異性靶位點(diǎn),同時(shí)盡可能使PAM 5′端存在常用酶切位點(diǎn),以方便后期突變體鑒定。
將選取的靶點(diǎn)序列作為正義鏈,其互補(bǔ)鏈作為反義鏈,分別在2條DNA單鏈5′端添加ggcg和aaac序列作為Ⅰ限制性內(nèi)切酶的黏性末端接頭。使用限制性內(nèi)切酶Ⅰ酶切CRISPR/Cas9載體pBUN411質(zhì)粒使其線性化,T4 DNA連接酶連接后用熱激法轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,使用引物pBUN411- VF和pBUN411-VR進(jìn)行菌落PCR驗(yàn)證。CRISPR/Cas9表達(dá)載體轉(zhuǎn)化農(nóng)桿菌EHA105,用除草劑(Basta)篩選獲得再生苗。
1.3 酶切和測(cè)序分析驗(yàn)證突變位點(diǎn)
為了檢測(cè)靶位點(diǎn)的突變情況,在靶位點(diǎn)兩側(cè)設(shè)計(jì)引物OsPIL15-F和OsPIL15-R,以轉(zhuǎn)基因陽性單株DNA為模板擴(kuò)增靶位點(diǎn)序列。使用Ⅰ限制性內(nèi)切酶酶切PCR產(chǎn)物,2%瓊脂糖凝膠電泳檢測(cè)是否發(fā)生突變。將突變單株P(guān)CR產(chǎn)物測(cè)序,對(duì)靶位點(diǎn)附近出現(xiàn)套峰的PCR產(chǎn)物進(jìn)行TA克隆,隨機(jī)選取單克隆測(cè)序,測(cè)序結(jié)果與野生型序列比對(duì)分析確定突變基因型。
1.4 潛在脫靶位點(diǎn)分析
使用The Rice Annotation Project(http://rapdb.dna. affrc.go.jp/)在線BLAST工具,將靶序列在水稻全基因組中進(jìn)行比對(duì),選取與靶序列同源性較高、錯(cuò)配在4 bp以內(nèi)且具有PAM序列NGG的位點(diǎn)作為潛在脫靶序列,通過酶切法評(píng)估其脫靶效應(yīng)。
2.1靶點(diǎn)設(shè)計(jì)和表達(dá)載體構(gòu)建
根據(jù)CRISPR/Cas9技術(shù)原理,在外顯子區(qū)域靠近起始密碼ATG區(qū)域選擇一段19 bp的序列(5′-GACTTCTTCTCCGAGCTCC-3′)作為靶位點(diǎn)。該序列3′端PAM序列為AGG,Cas9蛋白將在AGG序列上游第3—4 bp處剪切DNA形成平滑末端,該剪切處有一段限制性內(nèi)切酶Ⅰ識(shí)別序列(5′-GAGCT▼C-3′),選擇能被限制性內(nèi)切酶識(shí)別并切割的位點(diǎn)進(jìn)行突變,有利于后續(xù)對(duì)轉(zhuǎn)基因陽性植株是否發(fā)生突變進(jìn)行篩選。CRISPR/Cas9表達(dá)載體的靶序列由啟動(dòng)子驅(qū)動(dòng),編碼Cas9蛋白基因由玉米泛素基因()啟動(dòng)子驅(qū)動(dòng)。
2.2T0代突變體篩選鑒定
使用引物OsPIL15-F和OsPIL15-R擴(kuò)增25株陽性轉(zhuǎn)基因單株靶點(diǎn)序列(圖1-A),野生型擴(kuò)增片段大小為673 bp,單株1、2、23和24均擴(kuò)增出片段明顯小于野生型的條帶,初步表明這4個(gè)單株可能發(fā)生較大片段缺失,其中單株1和24的PCR產(chǎn)物出現(xiàn)兩條帶,只有其中一條帶明顯小于野生型條帶,因此二者可能只有一條同源染色體有較大片段缺失;單株2和23的PCR產(chǎn)物只有一條帶且明顯小于673 bp,可初步判斷二者兩條同源染色體都發(fā)生較大片段缺失。其余21個(gè)單株不能根據(jù)條帶大小判斷是否突變,因此,利用酶切法繼續(xù)進(jìn)行鑒定。
