• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering

    2020-04-24 05:50:06HanghangWANG王行行LiyanZHANG張麗艷WenqiLU陸文琪andJunXU徐軍
    Plasma Science and Technology 2020年3期
    關(guān)鍵詞:徐軍行行

    Hanghang WANG (王行行),Liyan ZHANG (張麗艷),Wenqi LU (陸文琪) and Jun XU (徐軍)

    1 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Ministry of Education,School of Physics,Dalian University of Technology,Dalian 116024,People’s Republic of China

    2 School of Chemical Engineering,Dalian University of Technology,Dalian 116024,People’s Republic of China

    Abstract

    Keywords:continuous compositional spread method,silicon carbide,optical band gap,magnetron sputtering,Raman and IR spectra

    1.Introduction

    Due to its excellent physical and chemical properties,silicon carbide(SiC)has been or is being widely used in most hi-tech fields such as aerospace,aviation,military,and nuclear power[1–4].The key properties of SiC include high melting point,high thermal conductivity,high hardness,resistance against corrosion and wear,low thermal expansion and semiconducting nature.The properties such as optical band gap of SixCythin films are strongly dependent on the Si?C bond density,and the formation of Si?C bonds is directly related to the composition of SixCythin films.

    The composition change of SixCythin films not only determines the optical bang gap,but also determines other properties such as carrier density,conductivity and induced spin polarization,all these properties depend on the structure,which in turn depends on the composition.The change of the carbon content y of SixCythin films results in variations of its structure and leads to a complex relationship between the properties and compositions [5–7].In order to shed light on this relationship,SixCythin films with different compositions have been deposited by a variety of techniques,such as plasma enhanced chemical vapor deposition,radio frequency(RF) sputtering,pulsed laser deposition,ion implantation,direct current reactive magnetron sputtering [6–10].Among various methods,the magnetron sputtering appears to be very attractive due to its relative simplicity,high deposition rates and wide application in industry [11].Furthermore,magnetron sputtering technique can simplify the investigation of the relationship between the properties and compositions by depositing hydrogen-free SixCythin films.The compositions of hydrogen-free SixCythin films deposited by magnetron sputtering techniques can be changed by controlling the power of target,area ratio of silicon to graphite sections of a composite target and even the driving frequency of RF power supply [11–17].In the present study,continuous compositional spread method,a kind of combinatorial material methodology,has been used to deposit SixCythin films with different compositions by controlling deposition position.Compared with the conventional magnetron sputtering methods,the major advantage of the continuous compositional spread method is that a range of SixCythin films with different compositions can be prepared in a single deposition and the optimal parameters can be obtained quickly [18,19].

    In this paper,the continuous compositional spread method is employed to investigate the relationship of optical band gap and compositions.The compositions of the thin films are changed by controlling the deposition position.The present work is focused on the variation of the composition with deposition position and the influence of compositions on chemical structure and the optical band gap of SixCythin films.

    Figure 1.The schematic diagram of co-sputtering system.

    2.Experimental details

    The SixCythin films were deposited by Microwave Electron Cyclotron Resonance plasma enhanced RF (13.56 MHz)magnetron co-sputtering;the deposition system schematic is illustrated in figure 1.A horizontal deposition distance L is defined as the horizontal distance of sample to the left side of silicon target,as shown in figure 1.Both the angles between the targets and the substrates are 37°.The distance between the center of silicon target and substrate changes from 128.2 to 180.6 mm with the L changing from 85 to 175 mm,while the distance between the center of graphite target and substrate changes from 180.6 to 128.2 mm with L changing from 85 to 175 mm.The left silicon (diameter:68 mm,purity:99.999%) and the right graphite (68 mm,99.999%) magnetron targets were sputtered singly or simultaneously:(1) for silicon thin films,only the silicon target was sputtered and the RF power of target was set to 150 W;(2) for carbon thin films,only the graphite target was sputtered and the RF power of target was set to 500 W;(3) for SixCythin films,the two targets were sputtered simultaneously and the RF power of silicon and graphite targets was set to 150 W and 500 W,respectively.For all of the sputtering process described above,a microwave plasma source was set as 250 W to get high plasma density near the substrate and maintain discharge during sputtering process [20].Before introducing the sputtering argon gas (99.999%),the system was pumped to a pressure of 2.6×10–3Pa,and then the sputtering pressure was set as 0.22 Pa.The flow rate of the argon gas was kept constant at 20 sccm.All thin films were deposited on square Si and glass substrates,10 mm on a side,at room temperature for different characterizations:Si substrates deposited for 120 min were used for deposition rate,composition and chemical structure measurement,and the glass substrates deposited for 20 min were used for transmittance measurement.

