王嘉君, 劉 青, 馮施施, 馮志玲, 阮永明, 翁雪香
(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004)
基于摻氮碳量子點(diǎn)與Fe3+納米開(kāi)關(guān)的抗壞血酸熒光傳感器*
王嘉君, 劉 青, 馮施施, 馮志玲, 阮永明, 翁雪香
(浙江師范大學(xué) 化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004)
以殼聚糖為前驅(qū)體,在較低溫度下通過(guò)水熱法一步合成了摻氮碳量子點(diǎn)(N-FCDs),合成得到的N-FCDs具有良好的水溶性、pH穩(wěn)定性及優(yōu)良的熒光特性.實(shí)驗(yàn)表明:Fe3+能猝滅N-FCDs 溶液的熒光,靈敏度高且選擇性好;當(dāng)還原性的抗壞血酸加入熒光猝滅的Fe3+-N-FCDs體系后,體系猝滅的熒光因Fe3+的還原反應(yīng)又得以恢復(fù).由此,可實(shí)現(xiàn)對(duì)抗壞血酸的靈敏檢測(cè),檢測(cè)的線性范圍為1~200 μmol/L,檢出限為0.06 μmol/L.此外,F(xiàn)e3+-N-FCDs的抗干擾能力強(qiáng),可實(shí)現(xiàn)維生素C藥片中抗壞血酸含量的檢測(cè),檢測(cè)結(jié)果令人滿意.
傳感器;摻氮碳量子點(diǎn);鐵離子;熒光開(kāi)關(guān);抗壞血酸
抗壞血酸(ascorbic acid,AA),又名維生素C,是一種重要的抗氧化劑,在人類(lèi)的飲食平衡中起著重要的作用,且廣泛使用于感冒、精神病、不孕、艾滋病和癌癥等疾病的預(yù)防和治療中[1].因此,在環(huán)境、醫(yī)藥、食品等行業(yè)中實(shí)現(xiàn)抗壞血酸的靈敏及選擇性地檢測(cè)具有重要意義.目前,檢測(cè)抗壞血酸常用的方法有:酶分析法[2-4]、色譜分析法[5-7]、電化學(xué)分析法[8-13]及熒光分析法[14-15]等.其中,熒光分析法具有靈敏度高、響應(yīng)線性范圍寬和檢測(cè)限低等優(yōu)點(diǎn).
在熒光分析法中,合成熒光強(qiáng)及性能穩(wěn)定的熒光探針對(duì)實(shí)現(xiàn)高靈敏度的分析檢測(cè)尤為重要.近年來(lái),碳家族中的新成員——碳量子點(diǎn)(carbon-based nanodots,CDs)在分析檢測(cè)領(lǐng)域引起了廣泛關(guān)注.CDs是2004年文獻(xiàn)[16]報(bào)道的在分離和純化單壁碳納米管時(shí)意外發(fā)現(xiàn)的一種光致發(fā)光的納米顆粒,由于它具有合成方法簡(jiǎn)單、原材料來(lái)源豐富、成本低、發(fā)光穩(wěn)定、熒光壽命長(zhǎng)及生物相容性好等優(yōu)異的特性,目前已廣泛應(yīng)用于熒光識(shí)別探針和生物樣品檢測(cè)領(lǐng)域[17-20].文獻(xiàn)[21]發(fā)現(xiàn),石墨烯量子點(diǎn)的熒光被銅離子猝滅后又能在抗壞血酸存在下恢復(fù),從而建立了抗壞血酸的熒光開(kāi)關(guān)分析方法.最近,科學(xué)家們發(fā)現(xiàn)化學(xué)摻雜能通過(guò)完善CDs的缺陷從而提高其各方面的性能[22].如文獻(xiàn)[23]采用海藻酸鈉和色氨酸為碳源合成了氮摻雜的碳顆粒,認(rèn)為空間效應(yīng)和氫鍵作用使抗壞血酸能直接猝滅碳顆粒的熒光,從而實(shí)現(xiàn)抗壞血酸的檢測(cè).采用單一碳源合成摻氮碳量子點(diǎn)并采用熒光開(kāi)關(guān)方式快速檢測(cè)抗壞血酸的方法尚未見(jiàn)報(bào)道.