使用Ⅰ酶切PCR產(chǎn)物,若PCR產(chǎn)物能被完全切開,得到400和273 bp的兩條帶,表明靶位點(diǎn)未發(fā)生突變,為未突變單株;若PCR產(chǎn)物被部分切開,得到400、273和約673 bp三條帶,表明一條同源染色體突變,為雜合體;若PCR產(chǎn)物完全不能切開,表明兩條同源染色體均發(fā)生突變,則可能為2個(gè)等位基因發(fā)生不同突變的雙等位突變體或2個(gè)等位基因發(fā)生相同突變的純合體。如圖1-B所示,結(jié)果表明,單株4、5、6、7、10、12、15、16、18和25未發(fā)生突變;單株8、9、11和17的PCR產(chǎn)物被部分酶切,形成三條帶,為一條同源染色體突變的雜合體;單株1、2、3、13、14、19、20、21、22、23和24的PCR產(chǎn)物完全不能切開,則可能為雙等位突變或純合突變體。
PCR產(chǎn)物片段大小和酶切PCR產(chǎn)物只能初步定性判斷轉(zhuǎn)基因植株靶點(diǎn)是否發(fā)生突變,而突變體靶點(diǎn)序列的改變還需測(cè)序進(jìn)行鑒定。由于雜合突變或雙等位突變的兩條同源染色體突變情況不一致,用PCR產(chǎn)物測(cè)序時(shí)會(huì)在某一位點(diǎn)(一般在突變位點(diǎn)附近)之后出現(xiàn)重疊峰,后續(xù)序列無法準(zhǔn)確得知,因此,對(duì)可能出現(xiàn)重疊峰的突變體進(jìn)行TA克隆,隨機(jī)選取單菌斑進(jìn)行測(cè)序。同時(shí)對(duì)突變基因型一致的單株進(jìn)行Southern blot分析(電子附圖1),檢測(cè)是否屬同一株系,結(jié)果表明,1和24、2和23、3和14、19和21分屬同一株系。綜合分析測(cè)序結(jié)果和Southern blot結(jié)果得到各單株突變情況(圖2),共獲得5株純合突變體(2、3、13、14和23)、6株雙等位突變體(1、19、20、21、22和24)和4株雜合突變體(8、9、11和17),包含10種不同突變基因型和11個(gè)突變株系,多為單堿基的插入或缺失,但也得到了2種56和66 bp較大片段缺失的株系。
A:PCR產(chǎn)物酶切前;B:PCR產(chǎn)物酶切后。1—25:T0代轉(zhuǎn)基因單株;M:DL1000標(biāo)記;WT:野生型(日本晴);+RE:使用SacⅠ酶切;黑色三角:SacⅠ酶切后預(yù)期片段。下同
藍(lán)色字母:靶位點(diǎn)序列;黃色高亮:PAM序列;紅色刪除線:缺失堿基;紅色小寫字母:插入堿基;-示缺失;+示插入;M1/M2:雙等位2種突變型
2.3T1代突變體分析鑒定
為驗(yàn)證T0代突變體產(chǎn)生的突變序列能否穩(wěn)定遺傳,選取部分純合突變、雙等位突變和雜合突變株系的下一代植株,對(duì)這些T1代植株突變情況進(jìn)行測(cè)序分析(表2),純合突變體(3和14)后代為純合突變單株,但株系14的30株T1代植株中有29株純合突變,發(fā)現(xiàn)1株未突變單株;3個(gè)雙等位突變體(21、22和24)后代既獲得了純合突變體,也獲得了雙等位突變體;2個(gè)雜合突變體(9和17)的T1代單株中,既有純合突變和雜合突變體,也有未突變的單株。上述結(jié)果表明,T0代突變體產(chǎn)生的突變基因型基本上能穩(wěn)定遺傳給下一代,純合株系后代為純合體,雙等位株系后代產(chǎn)生純合體和雙等位突變體,而雜合株系后代會(huì)得到未突變、純合和雜合3種類型。
為了鑒定T1代單株是否會(huì)重新發(fā)生基因編輯,隨機(jī)選取了62株T1代為陽性(含有Cas9基因)且在T0代未發(fā)生突變的轉(zhuǎn)基因單株,使用限制性內(nèi)切酶Ⅰ進(jìn)行酶切鑒定(圖3),62個(gè)陽性轉(zhuǎn)基因單株P(guān)CR產(chǎn)物均被切開,得到400和273 bp的兩條帶,因此,判定這62株T1代轉(zhuǎn)基因植株均未發(fā)生突變。表明T0代未突變株系,T1代依然未出現(xiàn)突變。
表2 T1代植株分析鑒定
M1/M2示圖2中兩條同源染色體突變類型
M1/M2 indicates the mutation types of two homologous chromosomes in Fig. 2
62個(gè)編號(hào):T0代未突變(4、5、6、7、10、12、15、16、18和25)的T1代陽性轉(zhuǎn)基因單株;-RE:未進(jìn)行酶切。下同
2.4突變體脫靶效應(yīng)評(píng)估
