• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake*

    2018-05-07 06:07:27LIYunkai李云凱ZHANGYuying張毓穎XUJun徐軍ZHANGShuo張碩
    Journal of Oceanology and Limnology 2018年2期
    關鍵詞:徐軍

    LI Yunkai (李云凱) , ZHANG Yuying (張毓穎) , XU Jun (徐軍) , ZHANG Shuo (張碩)

    1 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

    2 Marine Sciences Program, School of Environment, Arts and Society, Florida International University, 3000 NE 151st St., North Miami, Florida 33181, USA

    3 Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

    1 INTRODUCTION

    Lakes are complex aquatic ecosystems consisting of distinct subsystems or habitats with large environmental heterogeneity (Arcagni et al., 2015).Such spatial heterogeneity may be associated with strong variations in environmental conditions and resource availability, possibly resulting in different contribution of planktonic and benthic production to food webs (Zambrano et al., 2010; Vander Zanden et al., 2011; Xu et al., 2014). Such variation is usually related to anthropogenic sources of sewage (Steff y and Kilham, 2004) or proximity to areas of increased urban populations (Harvey and Kitchell, 2000). For instance, agricultural, urban, and industrial development has led to the release of a relative abundance of nutrients to aquatic environments,which influences the abundance and nutritional quality of organisms at the base of the food web,thereby affecting the overall condition of upper-level consumers (Hebert et al., 2006; Ofukany et al., 2015).Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In reality, differences in food web structures have often been observed in large lakes with strong environmental gradients(Guzzo et al., 2011; Hobson et al., 2012).

    Stable carbon and nitrogen isotopes are increasingly employed to characterize the food web structure of aquatic ecosystems and isotope ratios (13C/12C and15N/14N, referred to as δ13C and δ15N, respectively) can reveal distinct components of an organism’s dietary niche (Post, 2002; Fry, 2006; Layman et al., 2007;Shiff man et al., 2012). δ13C values change little (0–1‰) as carbon moves up the food chain, thus they can be used to trace the ultimate food sources of an organism (Peterson and Fry, 1987). δ15N values show a predictable stepwise enrichment (2‰–4‰) from prey to predator, providing a means to quantify the trophic position of an organism (Minagawa and Wada,1984; Post, 2002; Caut et al., 2009; Hussey et al.,2014). This approach has been used to elucidate major pathways of energy flow to organisms (Vander Zanden et al., 2011), regime shifts in freshwater ecosystems(Xu et al., 2014), impacts of eutrophication (Hobson et al., 2012), and has allowed spatial heterogeneity to be identified within a single lake (Zambrano et al.,2010; Guzzo et al., 2011).

    Taihu Lake is the third largest freshwater lake in China, with an area of 2 338 km2and a mean depth of 1.9 m. The lake has provided drinking water, tourism,fisheries, and shipping services for centuries (Qin et al., 2007; Li et al., 2009). Gross Domestic Product(GDP) in the lake drainage area is about one-seventh of the total GDP of China (Qin et al., 2007). Due to the rapid development of the economy and the intensive use of the lake, pollution has become increasingly serious in Taihu Lake since the 1980s, and this has rapidly accelerated the eutrophication of the lake (Li et al., 2009). different degrees of economic growth and urbanization around the lake have resulted in a large trophic gradient from southern to northern Taihu Lake(Qin et al., 2007). Therefore, two sub-basins with distinct morphometry and trophic status can be found in Taihu Lake; Meiliang Bay (MB) and East Taihu Lake (ETL). MB is relatively large with phytoplankton as the main primary producer. ETL is located in the southeast of Taihu Lake and is covered with a dense population of vascular plants and referred to as a macrophyte-type lake (Wu et al., 2006). Although the eutrophication and changes within the planktonic community have been the focus of previous trophic studies on Taihu Lake (Wu et al., 2006; Tan et al.,2009), and studies related to fish populations have emerged in recent years (Zhou et al., 2011; Mao et al.,2012), most of these studies were not comprehensive at the spatial or community-wide levels (Xu et al.,2011; Mao et al., 2012; Li and Gong, 2014), though a high degree of spatial heterogeneity within the ecosystem was observed (He et al., 2012). This may provide misleading information when examining trophic interactions among key species at a whole lake scale or making comparisons of food web structures among lakes. Additionally, the consideration of such spatial heterogeneity will be helpful for policy decisions in restoration and ecosystem-based fishery management (Li et al., 2009).

    Fig.1 Map of Taihu Lake and the sampling stations between August and October, 2012

    The objectives of this research are; (1) to evaluate the spatial heterogeneity of δ13C and δ15N values of organisms, and compare the food web attributes between different lake sub-basins, and (2) to elucidate the major pathways of energy flow through the food web. Stable isotope data will provide baseline information for comparison with future food web studies and aid researchers in predicting how changes in eutrophication will affect fish community structures and fisheries resources.