本文采用無(wú)生物毒性且自帶氮源的殼聚糖,通過(guò)一步水熱法合成了摻氮碳量子點(diǎn)(N-FCDs),合成過(guò)程綠色環(huán)保、簡(jiǎn)單易行,得到的N-FCDs生物相容性好、熒光性能穩(wěn)定.本文還考察了該材料對(duì)常見(jiàn)金屬離子的響應(yīng),發(fā)現(xiàn)Fe3+能選擇性地猝滅N-FCDs的熒光[24];當(dāng)還原劑抗壞血酸加入Fe3+-N-FCDs體系后,由于三價(jià)鐵離子的還原反應(yīng),使得體系的熒光恢復(fù),從而可實(shí)現(xiàn)對(duì)抗壞血酸的選擇性檢測(cè),線性范圍為1~200 μmol/L,檢測(cè)限為0.06 μmol/L.此外,F(xiàn)e3+-N-FCDs抗干擾能力強(qiáng),可實(shí)現(xiàn)維生素C藥片中抗壞血酸含量的檢測(cè),檢測(cè)結(jié)果令人滿意.
1.1 N-FCDs的合成
首先,將0.075 g殼聚糖溶于20 mL 2.5%乙酸溶液中[25].隨后,將溶液轉(zhuǎn)入體積為50 mL聚四氟乙烯內(nèi)膽的不銹鋼反應(yīng)釜中,于烘箱中200 ℃加熱4 h后冷卻至室溫.最后,將反應(yīng)得到的黃色溶液用0.22 μm濾膜過(guò)濾除去較大的顆粒后,用分子量為1 000 Da的透析袋透析24 h以除去未反應(yīng)的反應(yīng)物.
1.2 產(chǎn)物的表征
產(chǎn)物的形貌采用JEM-2100F型透射電子顯微鏡(TEM)測(cè)定,加速電壓為200 kV.產(chǎn)物的構(gòu)成性能采用Kratos Axis型X射線光電子能譜儀(XPS)測(cè)定,以Al Kα X射線作為激發(fā)光源.熒光檢測(cè)由Perkin Elmer公司的LS-55型熒光儀完成.紫外可見(jiàn)吸收采用Perkin Elmer公司的Lambda 950光譜儀測(cè)定.pH值由PHS-3C pH計(jì)測(cè)得.
1.3 抗壞血酸對(duì)Fe3+-N-FCDs的熒光響應(yīng)
將20 μL N-FCDs溶液和10 mL含有200 μmol/L Fe3+的醋酸鈉-醋酸緩沖溶液(pH=4.0)在室溫下混合,再加入不同濃度的抗壞血酸.放置5 min后,以325 nm為激發(fā)波長(zhǎng)記錄各物質(zhì)的熒光發(fā)射光譜.在抗壞血酸的選擇性測(cè)量中,將抗壞血酸替換成可能的干擾物質(zhì),所有可能的干擾物質(zhì)的濃度均為50 μmol/L,測(cè)量條件同上.
1.4 維生素C片中抗壞血酸的檢測(cè)
研磨0.1 g維生素C片(浙江瑞新藥業(yè)股份有限公司)于20 mL去離子水中,得到維生素C分散液,10 000 r/min離心20 min后,經(jīng)0.22 μm濾膜過(guò)濾,收集上清液.將制得的上清液用醋酸鈉-醋酸緩沖溶液(pH=4.0)稀釋10倍后備用.檢測(cè)時(shí),將20 μL N-FCDs分散液和10 mL含有200 μmol/L Fe3+和100 μL稀釋后的抗壞血酸樣品的醋酸鈉緩沖液混合,室溫下反應(yīng)5 min后,測(cè)量并記錄溶液的熒光光譜.