CRISPR/Cas9系統(tǒng)基因編輯的特異性主要取決于sgRNA的識(shí)別序列,但由于高等生物基因組較大且較為復(fù)雜,sgRNA可能會(huì)與非靶點(diǎn)DNA序列發(fā)生局部錯(cuò)配,造成CRISPR/Cas9系統(tǒng)基因編輯的脫靶。因此,需要對(duì)的突變體脫靶效應(yīng)進(jìn)行評(píng)估(表3),選取水稻基因組中與sgRNA序列錯(cuò)配堿基數(shù)在4 bp以內(nèi)且具有PAM序列的5個(gè)位點(diǎn)作為潛在脫靶位點(diǎn),每個(gè)潛在脫靶位點(diǎn)均隨機(jī)選取10株T0代突變單株和10株T1代突變單株,通過酶切法進(jìn)行檢測(cè)(圖4)。Off-target1位點(diǎn)若被Ⅰ酶切可形成444和179 bp的兩條帶,Off-target2位點(diǎn)酶切后產(chǎn)生359和173 bp的兩條帶,Off-target3位點(diǎn)酶切可得到268和152 bp的兩條帶,Off-target4位點(diǎn)可被酶切為411和153 bp的兩條帶,Off-target5位點(diǎn)若被切開會(huì)得到360和254 bp兩條帶。所選取的20個(gè)突變單株的5個(gè)潛在脫靶位點(diǎn)PCR產(chǎn)物均能被Ⅰ酶成功切割,因此,這5個(gè)潛在脫靶位點(diǎn)在T0代和T1代均未產(chǎn)生脫靶效應(yīng),表明所設(shè)計(jì)的sgRNA序列具有較高的特異性。
表3 CRISPR/Cas9系統(tǒng)潛在脫靶位點(diǎn)突變檢測(cè)
灰色標(biāo)記為錯(cuò)配堿基,下劃線標(biāo)記為PAM序列
mismatching bases are shown by a grey box, the PAM motif is marked by an underline
20個(gè)編號(hào):10株T0代突變體和10株T1代突變體
2.5功能初步分析
選擇水稻中PIFs家族的6個(gè)基因(Os12g0610200)、(Os03g0639300)、(Os03g0782500)、(Os07g0143200)、(Os01g0286100)、(Os05g0139100)和擬南芥中PIFs家族的7個(gè)基因/(AT2G20180)、(AT1G09530)、(AT2G43010)、/(AT3G59060)、/(AT3G62090)、(AT5G61270)、(AT4G00050),根據(jù)它們的氨基酸序列進(jìn)行系統(tǒng)進(jìn)化樹分析(圖5-A),水稻中光敏色素互作因子OsPIL15和OsPIL16親緣關(guān)系最近,二者蛋白同源性幾乎達(dá)到了100%。有研究表明,超表達(dá)能使水稻籽粒減小[22],OsPIL15和OsPIL16十分相近的親緣關(guān)系表明也有可能調(diào)控水稻籽粒大小。因此,選取T1代不同基因型的三組突變體,對(duì)其表型進(jìn)行觀察,與野生型相比,突變體生育期沒有變化,株高極顯著降低,平均降低12.49%;有效分蘗數(shù)沒有明顯差異;而籽粒粒長(zhǎng)極顯著增加,其中,突變體22增加最高,增幅達(dá)5.69%,增幅最小的突變體21也達(dá)3.88%(圖5-B—圖5-E)。
A:OsPIL15蛋白系統(tǒng)進(jìn)化樹分析;B:ospil15突變體株高變化;C:ospil15突變體有效分蘗數(shù)變化;D:ospil15突變體籽粒粒長(zhǎng)變化;E:ospil15突變體與野生型日本晴籽粒表型比對(duì)。**:在0.01水平上差異顯著;Bar=0.5 cm
CRISPR/Cas9技術(shù)以其突變高效、操作簡(jiǎn)單、成本低廉等優(yōu)勢(shì)在動(dòng)植物中得到了廣泛應(yīng)用。本研究從靶位點(diǎn)選擇,表達(dá)載體構(gòu)建,突變位點(diǎn)分析和脫靶效應(yīng)評(píng)估等方面,詳細(xì)闡述了利用CRISPR/Cas9系統(tǒng)對(duì)水稻的編輯。本研究針對(duì)設(shè)計(jì)了1個(gè)靶向位點(diǎn),有研究認(rèn)為單靶點(diǎn)在T0代形成的小片段突變,使得T1代植株中sgRNA仍有可能識(shí)別靶序列造成二次編輯,后代突變具有不穩(wěn)定性[23]。