    2 MATERIAL AND METHOD

    2.1 Study sites

    Taihu Lake (119°53′45″to 120°36′15″E and 22°00′to 27°10′N) is a eutrophic system with a mean depth of 1.9 m. The annual precipitation in the area is 1 100–1 400 mm, and the mean temperature is approximately 16°C. We randomly selected three sampling sites in MB (sampling sites: MB1, MB2,MB3) and ETL (sampling site: E1, E2, E3), (Fig.1).Inter-site distance within each basin was approximately 5 km. MB is in the northwest part of Taihu Lake and is considered to be one of the most hypereutrophic parts of the lake due to the heavy allochthonous inputs from the surrounding terrestrial ecosystem.Microcystisblooms occur annually from June to October (Qin et al., 2007). Conversely, ETL is a relatively small sub-basin with clear water and abundant submerged macrophytes.

    2.2 Field collections

    Water samples, plankton, macrophytes, benthic invertebrates, and fish were collected at each site every month from August to October 2012. Floating and submerged leaves of macrophytes were collected by hand at each site. Phytoplankton and zooplankton samples were collected by hauling plankton nets(mesh size 47 μm and 64 μm for phytoplankton and zooplankton, respectively) vertically through the entire water column. Benthic invertebrates, mainly snails and mussels, were collected using a bottom trawl at a speed of 2 km/h for 10 min. Fish were collected by fishermen using a casting net and a bottom trawl net. For each fish captured, total length(TL) was recorded.

    2.3 Sample preparation and stable isotope analysis(SIA)

    Nutrient concentrations were determined immediately after collecting water samples (total nitrogen (TN), total phosphorus (TP), and chlorophyllaconcentrations (Chl-a) were measured). TN and TP were analyzed using the alkalinepotassium persulfate digestion-UV spectrophotometric method and the potassium persulfate digestion-ammonium molybdate spectrophotometric method, respectively, (Fu et al.,2014). Chl-awas determined using the 90% acetone extraction method (Mantoura and Llewellyn, 1983).

    A total of 553 organisms were sampled for SIA from three plant groups, seven invertebrate groups,and nine fish groups. Species categorized into groups and sample sizes are listed in Table 1. All the samples were frozen whole and brought back to the lab in thermally sealed plastic bags. The foot tissues of snails and mussels were dissected for SIA. Individual snails and mussels with similar body weights (grouped by 1 g increments using their weight data) were pooled for processing. Dorsal muscle (white muscle)was removed from each fish since it has less variability in terms of δ13C and δ15N than other tissues (Pinnegar and Polunin, 1999), rinsed with water, placed in cryovials, and frozen at -20°C for subsequent SIA.

    Prior to SIA, all the samples were freeze-dried at-55°C for at least 48 hours using a Christ Alpha 1-4 LD plus Freeze Dryer (Martin Christ; Osterode am Harz, Germany) and homogenized using a Retsch Mixer Mill MM 400 (Retsch; Haan, Germany).Samples were weighed (1 200–1 600 μg) into 0.3 mg tin capsules and analyzed using an IsoPrime 100 isotope ratio mass spectrometer (Isoprime Corporation, Cheadle, UK) and vario ISOTOPE cube elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Reference standards USGS 24 (-16.1‰ V-PDB) and USGS 26 (53.7‰AIR) were used for quantification of stable isotope values of carbon and nitrogen, respectively. Every tenth sample was a triplicate lab reference standard(Protein: δ15N: 5.9‰ and δ13C: -27.0‰) to assess intra-run precision, and a blank sample was run every ten samples to clear off residual gases. The analytical error for samples was approximately 0.1‰.

    2.4 Isotope-mixing model

    Primary consumers (snails and mussels) were considered to be a better proxy of isotopic baseline for inshore and off shore food chains, respectively(Vander Zanden et al., 1999; Post, 2002). An isotopemixing model was used to calculate the contribution of planktonic secondary production to fish by using the equation below:

    whereαrepresents the planktonic contribution to the isotopic composition of the fish. δ13CFish, δ13CBenthicand δ13CPlanktonicare the mean δ13C values of fish, benthic baseline consumer (snail) and planktonic baseline consumer (mussel), respectively.

    Trophic levels of fish species (TLFish) were calculated using the equation below:

    whereλis the trophic level of selected baseline consumers (in this case,λ=2 is used for the primary consumers). δ15NFish, δ15NBenthicand δ15NPlanktonicare the mean δ15N values of fish, benthic baseline consumer(snail), and planktonic baseline consumer (mussel),respectively. Δ15N represents the trophic level enrichment of δ15N value. In this study, we used the generally assumed value of 3.4 from Post (2002).

    Table 1a Stable isotope values and estimated trophic levels of organisms in the food web of Meiliang Bay

    2.5 Statistical analysis

    The statistical analyses were performed using R(Version 3.1.2; R Development Core Team, 2014).differences in nutrient concentrations between basins were examined using the Studentt-test. The stable isotope values of organisms were displayed using conventional bi-plots (δ15N versus δ13C). Paired t tests were applied on the averaged stable isotopic values of species to determine whether there were significant differences in isotope values of the same species between the two basins. Comparison of baseline species (snails and mussels) isotope values between basins were conducted usingt-test as well. Equality of variances of isotope values were examined before t test analysis. Averaged trophic level of carnivorous fish species between basins were compared using pairedt-test. Community niche analysis variables from Layman et al. (2007) including δ15N range (NR),δ13C range (CR), and total niche area (TA, the total area in the food web space occupied by the whole community) were used to quantitatively compare food web structures between basins. NR and CR are the differences between the mean δ15N and δ13C values of two species with the highest and lowest isotope values, respectively, which represent the vertical and horizontal structure of the food web. TA is the convex hull area estimated from the δ13C–δ15N bi-plot using the mean isotopic values. This can represent the total amount of niche space of all the species in the food web.