    The film thickness was measured by Dektak 6M surface profiler.The infrared absorption spectra of the SixCythin films were measured by Nicolet 6700 FTIR in the wavenumber range of 400–4000 cm?1with a spectral resolution of 4 cm?1.The Raman spectra were measured by Renishaw inVia instrument and a 532 nm line of a 10 mW laser as the exciting source.The Raman spectra range was 200–2000 cm?1and corrected by deducting the background signal.The optical transmittance of the films was investigated by a DH-2000-BAL type ultraviolet–visible spectrophotometer.The compositions were analyzed by ESCALABTM250Xi x-ray photoelectron spectrometer.

    3.Results and discussion

    Silicon (Si),carbon (C) and SixCythin films have been deposited on Si substrates,respectively.The deposition rate of these thin films is plotted as a function of horizontal deposition distance L in figure 2(a).It can be seen that the deposition rate of Si films decreases almost linearly with the increasing L.In contrast,the deposition rate of C films increases almost linearly with L.Similar results have been reported in [21,22].The co-sputtering of the silicon and graphite targets leads to the deposition rate of SixCyfilms as shown in figure 2(a),firstly decreases and then increases with the increasing L.Thus,we can expect that the compositions of the SixCythin films should gradually vary with L.In order to verify the expected result,the compositions of the SixCythin films obtained from x-ray photoelectron spectroscopy (XPS)measurements are plotted as a function of L in figure 2(b).It is clear that the carbon content increases linearly from 0.28 to 0.72 with the deposition position changed from 85 to 175 mm,and the stoichiometric SiC thin film could be found at the cross point of two dot lines shown in figure 2(b)with L value of 130 mm.The SixCythin film composition changes from C poor to C rich with increasing y.Due to a nearly linear relation between L and y,L can be used as a reference for the carbon content of the SixCythin films.

    Figure 2.(a)The deposition rates of the thin films as a function of L,(b) the element content of the SixCy thin films as a function of L.

    Figure 3.The infrared absorption spectra of the SixCy films with increasing y.

    The infrared absorption spectra of the SixCythin films with increasing carbon content y are shown in figure 3.The spectra exhibit one main absorption band centered around 790 cm?1,which is assigned to vibrational modes of Si?C[8],while the weak band around 1400 cm?1appeared when y value is larger than 0.49 might due to sp2C?C bonds [12,23].

    The Si?C bond density NSi?Ccan be calculated from the following formula based on the peak area of Si?C stretching mode [17]:

    Figure 4.(a)The Si?C bond densities vary with increasing y,(b)the FWHM and peak position of Si?C bands vary with increasing y.The inset is a typical fitting result of the Si?C band.

    where As=2.13×1019cm?2is the conversion factor of Si–C stretching bond,ν is the wavenumber and α(ν) is the absorption coefficient.

    The Si?C bond density of the SixCythin films varying with increasing y is plotted in figure 4(a).Figure 4(a) shows that the Si?C bond density increases firstly and then decreases with increasing carbon content y.For y<0.5,C poor composition regime,the Si?Si bonds are replaced by Si?C bonds with increasing y;whereas for y>0.5,C rich regime,the Si?C bonds are replaced by C?C bonds with increasing y [6].The cross point of two regimes leads to a maximum Si?C bond density of 11.7×1022cm?3appearing at y=0.49.

    The full width at half maximum (FWHM) and peak position of the Si?C bands varying with increasing y are plotted in figure 4(b).Both the FWHM and peak position were obtained from the peak fitting with a Gaussian function.A typical fitting result of the Si?C band with y=0.57 is given in the inset of figure 4(b).The experimental and fitted results are plotted by circle and solid lines,respectively.Figure 4(b)shows that the Si?C peak FWHM increases from 212 to 294 cm?1and peak position increases from 753 to 813 cm?1with increasing y.The increase of FWHM indicates that the degree of disorder for the SixCythin films increases with increasing carbon content y [16].The increase of peak position is due to the higher electronegativity of carbon respect to the substituted silicon atoms [24].