本研究在純合突變體14后代中發(fā)現(xiàn)了一株未突變單株,且突變體14僅為1個(gè)單堿基插入突變,是否是由于CRISPR/ Cas9系統(tǒng)在T1代再次對(duì)靶位點(diǎn)進(jìn)行編輯形成新的堿基改變還需進(jìn)一步驗(yàn)證。本試驗(yàn)獲得突變體多為單堿基插入或缺失,但也得到了兩種分別缺失66和56 bp的較大片段缺失突變體。針對(duì)基因編碼序列設(shè)計(jì)多個(gè)靶位點(diǎn)有利于形成大片段缺失突變而獲得穩(wěn)定遺傳,但靶點(diǎn)越多產(chǎn)生脫靶的可能性越大[24],需綜合考慮目標(biāo)基因靶點(diǎn)位置及數(shù)量,盡可能保證其特異性。本試驗(yàn)采用酶切和測(cè)序相結(jié)合的方法對(duì)突變位點(diǎn)進(jìn)行分析鑒定,但由于雜合突變和雙等位突變的PCR產(chǎn)物直接測(cè)序會(huì)出現(xiàn)重疊峰而無法準(zhǔn)確讀取,需將PCR產(chǎn)物進(jìn)行TA克隆后挑選單菌斑測(cè)序,工作量較大,成本較高。為此華南農(nóng)業(yè)大學(xué)劉耀光教授課題組基于DSD(degenerate sequence decoding)法[25]開發(fā)了在線工具DSDecode(http://dsdecode.scgene.com/),可對(duì)各突變類型測(cè)序文件自動(dòng)解碼[26],但限于不同公司和不同PCR產(chǎn)物測(cè)序質(zhì)量,部分測(cè)序結(jié)果不能很好地解碼,因此,此方法可為測(cè)序分析提供參考,具體仍需驗(yàn)證。
CRISPR/Cas9系統(tǒng)成功對(duì)植物基因組編輯后,所獲得突變基因序列能否穩(wěn)定遺傳給下一代決定了該突變體是否具有應(yīng)用前景。由于擬南芥多采用蘸花法進(jìn)行轉(zhuǎn)基因,CRISPR/Cas9系統(tǒng)誘導(dǎo)的突變?cè)赥1代中主要發(fā)生在體細(xì)胞,從而形成嵌合體,較難穩(wěn)定遺傳給下一代,而發(fā)生在生殖細(xì)胞中的突變可穩(wěn)定遺傳[27]。水稻多采用農(nóng)桿菌介導(dǎo)愈傷組織,轉(zhuǎn)基因苗多來源于單個(gè)細(xì)胞或細(xì)胞團(tuán),因此本試驗(yàn)在T0代即獲得了純合突變體,對(duì)純合突變、雙等位突變和雜合突變的T1代植株分析顯示這些突變絕大多數(shù)均能穩(wěn)定遺傳,有研究證明這些穩(wěn)定遺傳突變體自交后代分離均符合孟德爾遺傳定律[28-29]。有報(bào)道認(rèn)為CRISPR/Cas9系統(tǒng)在后代植株當(dāng)中對(duì)野生型依然可行使功能[30],T0代轉(zhuǎn)基因植株靶位點(diǎn)表現(xiàn)為野生型的植株后代仍有可能發(fā)生一定比例的突變[27]。本研究對(duì)T0代未突變植株的T1代(陽性)靶位點(diǎn)突變情況進(jìn)行鑒定,未獲得新的突變單株。Zhang等[31]認(rèn)為這可能與CRISPR/Cas9系統(tǒng)插入到基因組的位置有一定關(guān)系。本研究?jī)H對(duì)部分T1代植株進(jìn)行了鑒定,CRISPR/Cas9系統(tǒng)是否會(huì)在其他后繼世代中重新發(fā)揮作用還需作進(jìn)一步驗(yàn)證。
CRISPR/Cas9系統(tǒng)在植物基因編輯中的特異性對(duì)于其安全高效的利用具有重要意義,因此有必要對(duì)可能出現(xiàn)的脫靶效應(yīng)進(jìn)行全面準(zhǔn)確地評(píng)估。有研究表明,針對(duì)人源CLTA基因的4個(gè)靶位點(diǎn)均存在脫靶現(xiàn)象,脫靶效率最高可達(dá)84%[32];針對(duì)鼠源Crygc基因的2個(gè)靶點(diǎn)存在40%的脫靶率[33]。