2.1 N-FCDs的光譜性質(zhì)和表征
圖1為N-FCDs形成及其檢測(cè)抗壞血酸的示意圖.由圖1可知:溶解于乙酸溶液的殼聚糖,在高溫高壓過(guò)程中殼聚糖斷裂、脫水、碳化及成核,從而形成發(fā)藍(lán)色熒光的N-FCDs(以硫酸奎寧為標(biāo)準(zhǔn),熒光量子產(chǎn)率為24.5%,λex=325 nm);由于Fe3+與N-FCDs的親和作用,使得N-FCDs的熒光猝滅;當(dāng)加入還原性的抗壞血酸時(shí),F(xiàn)e3+被還原,使體系的熒光恢復(fù).
圖1 N-FCDs的制備過(guò)程及抗壞血酸檢測(cè)的示意圖
圖2是N-FCDs的透射電子顯微照片,可見(jiàn)所制備的N-FCDs在水中具有良好的分散性.圖3為N-FCDs的粒徑分布直方圖,其主要粒徑分布在20 nm附近.
圖2 N-FCDs的透射電子顯微圖
圖3 N-FCDs的粒徑分布圖
(a)紫外吸收、激發(fā)和發(fā)射光譜 (b)不同激發(fā)波長(zhǎng)下的熒光發(fā)射光譜圖4 N-FCDs的紫外-可見(jiàn)吸收光譜和熒光光譜圖
發(fā)射峰;當(dāng)激發(fā)波長(zhǎng)從315 nm變化到365 nm時(shí),N-FCDs的最大發(fā)射峰從400 nm紅移到434 nm.這種依賴(lài)激發(fā)波長(zhǎng)的熒光性能,可能與N-FCDs表面所帶的基團(tuán)有關(guān).水熱碳化過(guò)程中,大量的官能團(tuán),如羧基和氨基,在N-FCDs表面上形成不同的缺陷,這些缺陷作為激發(fā)能量陷阱,從而形成不同的熒光性質(zhì).也可能與碳量子點(diǎn)的尺寸有關(guān).這種激發(fā)波長(zhǎng)依賴(lài)的熒光特征也是目前報(bào)道的多數(shù)碳量子點(diǎn)的熒光特征[28-29].
圖5 N-FCDs的紅外光譜圖
明,N-FCDs表面存在大量的羥基和氨基.這也是N-FCDs在水中具有良好的分散性的原因[30].
圖6 N-FCDs的X射線光電子能譜圖
2.2 反應(yīng)條件對(duì)熒光強(qiáng)度的影響
本實(shí)驗(yàn)對(duì)制備N(xiāo)-FCDs的反應(yīng)條件如殼聚糖的濃度、反應(yīng)溫度和反應(yīng)時(shí)間等做了優(yōu)化.如圖7(a)所示:殼聚糖的濃度增加到3.75 mg/mL時(shí),合成的N-FCDs的熒光強(qiáng)度最大;但進(jìn)一步增加殼聚糖的濃度,其熒光強(qiáng)度反而下降,這可能是由于高濃度的殼聚糖使生成的N-FCDs顆粒團(tuán)聚從而導(dǎo)致其熒光強(qiáng)度降低[32].將殼聚糖溶液在不同溫度(140~220 ℃)下加熱4 h,得到不同溫度下的N-FCDs.如圖7(b)所示:隨著反應(yīng)溫度的不斷上升,合成的N-FCDs熒光強(qiáng)度明顯增大;當(dāng)溫度高于190 ℃時(shí),其熒光強(qiáng)度增加緩慢;當(dāng)溫度達(dá)到200 ℃時(shí),N-FCDs的熒光強(qiáng)度達(dá)到最大值并相對(duì)穩(wěn)定.因此,200 ℃是最佳的反應(yīng)溫度.反應(yīng)時(shí)間的優(yōu)化是提高N-FCDs熒光強(qiáng)度的關(guān)鍵.如圖7(c)所示:當(dāng)反應(yīng)時(shí)間為240 min時(shí),N-FCDs的熒光強(qiáng)度最大;隨著反應(yīng)時(shí)間的延長(zhǎng),導(dǎo)致N-FCDs聚集,從而導(dǎo)致其熒光強(qiáng)度減弱.因此,優(yōu)化后合成N-FCDs的反應(yīng)時(shí)間為4 h.