    The Raman spectrum of the SixCythin films is shown in figure 5.The spectra exhibit three main bands located at 260–590 cm?1,590–1050 cm?1and 1100–1750 cm?1,respectively.The band centered around 468 cm?1is due to Si?Si bonds and the band centered around 800 cm?1is attributed to Si?C bonds [17,25].The last band centered around 1450 cm?1is due to the C?C bond [17,24,25].The C?C band is probably a result of intimately mixed diamondlike sp3and graphite-like sp2bonds in deposited films[9,25].The decrease of Si?Si bands intensity and the increase of C?C bands intensity indicate that the C atoms replace the Si atoms in the SixCynetwork with increasing y.This result agrees well with the infrared result discussed above.

    Figure 5.The Raman spectrum of the SixCy films with increasing y.

    Figure 6.The G peak position and the intensity ratio I(D)/I(G)vary with increasing y.

    The C?C band intensity and width increase significantly with carbon content y,and this band can be fitted by two Gaussian peaks labeled D and G,as shown in the inset of figure 5.The D peak centered around 1348 cm?1is due to disordered sp2C bonds in the graphitic structure,while the G peak is duo to ring-like and chain-like graphite structures[25,26].The G peak position and the intensity ratio I(D)/I(G)are the two key parameters to monitor carbon bonds.The G peak position and the intensity ratio I(D)/I(G) vary with increasing y are plotted in figure 6.It is shown that the G peak position linearly increases from 1450 to 1505 cm?1with increasing carbon content y.This phenomenon has also been reported for amorphous SixCy:H [27].The increase of intensity ratio I(D)/I(G)with y shown in figure 6 indicates that the disordered carbon in thin films increases and the sp3carbon content decreases [27,28].

    Figure 7.(a)The transmittance of the SixCy thin films,(b)the optical band gap varies with increasing y.The inset is the deposition rate of the SixCy thin films deposited on glass substrate.

    The typical transmittance spectra of the SixCythin films are shown in figure 7(a),the marks on each spectrum act as the indicator of carbon content y.The deposition rate of the SixCythin films deposited on glass substrate is plotted as a function of carbon content y in the inset of figure 7(b).The optical band gap of the thin films was derived from the ultraviolet–visible spectroscopy (UV–vis) spectra by Tauc’s plotting method [6].The optical band gap of SixCythin films varying with carbon content y is shown in figure 7(b).It shows that the optical band gap increases initially and reaches to a maximum,and then it decreases rapidly.The maximum optical band gap value of 1.99 eV appears around y=0.5.Compare with figure 4(a),the variation of Si?C bond density and optical band gap with carbon content y are similar,which indicates that the optical band gap depends on Si?C bond density:at y<0.5 regime,the optical band gap increases with y due to the fact that the Si?Si bonds are gradually replaced by the Si–C bonds;at the C rich regime,y>0.5,the optical band gap decreases with y due to two reasons:(1)the sp3Si?C bonds are replaced by sp2C?C bonds [7],(2) the increase of disordered carbon and the decrease of sp3carbon content narrow the optical band gap [29].Above results demonstrate that the optical band gap of SixCyfilms could be changed in the range of 1.27?1.99 eV with carbon content y changing from 0.28 to 0.72.

    4.Conclusions

    SixCyfilms with different carbon contents have been prepared by the continuous compositional spread method.The carbon content y is changed from 0.28 to 0.72 by controlling the deposition position.Nearly linear relationship between L and y is obtained.When y<0.5,the Si?Si bonds are replaced by Si?C bonds with increasing y,which increases the Si?C bond density,leads to the optical band gap increase;whereas for y>0.5,the Si?C bonds are replaced by C?C bonds with increasing y,which reduces the Si?C bond density,leads to the lower optical band gap.The maximum optical band gap value of 1.99 eV appears around y=0.5.