而在植物中CRISPR/Cas9系統(tǒng)脫靶效率較低,朱健康教授實(shí)驗(yàn)室通過對(duì)擬南芥全基因組測(cè)序和潛在脫靶位點(diǎn)分析未檢測(cè)到脫靶效應(yīng)[27],對(duì)水稻中多個(gè)與靶位點(diǎn)高度同源序列進(jìn)行檢測(cè),僅在一個(gè)堿基不匹配處發(fā)現(xiàn)脫靶效應(yīng)[31],杜彥修等[34]對(duì)水稻基因兩個(gè)潛在脫靶位點(diǎn)進(jìn)行檢測(cè)并未發(fā)現(xiàn)脫靶。本研究選擇了PAM序列5′端同源性較高的5個(gè)位點(diǎn)作為潛在脫靶位點(diǎn),經(jīng)檢測(cè)這5個(gè)位點(diǎn)均未發(fā)生脫靶效應(yīng),因此設(shè)計(jì)的sgRNA序列具有較高特異性。有研究表明,sgRNA的特異性主要由靠近PAM序列的10—12 bp堿基所決定,而遠(yuǎn)離PAM區(qū)的8—10 bp堿基對(duì)sgRNA的特異性識(shí)別影響不大[3, 35]。本試驗(yàn)只是對(duì)最有可能出現(xiàn)脫靶效應(yīng)的5個(gè)位點(diǎn)進(jìn)行了檢測(cè),不排除其他位點(diǎn)出現(xiàn)脫靶的可能性,更有效的方法則是對(duì)獲得的突變體進(jìn)行全基因組深度測(cè)序分析,但其成本較高且費(fèi)時(shí)費(fèi)力。為此科學(xué)家開發(fā)了新的基于Cas9核酸酶消化基因組(Digenome- seq)技術(shù)和基于整合酶缺陷型慢病毒載體(IDLV)技術(shù)來精確檢測(cè)CRISPR/Cas9系統(tǒng)脫靶效應(yīng)[36-37]。通過優(yōu)化sgRNA序列(長(zhǎng)度和GC含量等)、應(yīng)用雙Cas9切口酶[38]和應(yīng)用fCas9復(fù)合體[39]等方法可降低CRISPR/Cas9系統(tǒng)脫靶效應(yīng)。
本試驗(yàn)利用CRISPR/Cas9技術(shù)創(chuàng)制了突變體,并對(duì)其T1代表型進(jìn)行了初步觀察,發(fā)現(xiàn)突變體株高極顯著降低,籽粒粒長(zhǎng)極顯著增大,與OsPIL15蛋白系統(tǒng)進(jìn)化分析結(jié)果是一致的。后續(xù)仍需進(jìn)行多代鑒定,獲得穩(wěn)定純合的突變體,同時(shí)對(duì)不同突變類型的株系進(jìn)行觀察,以確定不同突變類型造成的氨基酸改變而產(chǎn)生的表型是否一致。
依據(jù)CRISPR/Cas9系統(tǒng)原理創(chuàng)制突變體,成功獲得5株純合突變體、6株雙等位突變體和4株雜合突變體。對(duì)部分突變體后代突變序列進(jìn)行分析,發(fā)現(xiàn)絕大多數(shù)突變均能穩(wěn)定遺傳。62株T0代表現(xiàn)為未突變的T1代陽性植株經(jīng)酶切鑒定均未發(fā)現(xiàn)新的突變,表明CRISPR/Cas9系統(tǒng)在T1代轉(zhuǎn)基因陽性植株中未重新發(fā)揮基因編輯作用。5個(gè)與靶序列同源性較高且錯(cuò)配在4 bp以內(nèi)的潛在脫靶位點(diǎn)經(jīng)評(píng)估均未出現(xiàn)脫靶效應(yīng),表明所選取sgRNA有較高的特異性。對(duì)獲得的突變體表型進(jìn)行初步觀察發(fā)現(xiàn),與野生型相比T1代突變體株高極顯著降低,分蘗數(shù)未發(fā)生顯著變化,籽粒粒長(zhǎng)極顯著增大。
[1] Carroll D, Morton J J, Beumer K J, Segal D J. Design, construction and in vitro testing of zinc finger nucleases., 2006, 1(3): 1329-1341.
[2] Li T, Liu B, Spalding M H, Weeks D P, Yang B. High- efficiency TALEN-based gene editing produces disease-resistant rice., 2012, 30(5): 390-392.
[3] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems., 2013, 339(6121): 819-823.