    3 RESULT

    In order to examine the spatial heterogeneity in structural and functional traits of Taihu Lake, we compared SIA data from different regions of the lake with contrasting environments. We observed a significant spatial effect on nutrient concentrations,Chl-avalues and aquatic organism isotope values between the two regions of the lake (Tables 1 and 2).TN, TP and Chl-ain MB were much higher than those in ETL (t-test s, TN:t=5.60; df=25;P<0.01; TP:t=7.43; df=25;P<0.01; Chl-a:t=16.33; df=25;P<0.01; Table 2). Fish from MB had significantly higher δ15N and δ13C mean values than those of fishfrom ETL (pairedttests, δ15N:t=13.06; df=8;P<0.01;δ13C:t=2.93; df=8;P<0.05; Table 1). Similar trends were also observed in the invertebrate primary consumers (snail (Bellamyaaeruginosa) and mussel(Corbiculafluminea)), as the isotopic values of both species were significantly higher in MB than those in ETL (t-test s, for snail, δ15N:t=33.58; df=104.5;P<0.01; δ13C:t=14.65; df=133.9;P<0.01; for mussel,δ15N:t=41.78; df=94.7;P<0.01; δ13C:t=17.41;df=117.2;P<0.01) (Table 1).

    Table 1b Stable isotope values and estimated trophic levels of organisms in the food web of East Taihu Lake

    All stable isotope data for the organisms sampled in both basins are presented as a bi-plot in Fig.2. δ15N and δ13C values of organisms in the basins differed and the fish communities occupied different isotopic spaces in the bi-plot. We observed a mean shift of 3.2‰ and 6.3‰ in δ13C and δ15N values of the primary consumers, snails (3.3‰ for δ13C and 6.1‰ for δ15N)and mussels (3.0‰ for δ13C and 6.4‰ for δ15N) from ETL to MB, respectively. Such shifts were also detected in the mean isotopic values of zooplankton and phytoplankton (zooplankton: 3.9‰ for δ13C and 6.5‰ for δ15N; phytoplankton: 4.0‰ for δ13C and 5.0‰ for δ15N). No significant differences were foundin the mean δ13C values of macrophytes between the two basins though a change in δ15N values of 7.2‰was observed.

    Table 2 Mean values±SD of TN, TP and chlorophyll- a concentrations for water samples at each sampling site of Taihu Lake from August to October 2012

    Using the isotope-mixing model, the average trophic position and the mean percent contribution of benthic prey to fish diet was estimated (Table 1). The average trophic levels of carnivorous fish species in MB were significantly lower than those of the same carnivorous fish in ETL (pairedttests,t=-3.13; df=4;P<0.05). In general, benthic foods were more important to fish. Moreover, although the δ15N values of the fish communities had a similar range between both basins, the CR of fish was smaller in MB versus ETL. difference was also found in TA value between basins (Table 3; Fig.3b).

    Fig.2 δ 15 N and δ 13 C values of organisms sampled in Meiliang Bay (MB) and East Taihu Lake (ETL)

    Table 3 Community niche variables of Meiliang Bay (MB)and East Taihu Lake (ETL)

    4 DISCUSSION

    Spatial variation in δ13C and δ15N values was observed despite the fact that our samples were collected from sites of similar depth in both basins of Taihu Lake. The δ13C and δ15N values of organisms in Taihu Lake exhibited isotopic differences between MB and ETL. This finding was in agreement with previous studies that suggested MB and ETL should be considered as separate ecological entities (Qin et al., 2007; Li and Gong, 2014).

    different nutrient concentrations across basins(Table 2) were likely driving the significant spatial isotopic baseline differences in primary consumers(Fig.3a). Increases in food web baseline δ15N values have often been associated with increased sewage inputs (Cabana and Rasmussen, 1996; Hobson et al.,2012). MB is the most hyper-eutrophic part of Taihu Lake, receiving large amounts of15N-enriched nitrogen annually due to the intensive development of surrounding terrestrial industry and agriculture (Qin et al., 2007). Sewage and fertilizer runoff bring nitrogen and phosphorus into the water, contributing to cyanobacteria blooms in the warm season (Paerl et al., 2010). Moreover, cyanobacteria have a faster turnover rate than other phytoplankton species, their increased biomass is stimulated by high temperatures and nutrient availability, typically resulting in less negative δ13C values than for other algae (Schindler et al., 1997; Hobson et al., 2012). In addition, due to the high production of cyanobacteria and its dominance in the upper layer of the water, the growth of benthic algae and macrophytes in MB is restricted by light limitation, in turn leading to a low coverage of macrophytes and resulting trophic pathways starting being dependent upon phytoplankton. In contrast,ETL has relatively less nutrient inputs from the terrestrial system (Li and Gong, 2014), and is dominated by benthic algae and macrophytes.Considering the distinct δ13C values of phytoplankton and submerged macrophytes, the differences observed in δ13C values of organisms between the two basins could be explained. Generally, phytoplankton fractionates less13C to a lesser degree compared to submerged macrophytes resulting a lower δ13C values in phytoplankton (Graham et al., 2010).