(a)殼聚糖濃度 (b)反應(yīng)溫度 (c)反應(yīng)時(shí)間 圖7 制備N(xiāo)-FCDs的反應(yīng)條件優(yōu)化
在熒光傳感器中,復(fù)雜環(huán)境條件下的熒光納米粒子的穩(wěn)定性是一個(gè)關(guān)系到該納米粒子能否進(jìn)一步在實(shí)際檢測(cè)中應(yīng)用的重要問(wèn)題.因此,本實(shí)驗(yàn)考察了溶液的pH及鹽度等環(huán)境條件對(duì)N-FCDs熒光強(qiáng)度的影響.實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)溶液pH值從2變化到10時(shí)(見(jiàn)圖8(a)),N-FCDs的熒光強(qiáng)度基本保持不變.此外,在不同濃度的NaCl溶液中,N-FCDs 的熒光強(qiáng)度也幾乎保持不變(見(jiàn)圖8(b)).表明制備的N-FCDs可適用于復(fù)雜條件下的傳感器分析.
為了考察N-FCDs對(duì)不同金屬離子的響應(yīng),本實(shí)驗(yàn)在熒光強(qiáng)度較高的N-FCDs溶液中加入相同濃度的不同的金屬離子,如Fe3+,Fe2+,Cu2+,Hg2+,Al3+,Cd2+,Na+,K+,Mn2+,Ba2+,Ni2+,Mg2+,Co2+,Ca2+,Pb2+和Zn2+等,在激發(fā)波長(zhǎng)為325 nm時(shí),這些常見(jiàn)金屬離子對(duì)N-FCDs熒光強(qiáng)度的響應(yīng)如圖9所示.可見(jiàn),與空白對(duì)照及其他離子相比,F(xiàn)e3+可高效猝滅N-FCDs的熒光.該熒光淬滅可歸因于N-FCDs表面的N和O對(duì)Fe3+有很強(qiáng)的親和力,致使N-FCDs團(tuán)聚,進(jìn)而發(fā)生熒光猝滅.另外,該猝滅過(guò)程也可能是Fe3+與N-FCDs
(a)pH的影響 (b)NaCl濃度的影響圖8 溶液的pH及鹽度對(duì)N-FCDs熒光強(qiáng)度的影響
cB=200 μmol/L;醋酸鈉-醋酸緩沖液,pH=4圖9 不同金屬離子對(duì)N-FCDs熒光強(qiáng)度的響應(yīng)
之間發(fā)生了非輻射電子轉(zhuǎn)移[27].
合適的Fe3+濃度對(duì)建立高靈敏度的抗壞血酸傳感器至關(guān)重要.過(guò)高濃度的Fe3+影響抗壞血酸的檢測(cè)限,而過(guò)低濃度的Fe3+又直接影響抗壞血酸的檢測(cè)范圍.如圖10(a)所示,隨著Fe3+濃度的增加,N-FCDs的熒光強(qiáng)度逐漸減弱.當(dāng)熒光淬滅程度達(dá)到94.8%時(shí),F(xiàn)e3+濃度為200 μmol/L(見(jiàn)圖10(b)).因此,后續(xù)實(shí)驗(yàn)中Fe3+濃度定為200 μmol/L.