    ORCID iDs

    猜你喜歡
    徐軍行行
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Crystal growth,spectral properties and Judd–Ofelt analysis of Pr: CaF2-YF3?
    醫(yī)者頌
    一場(chǎng)車(chē)禍
    行行重行行
    Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake*
    行行重行行
    千王之變
    連云港方言動(dòng)詞體標(biāo)記“行行”
    文教資料(2014年2期)2014-08-21 03:02:45
    精品少妇黑人巨大在线播放| 熟妇人妻不卡中文字幕| 欧美日韩一级在线毛片| 新久久久久国产一级毛片| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 亚洲精品一二三| 午夜精品国产一区二区电影| 在现免费观看毛片| 亚洲国产欧美网| 国产亚洲午夜精品一区二区久久| 亚洲av成人精品一二三区| 久久免费观看电影| 亚洲七黄色美女视频| 人人妻人人爽人人添夜夜欢视频| 麻豆乱淫一区二区| 亚洲精品国产一区二区精华液| 日本午夜av视频| 你懂的网址亚洲精品在线观看| 国产探花极品一区二区| 亚洲精品国产区一区二| 美女福利国产在线| 99久久精品国产亚洲精品| 男的添女的下面高潮视频| 99re6热这里在线精品视频| 极品少妇高潮喷水抽搐| 午夜激情av网站| 久久韩国三级中文字幕| 亚洲色图综合在线观看| 中文字幕最新亚洲高清| 一级毛片 在线播放| 亚洲色图 男人天堂 中文字幕| 一级,二级,三级黄色视频| 亚洲人成77777在线视频| 涩涩av久久男人的天堂| 亚洲精品久久午夜乱码| e午夜精品久久久久久久| 九草在线视频观看| 看免费成人av毛片| 久久精品国产亚洲av涩爱| h视频一区二区三区| 亚洲成人一二三区av| 精品第一国产精品| 国产精品亚洲av一区麻豆 | 国产成人精品无人区| 国产精品久久久人人做人人爽| 精品人妻一区二区三区麻豆| 在线亚洲精品国产二区图片欧美| 精品国产超薄肉色丝袜足j| a 毛片基地| 一级a爱视频在线免费观看| av女优亚洲男人天堂| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 99国产精品免费福利视频| 国产在线一区二区三区精| 亚洲欧美清纯卡通| 色婷婷av一区二区三区视频| 国产成人精品在线电影| 国产伦理片在线播放av一区| 日本91视频免费播放| 亚洲精品一区蜜桃| 国产深夜福利视频在线观看| 97人妻天天添夜夜摸| 又黄又粗又硬又大视频| 又黄又粗又硬又大视频| 中文字幕av电影在线播放| 丰满乱子伦码专区| 天天操日日干夜夜撸| 一本一本久久a久久精品综合妖精| 日韩中文字幕欧美一区二区 | 精品一区二区三区四区五区乱码 | 欧美精品高潮呻吟av久久| 黄色 视频免费看| 欧美人与性动交α欧美软件| 久久99热这里只频精品6学生| 久久久久人妻精品一区果冻| 一级毛片 在线播放| 国产精品成人在线| 国产精品av久久久久免费| 亚洲成色77777| 国产免费现黄频在线看| 国产精品久久久人人做人人爽| 天天躁夜夜躁狠狠躁躁| 一级黄片播放器| 丝袜脚勾引网站| 天天躁日日躁夜夜躁夜夜| 黄色毛片三级朝国网站| 国产成人av激情在线播放| 最近最新中文字幕免费大全7| 欧美日韩一级在线毛片| 少妇人妻 视频| 亚洲美女视频黄频| 国产精品成人在线| 日韩大码丰满熟妇| 亚洲精品久久久久久婷婷小说| 国产极品天堂在线| 久久精品国产亚洲av高清一级| 日韩欧美一区视频在线观看| av在线app专区| 一边摸一边做爽爽视频免费| 亚洲av综合色区一区| videos熟女内射| 欧美亚洲日本最大视频资源| 国产淫语在线视频| 欧美激情高清一区二区三区 | 国产免费一区二区三区四区乱码| 男女国产视频网站| 99热国产这里只有精品6| 国产免费福利视频在线观看| 精品人妻在线不人妻| 亚洲欧美日韩另类电影网站| 黄色毛片三级朝国网站| av又黄又爽大尺度在线免费看| 亚洲国产欧美在线一区| 午夜久久久在线观看| 国产亚洲午夜精品一区二区久久| 欧美少妇被猛烈插入视频| 男女国产视频网站| 亚洲av电影在线观看一区二区三区| 国产亚洲最大av| av国产精品久久久久影院| 亚洲精品久久午夜乱码| 亚洲一级一片aⅴ在线观看| a级毛片在线看网站| 国产一卡二卡三卡精品 | 一边摸一边做爽爽视频免费| 国产男人的电影天堂91| 国产麻豆69| 日韩不卡一区二区三区视频在线| 欧美日韩视频精品一区| 男女边摸边吃奶| 午夜福利网站1000一区二区三区| 天天躁夜夜躁狠狠久久av| 这个男人来自地球电影免费观看 | 啦啦啦视频在线资源免费观看| 免费观看性生交大片5| 亚洲综合精品二区| 我要看黄色一级片免费的| 中文字幕精品免费在线观看视频| 一边摸一边做爽爽视频免费| 热re99久久精品国产66热6| 亚洲av综合色区一区| 亚洲av成人不卡在线观看播放网 | 你懂的网址亚洲精品在线观看| 看免费成人av毛片| 国产精品.