    Fig.3 Mean values (±SD) of δ 15 N and δ 13 C of species sampled in Meiliang Bay (MB) (hollow diamond) and East Taihu Lake(ELT) (black diamond) (a); total area (convex hull area) of δ 15 N and δ 13 C bi-plots of MB and ETL of Taihu Lake (b)

    Isotope mixing models are frequently used to estimate trophic position and inshore/off shore food source contribution to lake organisms (Vander Zanden et al., 2011; Xu et al., 2011; Zhou et al., 2011).However, these models require an accurate assessment of isotopic baselines. This could be problematic for large carnivorous fish which may move over large distances thereby integrating different isotopic baselines associated with different areas. In Taihu Lake,Erythroculterilishaeformisis considered to be the top predator. Analyses of gut contents from that species revealed thatCoiliaectenestaihuensiscontributes more than 80% (wet weight) of theE.ilishaeformisdiet (Liu, 2008). Similar δ13C values of these two species confirmed their predator-prey relationship. However, it is unexpected that the mean differences in δ15N values of these two species were less than 1‰ in both basins, far less than one trophic level. One possible reason to explain such small differences could be the high degree of movement ofE.ilishaeformiswhich potentially migrate over larger spatial areas for food than smaller fish (Xu, 1984),and thus will integrate isotopic information from different foraging areas with large baseline isotopic variation. Another possible reason could be the differences in muscle turnover rate of these two species. Large fish such asE.ilishaeformis, have slower turnover and growth rates than smaller fish.Thus, the isotope values ofE.ilishaeformisreported in this study may reflect their dietary integration over several months whereas the isotope values ofC.ectenestaihuensismay reflect dietary integration over a shorter period, although this is expected to be altered by both fish size and growth stage (Martínez del Rio et al., 2009).

    Regarding eutrophication, clearly, the isotopic information of smaller fish with low mobility and high tissue turnover rates could be a better proxy to track spatial changes in nutrient inputs to the lake and the degree of eutrophication compared with the highly mobile top predators (Perga and Gerdeaux,2004; Hobson et al., 2012; Mayer and Wassenaar,2012). Using the food web isotopic values reported in this study, a possible means of detecting future alterations due to eutrophication would be to routinely monitor the δ13C and δ15N values of a small species likeC.ectenestaihuensisfrom the same locations over time.

    The results obtained using the isotope-mixing model revealed distinct trophic pathways contributing to fish diets in the two basins. Although phytoplankton rather than macrophytes are often considered to be the primary carbon source in aquatic ecosystems, it is worth noting that the estimated contribution of benthic carbon to most fish species was higher in ETL in comparison with MB, suggesting that macrophytes could make an important contribution to the organic carbon pool though they may not be the direct food source for fish species (Keough et al., 1996).

    Extreme nutrient loading, as a consequence of urban and industrial development and agricultural fertilizer runoff , is most likely the driver of within system isotopic variation in Taihu Lake. TA was reported to be negatively related to nutrient loading in the aquatic community (Zambrano et al., 2010). The smaller NR, CR and TA of MB suggested a potential effect of anthropogenic nutrient inputs on food web structure, which may reduce the diversity of the resource base and therefore reduce the area occupied by the community in isotope niche space (Xu et al.,2014).

    5 CONCLUSION

    Stable isotope analysis has been increasingly employed to provide insights into trophic interactions among species and to reveal the structural and functional traits of large aquatic ecosystems. Variation in stable isotope values within large ecosystems is associated with chemical and physical environmental conditions. In this study, spatial heterogeneity in environmental and food web properties was detected within Taihu Lake. In this study, spatial heterogeneities in environmental and food web properties were detected within Taihu Lake. These differences with resultant effects on isotopic values in organisms are likely related to local spatial variation in nutrient loadings to lake waters and possibly to differences in trophic pathways. This information highlights the importance of considering isotopic variability in food web studies for ecosystem-based management in large lakes.

    Arcagni M, Rizzo A, Campbell L M, Arribére M A, Juncos R,Reissig M, Kyser K, Barriga J P, Battini M, Guevara S R.2015. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia.J.GreatLakesRes.,41(3):916-925.

    Cabana G, Rasmussen J B. 1996. Comparison of aquatic food chains using nitrogen isotopes.Proc.Natl.Acad.Sci.U.S.A.,93(20): 10 844-10 847.

    Caut S, Angulo E, Courchamp F. 2009. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction.J.Appl.Ecol.,46(2): 443-453.

    Fry B. 2006. Stable Isotope Ecology. Springer, New York.308p.