2.3 抗壞血酸的檢測(cè)
(a)Fe3+濃度對(duì)N-FCDs熒光強(qiáng)度的影響(λ激發(fā)=325 nm) (b)熒光強(qiáng)度與Fe3+濃度的響應(yīng)關(guān)系 圖10 Fe3+濃度對(duì)抗壞血酸傳感器靈敏度的影響
圖11(a)顯示了抗壞血酸的開(kāi)關(guān)熒光響應(yīng),由此可知:不含F(xiàn)e3+的N-FCDs溶液在404 nm波長(zhǎng)處展現(xiàn)出較強(qiáng)的熒光發(fā)射性能;當(dāng)在該溶液中加入200 μmol/L Fe3+時(shí),溶液的熒光強(qiáng)度明顯減弱;而當(dāng)還原性的抗壞血酸(500 μmol/L)加入到混合液中時(shí),由于Fe3+與抗壞血酸發(fā)生氧化還原反應(yīng),使Fe3+轉(zhuǎn)化為Fe2+而從N-FCDs表面脫離,從而使體系的熒光恢復(fù)到最大值的93%.
圖11(b)是Fe3+(200 μmol/L)-N-FCDs體系中加入不同濃度的抗壞血酸(0~500 μmol/L)后溶液的熒光強(qiáng)度變化.如圖11(b)所示,隨著抗壞血酸濃度的增加,體系的熒光強(qiáng)度不斷增大.當(dāng)抗壞血酸濃度為1~200 μmol/L時(shí),與F/F0呈線性關(guān)系(見(jiàn)圖11(c)),線性方程為
Y=0.052 81x+1.136 87(R=0.997 7).
在信噪比為3的條件下,抗壞血酸的檢測(cè)限為0.06 μmol/L.
為了考察其他干擾物對(duì)Fe3+-N-FCDs體系檢測(cè)抗壞血酸的影響,在相同的實(shí)驗(yàn)條件下,分別測(cè)試了牛血清白蛋白(BSA)、賴(lài)氨酸(Lys)、谷胱甘肽(GSH)、葡萄糖(Glu)、甘氨酸(Gly)、半胱氨酸(Cys)、多巴胺(DA)、尿酸(UA)和過(guò)氧化氫等物質(zhì)對(duì)Fe3+-N-FCDs體系熒光強(qiáng)度的影響,實(shí)驗(yàn)結(jié)果如圖11(d)所示.可以看出,與空白樣品相比,加入抗壞血酸的樣品熒光恢復(fù)程度遠(yuǎn)超出加入其他物質(zhì)的熒光恢復(fù)程度.表明Fe3+-N-FCDs體系對(duì)抗壞血酸的檢測(cè)有良好的選擇性.
圖11 Fe3+-N-FCDs體系檢測(cè)抗壞血酸
2.4 維生素C片中抗壞血酸的檢測(cè)
為了評(píng)估此方法是否可用于實(shí)際樣品中抗壞血酸的檢測(cè),本實(shí)驗(yàn)用醋酸緩沖液將維生素C片中的抗壞血酸稀釋10倍后,在樣品液中加入標(biāo)準(zhǔn)抗壞血酸溶液(50,100,150 μmol/L)測(cè)定其回收率,結(jié)果如表1所示,樣品的加標(biāo)回收率為96.9%~106%,表明該傳感器適合于實(shí)際樣品的分析.
表2從線性范圍和檢測(cè)限方面比較了本文制作的傳感器與文獻(xiàn)已報(bào)道的其他傳感器的性能,可知本文傳感器對(duì)抗壞血酸的分析性能相當(dāng)或略?xún)?yōu)于其他傳感器.
表1 維生素C藥片中抗壞血酸的加標(biāo)回收率
注:回收率=100%×(加標(biāo)后濃度-加標(biāo)前濃度)/加標(biāo)量.
表2 不同方法檢測(cè)抗壞血酸的檢出限比較
本文以殼聚糖為前驅(qū)體一步合成了N-FCDs,采用Fe3+-N-FCDs體系,將熒光納米材料獨(dú)特的光學(xué)性質(zhì)和其對(duì)金屬離子的選擇性及抗壞血酸的還原性結(jié)合起來(lái),從而實(shí)現(xiàn)了對(duì)抗壞血酸的快速、簡(jiǎn)單檢測(cè),檢測(cè)的靈敏度高、選擇性好.另外,F(xiàn)e3+-N-FCDs體系還可應(yīng)用于實(shí)際樣品維生素C藥片中抗壞血酸的檢測(cè),檢測(cè)結(jié)果令人滿意,在臨床中具有潛在的應(yīng)用價(jià)值.