久久久| 国产熟女欧美一区二区| 久久人妻熟女aⅴ| 最近中文字幕2019免费版| 色网站视频免费| 国产女主播在线喷水免费视频网站| 超色免费av| 久久久久精品久久久久真实原创| 日韩中文字幕视频在线看片| 欧美中文综合在线视频| 国产成人免费观看mmmm| 99热网站在线观看| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 午夜老司机福利片| 菩萨蛮人人尽说江南好唐韦庄| 男的添女的下面高潮视频| 女人久久www免费人成看片| 国产成人精品福利久久| 国产一区有黄有色的免费视频| 亚洲精品国产区一区二| 一区二区三区激情视频| 三上悠亚av全集在线观看| 亚洲美女搞黄在线观看| 欧美97在线视频| 久久久欧美国产精品| 亚洲av日韩精品久久久久久密 | 亚洲精品中文字幕在线视频| 91成人精品电影| 两个人免费观看高清视频| 9热在线视频观看99| 不卡av一区二区三区| 亚洲国产最新在线播放| 亚洲欧美中文字幕日韩二区| 一级毛片我不卡| 精品少妇内射三级| 91精品国产国语对白视频| 色播在线永久视频| 亚洲国产最新在线播放| 热99国产精品久久久久久7| 在线 av 中文字幕| 国产黄色视频一区二区在线观看| 一二三四在线观看免费中文在| 久久精品久久久久久久性| 婷婷成人精品国产| 国产精品久久久久久久久免| 人妻 亚洲 视频| 精品人妻熟女毛片av久久网站| 国产高清不卡午夜福利| 纵有疾风起免费观看全集完整版| 这个男人来自地球电影免费观看 | 午夜福利影视在线免费观看| 性色av一级| 欧美 日韩 精品 国产| 亚洲精品久久成人aⅴ小说| 女人久久www免费人成看片| 电影成人av| 日本午夜av视频| 欧美国产精品一级二级三级| 国产视频首页在线观看| 久久国产亚洲av麻豆专区| 免费日韩欧美在线观看| 国产精品免费视频内射| 久久久久久免费高清国产稀缺| 少妇精品久久久久久久| 国产伦理片在线播放av一区| 黑丝袜美女国产一区| 最近最新中文字幕大全免费视频 | 国产成人精品无人区| 免费在线观看黄色视频的| 国产激情久久老熟女| 美女福利国产在线| 国产黄色视频一区二区在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲久久久国产精品| 成人亚洲欧美一区二区av| 十八禁网站网址无遮挡| 人妻一区二区av| 精品人妻熟女毛片av久久网站| 另类亚洲欧美激情| 日本91视频免费播放| 国产精品麻豆人妻色哟哟久久| 午夜福利乱码中文字幕| videosex国产| 亚洲精品,欧美精品| 中文字幕色久视频| 国产99久久九九免费精品| 少妇 在线观看| 一级爰片在线观看| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片| 久久久久视频综合| 青青草视频在线视频观看| 婷婷色综合www| av女优亚洲男人天堂| 女人被躁到高潮嗷嗷叫费观| 亚洲第一青青草原| 国产av精品麻豆| 欧美精品人与动牲交sv欧美| 国产熟女午夜一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 免费久久久久久久精品成人欧美视频| 日韩成人av中文字幕在线观看| 中文字幕精品免费在线观看视频| 久久久久国产精品人妻一区二区| 亚洲成人免费av在线播放| 欧美人与善性xxx| 肉色欧美久久久久久久蜜桃| 69精品国产乱码久久久| 久久久久人妻精品一区果冻| 久久精品亚洲熟妇少妇任你| 精品国产超薄肉色丝袜足j| 纯流量卡能插随身wifi吗| 欧美在线黄色| 不卡视频在线观看欧美| 国产黄频视频在线观看| 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 天天躁狠狠躁夜夜躁狠狠躁| 色网站视频免费| 极品人妻少妇av视频| 亚洲av电影在线观看一区二区三区| 中文字幕精品免费在线观看视频| 18禁动态无遮挡网站| 国产av一区二区精品久久| 最近中文字幕2019免费版| 在线观看免费午夜福利视频| 精品第一国产精品| 九色亚洲精品在线播放| 欧美av亚洲av综合av国产av | 欧美中文综合在线视频| 亚洲四区av| 男女午夜视频在线观看| 美女高潮到喷水免费观看| 最新的欧美精品一区二区| 国产精品免费大片| 亚洲自偷自拍图片 自拍| 久久午夜综合久久蜜桃| 我要看黄色一级片免费的| 悠悠久久av| 亚洲av在线观看美女高潮| 天天影视国产精品| 久久精品aⅴ一区二区三区四区| 热99久久久久精品小说推荐| 最近中文字幕2019免费版| 男女之事视频高清在线观看 | 亚洲成人免费av在线播放| 国产高清不卡午夜福利| 最新的欧美精品一区二区| 国产精品三级大全| 在现免费观看毛片| 欧美av亚洲av综合av国产av | 亚洲,一卡二卡三卡| 黄网站色视频无遮挡免费观看| 赤兔流量卡办理| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久 | 老熟女久久久| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 男女免费视频国产| 国产97色在线日韩免费| av电影中文网址| 伊人久久大香线蕉亚洲五| 看免费成人av毛片| 最黄视频免费看| www.