    Fu D F, Gong W J, Xu Y, Singh R P, Surampalli R Y, Zhang T C. 2014. Nutrient mitigation capacity of agricultural drainage ditches in Tai lake basin.Ecol.Eng.,71: 101-107.

    Graham B S, Koch P L, Newsome S D, McMahon K W,Aurioles. 2010. Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems.In: West J B, Bowen G J, Dawson T E, Tu K P eds. Isoscapes: understanding movement, pattern and process on earth through isotope mapping. Springer, New York. p.299-318.

    Guzzo M M, Haff ner G D, Sorge S, Rush S A, Fisk A T. 2011.Spatial and temporal variabilities of δ13C and δ15N within lower trophic levels of a large lake: implications for estimating trophic relationships of consumers.Hydrobiologia,675(1): 41-53.

    Harvey C J, Kitchell J F. 2000. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web.Can.J.Fish.Aquat.Sci.,57(7): 1 395-1 403.

    He H, Yu J L, Zhang M, Liu Z W, Li K Y. 2012. Characteristic of nitrogen stable isotope inBellamyaaeruginosain different bays of Lake Taihu, China.J.LakeSci.,24(2):282-286. (in Chinese with English abstract)

    Hebert C E, Arts M T, Weseloh D V C. 2006. Ecological tracers can quantify food web structure and change.Environ.Sci.Technol.,40(18): 5 618-5 623.

    Hobson K A, Ofukany A, Soto D X, Wassenaar L I. 2012. An isotopic baseline (δ13C, δ15N) for fishes of Lake Winnipeg:implications for investigating impacts of eutrophication and invasive species.J.GreatLakesRes.,38(S3): 58-65.

    Hussey N E, MacNeil M A, McMeans B C, Olin J A, Dudley S J F, Cliff G, Wintner S P, Fennessy S T, Fisk A T. 2014.Rescaling the trophic structure of marine food webs.Ecol.Lett.,17(2): 239-250.

    Keough J R, Sierszen M E, Hagley C A. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques.Limnol.Oceanogr.,41(1): 136-146.

    Layman C A, Arrington D A, Monta?a C G, Post D M. 2007.Can stable isotope ratios provide for community-wide measures of trophic structure.Ecology,88(1): 42-48.

    Li Y K, Chen Y, Song B, Olson D, Yu N, Chen L Q. 2009.Ecosystem structure and functioning of Lake Taihu(China) and the impacts of fishing.Fish.Res.,95(2-3):309-324.

    Li Y K, Gong Y. 2014. Food web structure of the East Lake Taihu by analysis of stable carbon and nitrogen isotopes.Chin.J.Ecol.,33(6): 1 534-1 538. (in Chinese with English abstract)

    Liu E S. 2008. A study on diet composition of dominant fishes in Lake Taihu.J.Fish.China,32(3): 395-401. (in Chinese with English abstract)

    Mantoura R F C, Llewellyn C A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high performance liquid chromatography.Analytica ChimicaActa,151: 293-314.

    Mao Z G, Gu X H, Zeng Q F, Zhou L H, Sun M B. 2012. Food web structure of a shallow eutrophic lake (Lake Taihu,China) assessed by stable isotope analysis.Hydrobiologia,683(1): 173-183.

    Martínez del Rio C, Wolf N, Carleton S A, Gannes L Z. 2009.Isotopic ecology ten years after a call for more laboratory experiments.Biol.Rev.,84(1): 91-111.

    Mayer B, Wassenaar L I. 2012. Isotopic characterization of nitrate sources and transformations in Lake Winnipeg and its contributing rivers, Manitoba, Canada.J.GreatLakes Res.,38(S3): 135-146.

    Minagawa M, Wada E. 1984. Stepwise enrichment of15N along food chains: further evidence and the relation between δ15N and animal age.Geochim.Cosmochim.Acta,48(5): 1 135-1 140.

    Ofukany A F A, Hobson K A, Wassenaar L I, Bond A L. 2015.The efficacy of scale sampling for monitoring trace element concentrations and stable isotopes in commercially harvested walleye (Sandervitreus).IsotopesEnviron.HealthStud.,51(3): 359-371.

    Paerl H W, Xu H, McCarthy M J, Zhu G W, Qin B Q, Li Y P,Gardner W S. 2010. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.WaterRes.,45(8): 1 973-1 983.

    Perga M E, Gerdeaux D. 2004. Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonuslavaretus).Can.J.Fish.Aquat.Sci.,61(8): 1 485-1 492.

    Peterson B J, Fry B. 1987. Stable isotopes in ecosystem studies.Ann.Rev.Ecol.Syst.,18(1): 293-320.

    Pinnegar J K, Polunin N V C. 1999. differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions.Funct.Ecol.,13(2): 225-231.

    Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions.Ecology,83(3): 703-718.

    Qin B Q, Xu P Z, Wu Q L, Luo L C, Zhang Y L. 2007.Environmental issues of Lake Taihu, China.Hydrobiologia,581(1): 3-14.

    Schindler D W, Carpenter S R, Cole J J, Kitchell J F, Pace M L. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere.Science,277(5323): 248-251.