[4] Mali P, Yang L, Esvelt K M, Aach J, Guell M, Dicarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9., 2013, 339(6121): 823-826.
[5] Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea., 2012, 482(7385): 331-338.
[6] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9., 2014, 346(6213): 1258096.
[7] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9., 2015, 32: 76-84.
[8] Khanna R, Huq E, Kikis E A, Al-Sady B, Lanzatella C, Quail P H. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors., 2004, 16(11): 3033-3044.
[9] Shen H, Zhu L, Castillon A, Majee M, Downie B, Hu q E. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 fromdepend upon its direct physical interactions with photoactivated phytochromes., 2008, 20(6): 1586-1602.
[10] Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman J M, Speed T P, Quail P H. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in., 2013, 9(1): e1003244.
[11] Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H, Sun T, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to theandpromoters inseeds., 2007, 19(4): 1192-1208.
[12] Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso J M, Ecker J R, Quail P H. Thephytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels., 2008, 20(2): 337-352.
[13] Lorrain S, Allen T, Duek P D, Whitelam G C, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors., 2008, 53(2): 312-323.
[14] Shin J, Anwer M U, Davis S J. Phytochrome-interacting factors (PIFs) as bridges between environmental signals and the circadian clock: diurnal regulation of growth and development., 2013, 6(3): 592-595.
[15] Nakamura Y, Kato T, Yamashino T, Murakami M, Mizuno T. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in., 2007, 71(5): 1183-1191.
[16] 梁衛(wèi)紅, 李莉, 彭威風(fēng), 劉婧, 楊慧, 謝先芝. 水稻光敏色素相互作用因子基因的表達(dá)模式及其在光信號(hào)傳導(dǎo)中作用的初步分析. 中國(guó)水稻科學(xué), 2012, 26(3): 255-260.