熟女人妻精品国产| 中文乱码字字幕精品一区二区三区| 婷婷成人精品国产| 午夜福利乱码中文字幕| 精品国产一区二区三区久久久樱花| 一区在线观看完整版| 国产亚洲最大av| a级毛片黄视频| 人人妻,人人澡人人爽秒播 | 丰满饥渴人妻一区二区三| 国产又爽黄色视频| 最近中文字幕2019免费版| 成人国产麻豆网| 一级毛片我不卡| 免费黄频网站在线观看国产| 国产精品 国内视频| 国产精品免费大片| 女性被躁到高潮视频| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 中文字幕色久视频| 国产片特级美女逼逼视频| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 国产成人啪精品午夜网站| 一边摸一边抽搐一进一出视频| 精品人妻在线不人妻| 最新的欧美精品一区二区| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 超色免费av| 在线观看国产h片| 欧美成人午夜精品| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 黄色毛片三级朝国网站| 亚洲美女搞黄在线观看| 国产熟女欧美一区二区| 操美女的视频在线观看| 精品久久久精品久久久| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 成人国语在线视频| 五月天丁香电影| 考比视频在线观看| 午夜av观看不卡| 好男人视频免费观看在线| 少妇精品久久久久久久| 99国产综合亚洲精品| 一区二区三区精品91| 91老司机精品| 曰老女人黄片| 午夜福利乱码中文字幕| 天天添夜夜摸| 久久久精品94久久精品| 亚洲综合精品二区| 91成人精品电影| 在线天堂中文资源库| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 十分钟在线观看高清视频www| 老司机影院成人| 国产午夜精品一二区理论片| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 国产黄色免费在线视频| 看免费av毛片| 久久久国产欧美日韩av| 1024视频免费在线观看| 国产1区2区3区精品| 亚洲精品一区蜜桃| 叶爱在线成人免费视频播放| 国产一区亚洲一区在线观看| 美女国产高潮福利片在线看| 国产在线一区二区三区精| www.av在线官网国产| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 天天影视国产精品| 亚洲欧美精品自产自拍| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 久久国产精品男人的天堂亚洲| 欧美日韩一区二区视频在线观看视频在线| 一边亲一边摸免费视频| 国产精品一二三区在线看| 19禁男女啪啪无遮挡网站| 色吧在线观看| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全免费视频 | 国产精品成人在线| 免费观看性生交大片5| 久久久国产欧美日韩av| 亚洲精品自拍成人| 免费观看性生交大片5| 少妇精品久久久久久久| 婷婷色综合大香蕉| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 久久99精品国语久久久| 午夜福利视频精品| 美女午夜性视频免费| 这个男人来自地球电影免费观看 | 午夜免费观看性视频| 观看av在线不卡| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| 国产国语露脸激情在线看| 女性被躁到高潮视频| 99re6热这里在线精品视频| 亚洲av男天堂| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 狂野欧美激情性xxxx| 青春草国产在线视频| 久久99一区二区三区| 国产av国产精品国产| 亚洲精品一二三| 一级毛片 在线播放| 免费在线观看视频国产中文字幕亚洲 | 免费观看人在逋| 亚洲av日韩在线播放| 中文字幕最新亚洲高清| 亚洲熟女毛片儿| 精品酒店卫生间| 亚洲av男天堂| 少妇人妻精品综合一区二区| www.av在线官网国产| 久久久久视频综合| 青春草亚洲视频在线观看| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 国产成人av激情在线播放| 国产日韩欧美在线精品| 欧美日韩视频精品一区| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 