    Shiff man D S, Gallagher A J, Boyle M D, Hammerschlag-Peyer C M, Hammerschlag N. 2012. Stable isotope analysis as a tool for elasmobranch conservation research:a primer for non-specialists.Mar.FreshwaterRes.,63(7):635-643.

    Steff y L Y, Kilham S S. 2004. Elevated δ15N in stream biota in areas with septic tank systems in an urban watershed.Ecol.Appl.,14(3): 637-641.

    Tan X, Kong F X, Zeng Q F, Cao H S, Qian S Q, Zhang M.2009. Seasonal variation ofMicrocystisin Lake Taihu and its relationships with environmental factors.J.Environ.Sci.,21(7): 892-899.

    Vander Zanden M J, Shuter B J, Lester N, Rasmussen J B.1999. Patterns of food chain length in lakes: a stable isotope study.Am.Nat.,154(4): 406-416.

    Vander Zanden M J, Vadeboncoeur Y, Chandra S. 2011. Fish reliance on littoral-benthic resources and the distribution of primary production in lakes.Ecosystems,14(6): 894-903.

    Wu J L, Lin L, Gagan M K, Schleser G H, Wang S M. 2006.Organic matter stable isotope (δ13C, δ15N) response to historical eutrophication of Lake Taihu, China.Hydrobiologia,563(1): 19-29.

    Xu J, Wen Z R, Ke Z X, Zhang M, Zhang M, Guo N C, Hansson L A, Xie P. 2014. Contrasting energy pathways at the community level as a consequence of regime shifts.Oecologia,175(1): 231-241.

    Xu J, Zhang M, Xie P. 2011. Sympatric variability of isotopic baselines influences modeling of fish trophic patterns.Limnology,12(2): 107-115.

    Xu P C. 1984. The biology of the whitefish (Erythroculter ilishaeformisBleeker) and the significance for prupagation in Tai Hu Lake.J.Fish.China,8(4): 275-286. (in Chinese with English abstract)

    Zambrano L, Valiente E, Vander Zanden M J. 2010. Stable isotope variation of a highly heterogeneous shallow freshwater system.Hydrobiologia,646(1): 327-336.

    Zhou Q, Xie P, Xu J, Liang X F, Qin J H, Cao T, Chen F Z.2011. Seasonal trophic shift of littoral consumers in Eutrophic Lake Taihu (China) revealed by a two-source mixing model.Sci.WorldJ.,11: 1 442-1 454, https://doi.org/10.1100/tsw.2011.134.