Liang W H, Li L, PENG W F, LIU J, YANG H, XIE X Z. Expression patterns of, a phytochrome interacting factor in rice, and preliminary analysis of its roles in light signal transduction., 2012, 26(3): 255-260. (in Chinese)
[17] Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress., 2012, 109(39): 15947-15952.
[18] Zhou J, Liu Q, Zhang F, Wang Y, Zhang S, Cheng H, Yan L, Li L, Chen F, Xie X. Overexpression of, a phytochrome‐interacting factor-like protein gene, represses etiolated seedling growth in rice., 2014, 56(4): 373-387.
[19] Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice., 2012, 7(2): e31325.
[20] 杜彥修, 季新, 彭廷, 孫紅正, 張靜, 李俊周, 趙全志. 水稻灌漿期籽粒中光信號(hào)相關(guān)基因鑒定與表達(dá)分析. 分子植物育種, 2016, 14(7): 1637-1647.
DU Y X, JI X, PENG T, SUN H Z, ZHANG J, LI J Z, ZHAO Q Z. Identification and expressing analysis of light signal genes involved in endosperm development during rice grain filling., 2016, 14(7): 1637-1647. (in Chinese)
[21] Xing H, Dong L, Wang Z, Zhang H, Han C, Liu B, Wang X, Chen Q. A CRISPR/Cas9 toolkit for multiplex genome editing in plants., 2014, 14(1): 327.
[22] Heang D, Sassa H. Overexpression of a basic helix-loop-helix gene(APG) decreases grain length of rice., 2012, 29(1): 65-69.
[23] Xu R, Li H, Qin R, Li J, Qiu C, Yang Y, Ma H, Li L, Wei P, Yang J. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system., 2015, 5: 11491.
[24] Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice., 2015, 56(1): 41-47.
[25] Ma X, Chen L, Zhu Q, Chen Y, Liu Y. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products., 2015, 8(8): 1285-1287.
[26] Liu W, Xie X, Ma X, Li J, Chen J, Liu Y. DSDecode: A web- based tool for decoding of sequencing chromatograms for genotyping of targeted mutations., 2015, 8(9): 1431-1433.
[27] Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in., 2014, 111(12): 4632-4637.
[28] Ishizaki T. CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation., 2016, 36(12): 165.
[29] Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella J R, Zhu J. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in., 2016, 14(2): 519-532.
[30] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants., 2015, 8(8): 1274-1284.
[31] Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation., 2014, 12(6): 797-807.
[32] Pattanayak V, Lin S, Guilinger J P, Ma E, Doudna J A, Liu D R. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity., 2013, 31(9): 839-843.
[33] Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9., 2013, 13(6): 659-662.
[34] 杜彥修, 季新, 陳會(huì)杰, 彭廷, 張靜, 李俊周, 孫紅正, 趙全志. 基于CRISPR/Cas9系統(tǒng)的基因編輯及其脫靶效應(yīng)分析. 中國(guó)水稻科學(xué), 2016, 30(6): 577-586.
DU Y X, JI X, CHEN H J, PENG T, ZHANG J, LI J Z, SUN H Z, ZHAO Q Z. CRISPR/Cas9 system-based editing ofgene and its off-target effect analysis., 2016, 30(6): 577-586. (in Chinese)
[35] Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases., 2013, 31(9): 827-832.
[36] Kim D, Bae S, Park J, Kim E, Kim S, Yu H R, Hwang J, Kim J, Kim J. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells., 2015, 12(3): 237-243.
[37] Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin R, Yee J. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors., 2015, 33(2): 175-178.
[38] Ran F A, Hsu P D, Lin C, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity., 2013, 154(6): 1380-1389.
[39] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification., 2014, 32(6): 577-582.