视频区图区小说| 热99国产精品久久久久久7| 欧美黑人欧美精品刺激| 日韩大片免费观看网站| 青春草国产在线视频| 中文字幕另类日韩欧美亚洲嫩草| 久久ye,这里只有精品| av在线app专区| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 成年女人毛片免费观看观看9 | 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| a级片在线免费高清观看视频| 亚洲国产av影院在线观看| 如何舔出高潮| 亚洲国产欧美一区二区综合| av国产久精品久网站免费入址| 国产又色又爽无遮挡免| 成人国语在线视频| 免费看av在线观看网站| 亚洲一码二码三码区别大吗| 午夜福利视频精品| 久久av网站| 在线观看三级黄色| 国产爽快片一区二区三区| a级毛片在线看网站| 久久精品国产综合久久久| 欧美黑人欧美精品刺激| 国产亚洲欧美精品永久| 亚洲图色成人| 婷婷色综合大香蕉| 欧美国产精品va在线观看不卡| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 午夜久久久在线观看| 丝袜在线中文字幕| 日韩一本色道免费dvd| av国产精品久久久久影院| av在线老鸭窝| 国产精品无大码| 最近手机中文字幕大全| 国产毛片在线视频| 国产激情久久老熟女| 久久久久久久大尺度免费视频| 色精品久久人妻99蜜桃| 不卡av一区二区三区| 国产精品一区二区在线观看99| 国产人伦9x9x在线观看| 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 欧美激情高清一区二区三区 | 在线亚洲精品国产二区图片欧美| 又大又爽又粗| 热99国产精品久久久久久7| 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜一区二区 | 波多野结衣av一区二区av| 69精品国产乱码久久久| 黄色视频在线播放观看不卡| 欧美日韩亚洲综合一区二区三区_| 日本爱情动作片www.在线观看| 亚洲视频免费观看视频| 男女边吃奶边做爰视频| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 黄色 视频免费看| 午夜日本视频在线| 老司机深夜福利视频在线观看 | 黄片播放在线免费| 一区福利在线观看| 亚洲熟女精品中文字幕| av卡一久久| www.av在线官网国产| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 亚洲国产精品999| 人人澡人人妻人| 十八禁网站网址无遮挡| 一区二区三区四区激情视频| 国产精品二区激情视频| 黄片播放在线免费| 国产亚洲精品第一综合不卡| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 人妻一区二区av| 亚洲国产精品一区三区| 宅男免费午夜| 精品一区在线观看国产| 国产精品久久久人人做人人爽| 国产男女内射视频| 日韩电影二区| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 777米奇影视久久| av在线app专区| 国产一区二区在线观看av| 亚洲av成人不卡在线观看播放网 | 欧美日韩精品网址| 国产成人精品久久二区二区91 | 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人不卡在线观看播放网 | 久久久久久人妻| 又大又黄又爽视频免费| 黄色 视频免费看| 国产精品无大码| 国产成人欧美| 免费观看a级毛片全部| 欧美亚洲日本最大视频资源| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 免费高清在线观看视频在线观看| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 日韩一本色道免费dvd| 国产 精品1| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影 | 国产免费现黄频在线看| 丝袜美足系列| 色网站视频免费| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 午夜福利影视在线免费观看| 波野结衣二区三区在线| av电影中文网址| 欧美xxⅹ黑人| 国产精品一区二区精品视频观看| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 日本av免费视频播放| 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 国产野战对白在线观看| 国产精品人妻久久久影院| 国产av一区二区精品久久| 制服人妻中文乱码| 男女床上黄色一级片免费看| 黄色怎么调成土黄色| 尾随美女入室| 校园人妻丝袜中文字幕| 女性生殖器流出的白浆|