    猜你喜歡
    徐軍
    Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
    Crystal growth,spectral properties and Judd–Ofelt analysis of Pr: CaF2-YF3?
    GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor?
    碎碎念
    一場車禍
    Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering
    家有“悍父”:看不見的閃光少女笛聲悠悠
    Spectral properties of Pr:CNGG crystals grown by micro-pulling-down method?
    700畝蝦塘親情壯闊:點亮不屈父母的尋子夢想
    千王之變
    99在线视频只有这里精品首页| 一进一出好大好爽视频| 九九在线视频观看精品| 精品一区二区三区视频在线观看免费| 国产视频一区二区在线看| av福利片在线观看| 又粗又爽又猛毛片免费看| 人人妻人人看人人澡| 欧美+日韩+精品| 久久人妻av系列| 制服人妻中文乱码| 久久草成人影院| 久久精品国产99精品国产亚洲性色| 中出人妻视频一区二区| 午夜久久久久精精品| 看片在线看免费视频| 特级一级黄色大片| 日本黄大片高清| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| 九色国产91popny在线| 看片在线看免费视频| 亚洲va日本ⅴa欧美va伊人久久| 变态另类成人亚洲欧美熟女| 老汉色∧v一级毛片| av天堂在线播放| 国内揄拍国产精品人妻在线| 精品久久久久久久毛片微露脸| 午夜亚洲福利在线播放| 欧美色视频一区免费| aaaaa片日本免费| 蜜桃久久精品国产亚洲av| 女人被狂操c到高潮| 尤物成人国产欧美一区二区三区| 中文字幕av在线有码专区| 757午夜福利合集在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一区二区三区色噜噜| 村上凉子中文字幕在线| 国产免费av片在线观看野外av| 亚洲18禁久久av| 99国产综合亚洲精品| 色精品久久人妻99蜜桃| x7x7x7水蜜桃| 中文字幕久久专区| 国产精品98久久久久久宅男小说| 日本与韩国留学比较| 男人舔奶头视频| 色噜噜av男人的天堂激情| 男人舔女人下体高潮全视频| 少妇的逼好多水| 深爱激情五月婷婷| 日本一二三区视频观看| 99久国产av精品| 亚洲欧美日韩高清在线视频| 内射极品少妇av片p| 法律面前人人平等表现在哪些方面| 国产激情偷乱视频一区二区| 免费大片18禁| 国产免费av片在线观看野外av| 18禁黄网站禁片免费观看直播| 中文字幕av成人在线电影| 精品一区二区三区视频在线观看免费| 亚洲专区国产一区二区| 国产精品电影一区二区三区| 国产成人啪精品午夜网站| 特大巨黑吊av在线直播| 麻豆成人午夜福利视频| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看电影| 少妇人妻一区二区三区视频| 久久精品影院6| 一个人观看的视频www高清免费观看| 欧美日韩一级在线毛片| 精品久久久久久成人av| 一级毛片高清免费大全| 欧美最新免费一区二区三区 | 亚洲精品乱码久久久v下载方式 | 999久久久精品免费观看国产| 国产野战对白在线观看| 99精品欧美一区二区三区四区| 搡老妇女老女人老熟妇| 老鸭窝网址在线观看| 亚洲七黄色美女视频| 久久久久九九精品影院| 亚洲国产中文字幕在线视频| 亚洲不卡免费看| 国产亚洲精品综合一区在线观看| 亚洲av中文字字幕乱码综合| 国产亚洲精品久久久久久毛片| 日韩成人在线观看一区二区三区| 亚洲精品影视一区二区三区av| 欧美成人一区二区免费高清观看| 成人无遮挡网站| 成年免费大片在线观看| 天堂av国产一区二区熟女人妻| 老司机在亚洲福利影院| 村上凉子中文字幕在线| 色综合站精品国产| 美女cb高潮喷水在线观看| 99久久综合精品五月天人人| 一区二区三区国产精品乱码| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 欧美zozozo另类| 在线免费观看不下载黄p国产 | 有码 亚洲区| 女人十人毛片免费观看3o分钟| 国产精品久久久久久人妻精品电影| av女优亚洲男人天堂| 亚洲avbb在线观看| 日韩精品中文字幕看吧| 亚洲国产精品999在线| АⅤ资源中文在线天堂| 国模一区二区三区四区视频| 精品99又大又爽又粗少妇毛片 | 亚洲熟妇熟女久久| 欧美zozozo另类| 首页视频小说图片口味搜索| 一级毛片高清免费大全| 1000部很黄的大片| 无遮挡黄片免费观看| 中文字幕人妻丝袜一区二区| 久久性视频一级片| 中文字幕久久专区| 日本黄色视频三级网站网址| www.色视频.com| 天美传媒精品一区二区| svipshipincom国产片| 九九在线视频观看精品| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| 成人高潮视频无遮挡免费网站| 国产精品av视频在线免费观看| 午夜免费激情av| 免费观看精品视频网站| 精品久久久久久,| 91久久精品国产一区二区成人 | 最好的美女福利视频网| 成人无遮挡网站| 美女被艹到高潮喷水动态| 小说图片视频综合网站| 午夜a级毛片| 免费大片18禁| 夜夜夜夜夜久久久久| 亚洲在线观看片| 免费看光身美女| 日韩精品青青久久久久久| 久久久久久久久大av| 亚洲七黄色美女视频| 女人被狂操c到高潮| 看片在线看免费视频| 日韩免费av在线播放| 99热只有精品国产| 久久性视频一级片| 18+在线观看网站| 麻豆久久精品国产亚洲av| 此物有八面人人有两片| 少妇丰满av| 嫩草影院精品99| 成年人黄色毛片网站| 最新美女视频免费是黄的| 国产午夜精品论理片| 国产精品久久久久久久电影 | 亚洲精品一区av在线观看| 国产av一区在线观看免费| 亚洲人成伊人成综合网2020| 美女 人体艺术 gogo| 亚洲在线观看片| 精品不卡国产一区二区三区| 九九在线视频观看精品| 亚洲人成伊人成综合网2020| 日韩欧美国产一区二区入口| 波野结衣二区三区在线 | 国产探花极品一区二区| 日韩欧美 国产精品| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 国产精品久久电影中文字幕| 黄色日韩在线| 免费av毛片视频| 国产麻豆成人av免费视频| 真实男女啪啪啪动态图| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 在线免费观看不下载黄p国产 | 丁香欧美五月| 变态另类丝袜制服| 麻豆国产av国片精品| 尤物成人国产欧美一区二区三区| 天天一区二区日本电影三级| 国产高清激情床上av| 久久久久久久精品吃奶| av片东京热男人的天堂| 久久精品亚洲精品国产色婷小说| 五月伊人婷婷丁香| 欧美zozozo另类| 狂野欧美激情性xxxx| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 国产私拍福利视频在线观看| 禁无遮挡网站| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| 国产私拍福利视频在线观看| а√天堂www在线а√下载| aaaaa片日本免费| 在线播放无遮挡| 