(責(zé)任編輯 李莉)
M:DNA Molecular-Weight Marker;B:Basta探針;1、24、2、23、3、14、19、21:突變單株
M: DNA Molecular-Weight Marker; B: Basta probe; 1, 24, 2, 23, 3, 14, 19, 21: mutant plants
附圖1 Southern blot分析突變單株的T-DNA插入
Supplemental Fig. 1 Analysis of T -DNA region by southern blot
CRISPR/Cas9 System-Based Editing of Phytochrome-Interacting Factor
JI Xin, LI Fei, YAN Yun, SUN HongZheng, ZHANG Jing, LI JunZhou, PENG Ting, DU YanXiu, ZHAO QuanZhi
(Agronomy College of Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/Henan Key Laboratory of Rice Biology, Zhengzhou 450002)
【Objective】 As an important environmental signal, light can regulate gene expression, affect the activity of enzymes and plant morphogenesis. Phytochrome interacting factors play an important role in the signal transduction of light. Therefore, constructing the expression vector of CRISPR/Cas9 containing rice phytochrome-interacting factorsand creating themutants have important significance to exploit functional genes and enrich light signal regulation of the molecular mechanism of rice. 【Method】 According to the principle of CRISPR/Cas9 technology, the sgRNA was designed. To exclude non-specific target sites, the sgRNA was analyzed by sequence alignment in the rice genome database. At the same time, the target sequence contained the common restriction site to identify mutants. The oligonucleotides of sgRNA were chemically synthesized and inserted into linearized plasmid pBUN411 to construct the expression vector. Transgenic rice plants harboring sgRNA:Cas9 were obtained by-mediated stable transformation and the positive transgenic plants were screened by herbicide resistance. The PCR products of T0transgenic plants were digested by restriction enzyme to judge whether they were mutants. Then, the mutated genotypes of these mutants were analyzed by DNA sequencing. After searching rice genome using sgRNA sequence, five highly identical sites with less 4 mismatching bases were selected to assess off-target efficiency and specificity of sgRNA.【Result】The recombinant vector succeeded in oriented editing of. The restriction enzyme analysis results indicated that 15 mutants from the 25 randomly selected T0transgenic lines were obtained. They included 5 homozygous mutants, 6 biallelic mutants and 4 heterozygous mutants, and a total of 10 different genotypes and 11 mutant lines. The mutant types were mainly insertions or deletions of single base, besides, two mutant types of large deletions with 56 and 66 bp were obtained. Analysis of T1transgenic plants from some T0mutants indicated that the genotypes in T0mutants could descend stably into the next generation. The progeny of homozygous mutants in T0were homozygous mutants. However, only one wild type with no mutation was detected in a homozygous mutant progenies of line 14. Two homozygous mutations and one biallelic mutations were obtained in the progeny of biallelic T0lines. Three mutation types including homozygous mutants, heterozygous mutants and wild type with no mutation were detected in the progenies of heterozygous T0mutants. Restriction enzyme analysis was used to detect the engineered target site of T1positive transgenic plants which had no mutation in T0. No mutation in 62 T1plants was detected. The results showed that CRISPR/Cas9 system played no role in gene editing in T1positive transgenic plants. After searching the rice genome using the target sequence with PAM, five highly identical sites were found. However, any mutations at these sites in T0and T1generations were not observed by restriction enzyme, which indicated the sgRNA was highly specific. Three groups of different genotypes were selected representativemutants in T1generation to observe phenotypes, the investigation result showed that the growth stage and tiller number were not obviously changed, the plant height decreased significantly (<0.01), and the grain length was significantly increased compared with the wild type, up 5.69%. 【Conclusion】CRISPR/Cas9 system succeeded in oriented editing of, themutants with 10 different genotypes were obtained and observed that the plant height decreased significantly and the grain length increased significantly compared with those of wild type.
rice; CRISPR/Cas9; gene editing;; off-target efficiency
2017-01-22;接受日期:2017-04-05
河南省重大科技專項(xiàng)(141100110600)、河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(16A210026)
季新,E-mail:jixin1@126.com。李飛,E-mail:LFight123@163.com。季新和李飛為同等貢獻(xiàn)作者。通信作者杜彥修,E-mail:dumatt@163.com。通信作者趙全志,E-mail:qzzhaoh@126.com