[1]Du J,Cullen J J,Buettner G R.Ascorbic acid:Chemistry,biology and the treatment of cancer[J].Biochim Biophys Acta,2012,1826(2):443-457.
[2]Melino V J,Soole K L,Ford C M.A method for determination of fruit derived ascorbic,tartaric,oxalic and malic acids and its application to the study of ascorbic acid catabolism in grapevines[J].Aust J Grape Wine R,2009,15(3):293-302.
[3]Shekhovtsova T N,Muginova S V,Luchinina J A,et al.Enzymatic methods in food analysis:Determination of ascorbic acid[J].Anal Chim Acta,2006,573:125-132.
[4]Li Fengxia,Wu Hongjuan,Cui Miao,et al.L-ascorbic acid biosensing assay from enzyme-immobilized pig bladder membrane as a novel platform[J].Anal Methods,2013,5(5):1253-1258.
[5]León-Ruiz V,Vera S,González-Porto A V,et al.Analysis of water-soluble vitamins in honey by isocratic RP-HPLC[J].Food Anal Methods,2013,6(2):488-496.
[6]Matei N,Radu G L,Truica G,et al.Rapid HPLC method for the determination of ascorbic acid in grape samples[J].Anal Methods,2013,5(18):4675-4679.
[7]Szultka M,Buszewska-Forajta M,Kaliszan R,et al.Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry[J].Electrophoresis,2014,35(4):585-592.
[8]Lawal A.Synthesis and utilisation of graphene for fabrication of electrochemical sensors[J].Talanta,2015,131:424-443.
[9]Sanghavi B J,Wolfbeis O S,Hirsch T,et al.Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters[J].Mikrochim Acta,2015,182(1/2):1-41.
[10]Mirzaei M,Sawan M.Microelectronics-based biosensors dedicated to the detection of neurotransmitters:A review[J].Sensors,2014,14(10):17981-18008.
[11]Zhang L,Wang J,Tian Y.Electrochemical in-vivo sensors using nanomaterials made from carbon species,noble metals,or semiconductors[J].Microchim Acta,2014,181(13):1471-1484.
[12]Wu S,He Q,Tan C,et al.Graphene-based electrochemical sensors[J].Small,2013,9(8):1160-1172.
[13]Chen A,Chatterjee S.Nanomaterials based electrochemical sensors for biomedical applications[J].Chem Soc Rev,2013,42(12):5425-5438.
[14]Zhai W,Wang C,Yu P,et al.Single-layer MnO2nanosheets suppressed fluorescence of 7- hydroxycoumarin:Mechanistic study and application for sensitive sensing of ascorbic acid in vivo[J].Anal Chem,2014,86:12206-12213.
[15]Ma Q,Li Y,Lin Z H,et al.A novel ascorbic acid sensor based on the Fe3+/Fe2+modulated photoluminescence of CdTe quantum dots@SiO2nanobeads[J].Nanoscale,2013,5(20):9726-9731.
[16]Xu X,Ray R,Gu Y,et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].J Am Chem Soc,2004,126(40):12736-12737.
[17]Lim S Y,Shen W,Gao Z.Carbon quantum dots and their applications[J].Chem Soc Rev,2015,44(1):362-381.
[18]Li H,Chen L,Wu H,et al.Ionic liquid-functionalized fluorescent carbon nanodots and their applications in electrocatalysis,biosensing,and cell imaging[J].Langmuir,2014,30(49):15016-15021.
[19]Guo Y,Zhang L,Zhang S,et al.Fluorescent carbon nanoparticles for the fluorescent detection of metal ions[J].Biosens Bioelectron,2015,63:61-71.
[20]Jahanbakhshi M,Habibi B.A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support:Application to electroanalytical determination of H2O2in fetal bovine serum[J].Biosens Bioelectron,2016,81:143-150.
[21]Liu Jingjing,Chen Zhitao,Tang Duosi,et al.Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid[J].Sens Actuators B:Chemical,2015,212:214-219.
[22]Jahan S,Mansoor F,Naz S,et al.Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye[J].Anal Chem,2013,85(21):10232-10239.
[23]Zhu X,Zhao T,Nie Z,et al.Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis[J].Anal Chem,2015,87(16):8524-8530.
[24]Lai T,Zheng E,Chen L,et al.Hybrid carbon source for producing nitrogen-doped polymer nanodots:One-pot hydrothermal synthesis,fluorescence enhancement and highly selective detection of Fe(Ⅲ)[J].Nanoscale,2013,5(17):8015-8021.
[25]Yang Y,Cui J,Zheng M,et al.One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J].Chem Commun,2012,48(3):380-382.
[26]Yang X,Zhuo Y,Zhu S,et al.Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging[J].Biosens Bioelectron,2014,60:292-298.
[27]Li W,Zhang Z,Kong B,et al.Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging[J].Angew Chem Int Ed,2013,52(31):8151-8155.
[28]Chen B,Li F,Li S,et al.Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging[J].Nanoscale,2013,5(5):1967-1971.
[29]Wang X,Qu K,Xu B,et al.Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents[J].J Mater Chem,2011,21(8):2445-2450.
[30]Qu D,Zheng M,Du P,et al.Highly luminescent S,N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J].Nanoscale,2013,5(24):12272-12277.
[31]Zheng Y,Jiao Y,Ge L,et al.Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J].Angewandte Chemie International Edition,2013,52(11):3110-3116.
[32]Li H,Zhai J,Tian J,et al.Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(Ⅱ) ion in aqueous solution[J].Biosens Bioelectron,2011,26(12):4656-4660.
[33]Wang X,Wu P,Hou X,et al.An ascorbic acid sensor based on protein-modified Au nanoclusters[J].Analyst,2013,138(1):229-233.
[34]Jirimali H D,Nagarale R K,Saravanakumar D,et al.Hydroquinone modified chitosan/carbon film electrode for the selective detection of ascorbic acid[J].Carbohydr Polym,2013,92(1):641-644.
(責(zé)任編輯 薛 榮)
A fluorescence sensor for ascorbic acid based on nanocomposite "switch" of Fe3+and nitrogen-doped carbon nanodots generated from chitosan
WANG Jiajun, LIU Qing, FENG Shishi, FENG Zhiling, RUAN Yongming, WENG Xuexiang
(CollegeofChemistryandLifeSciences,ZhejiangNormalUniversity,Jinhua321004,China)
Ascorbic acid (AA) was detected by using a nano-switch of ferric ions (Fe3+), the nitrogen-doped fluorescence carbon nanodots (N-FCDs) was synthesized by one-step hydrothermal carbonization of chitosan at a mild temperature. The as-obtained N-FCDs exhibited good water dispersibility, excellent pH stability, and strong fluorescence. The results showed that the fluorescence of the N-FCDs could be effectively quenched by Fe3+and then be sensitively turned on in the presence of AA via an "off-on" fluorescence response through the oxidation-reduction between Fe3+and AA. A wide detection linear range for AA was found to be from 1 μmol/L to 200 μmol/L with a detection limit of 0.06 μmol/L. The switch sensor was also successfully applied to detect vitamin C tablets with satisfactory recovery ranging from 96.9% to 106%, exhibited great opportunities for practical application in food and clinical system.
sensor; nitrogen-doped fluorescence carbon nanodots; ferric ions; off-on fluorescence switch; ascorbic acid
10.16218/j.issn.1001-5051.2017.03.009
?2016-10-25;
2017-03-03
浙江省自然科學(xué)基金資助項(xiàng)目(LY15C040002)
王嘉君(1993-),女,安徽黃山人,碩士研究生.研究方向:納米材料在生化分析中的應(yīng)用.
翁雪香.E-mail: xuexian@zjnu.cn>
O657
A
1001-5051(2017)03-0299-08