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 国产真实乱freesex| 99热6这里只有精品| 中文字幕久久专区| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 热99re8久久精品国产| 看免费av毛片| 国产精品综合久久久久久久免费| 丰满乱子伦码专区| 夜夜夜夜夜久久久久| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 国产一区在线观看成人免费| 观看美女的网站| 久久久久性生活片| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产自在天天线| 69人妻影院| 99久国产av精品| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人 | aaaaa片日本免费| 欧美日本视频| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 色噜噜av男人的天堂激情| 制服丝袜大香蕉在线| 免费看日本二区| 国内精品一区二区在线观看| 午夜免费观看网址| 久久九九热精品免费| 免费在线观看日本一区| 午夜福利在线在线| 国产高清有码在线观看视频| 欧美一级毛片孕妇| 日本一二三区视频观看| 狂野欧美白嫩少妇大欣赏| 色老头精品视频在线观看| 久久精品影院6| 亚洲avbb在线观看| 丁香欧美五月| 无人区码免费观看不卡| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 亚洲在线自拍视频| 国产精品久久久人人做人人爽| 色视频www国产| 老熟妇乱子伦视频在线观看| 日本五十路高清| 亚洲av成人av| 叶爱在线成人免费视频播放| 国产亚洲欧美98| 在线观看舔阴道视频| 日本与韩国留学比较| 岛国在线免费视频观看| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| av天堂中文字幕网| 精品人妻1区二区| 极品教师在线免费播放| 成人鲁丝片一二三区免费| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 国产成人a区在线观看| 男人舔奶头视频| 51午夜福利影视在线观看| 日本三级黄在线观看| 久久国产精品影院| 免费高清视频大片| 亚洲成a人片在线一区二区| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| 日韩欧美精品免费久久 | 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 国产色婷婷99| 美女黄网站色视频| av黄色大香蕉| 午夜福利在线在线| 日韩欧美免费精品| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 亚洲av成人不卡在线观看播放网| 中文字幕熟女人妻在线| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 久久婷婷人人爽人人干人人爱| www国产在线视频色| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 三级国产精品欧美在线观看| 禁无遮挡网站| 成年女人看的毛片在线观看| www.www免费av| 国内精品一区二区在线观看| 最近最新中文字幕大全免费视频| 亚洲最大成人中文| 我要搜黄色片| 国产免费男女视频| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 欧美性感艳星| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 日本在线视频免费播放| 久久亚洲精品不卡| 校园春色视频在线观看| 国产一区在线观看成人免费| 人妻久久中文字幕网| 最好的美女福利视频网| 国产69精品久久久久777片| ponron亚洲| 国产亚洲av嫩草精品影院| 在线观看66精品国产| 69av精品久久久久久| 久久精品国产综合久久久| 国产成人福利小说| 高潮久久久久久久久久久不卡| 久久亚洲精品不卡| www.熟女人妻精品国产| 国产蜜桃级精品一区二区三区| 99久国产av精品| 亚洲美女黄片视频| 欧美黄色淫秽网站| 村上凉子中文字幕在线| 操出白浆在线播放| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产男靠女视频免费网站| 国产精品一区二区三区四区久久| 熟女人妻精品中文字幕| 亚洲av五月六月丁香网| 19禁男女啪啪无遮挡网站| www国产在线视频色| 日本黄色视频三级网站网址| 99国产综合亚洲精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 高清在线国产一区| 老司机在亚洲福利影院| 琪琪午夜伦伦电影理论片6080| svipshipincom国产片| 亚洲精品亚洲一区二区| 九九热线精品视视频播放| 夜夜夜夜夜久久久久| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3| 国产精品一及| 九色国产91popny在线| 国产精品,欧美在线| 中文在线观看免费www的网站| 国产欧美日韩一区二区三| 日本三级黄在线观看| 国产伦精品一区二区三区视频9 | 少妇人妻一区二区三区视频| 亚洲av不卡在线观看| 色噜噜av男人的天堂激情| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 成人鲁丝片一二三区免费| 在线视频色国产色| 亚洲男人的天堂狠狠| 国产不卡一卡二| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 99久久成人亚洲精品观看| 亚洲激情在线av| 国产av一区在线观看免费| 香蕉av资源在线| 尤物成人国产欧美一区二区三区| 99热只有精品国产| 国产欧美日韩精品一区二区| 国产精品自产拍在线观看55亚洲| 国产精品亚洲美女久久久| 深爱激情五月婷婷| 色老头精品视频在线观看| 99久久无色码亚洲精品果冻| 久久国产精品影院| 日韩亚洲欧美综合| 日韩欧美国产一区二区入口| 国产成人欧美在线观看| 国产精品香港三级国产av潘金莲| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 高清在线国产一区| 亚洲熟妇中文字幕五十中出| 亚洲中文日韩欧美视频| 天美传媒精品一区二区| 黄色日韩在线| 一边摸一边抽搐一进一小说| 三级男女做爰猛烈吃奶摸视频| 久久精品91无色码中文字幕| 网址你懂的国产日韩在线| 亚洲av一区综合| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放| 国产乱人伦免费视频| 久久精品91无色码中文字幕| 日本黄大片高清| 日韩有码中文字幕| 无遮挡黄片免费观看| 色av中文字幕| 婷婷六月久久综合丁香| 亚洲欧美日韩高清在线视频| 亚洲av电影在线进入| 波多野结衣巨乳人妻| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 深爱激情五月婷婷| 国产精品一区二区免费欧美| 亚洲精品一区av在线观看| 欧美色欧美亚洲另类二区| 1000部很黄的大片| 一个人看的www免费观看视频| 丰满的人妻完整版| 亚洲国产中文字幕在线视频| 中文字幕人成人乱码亚洲影| 欧美一级毛片孕妇| 亚洲乱码一区二区免费版| 一级黄片播放器| 中文字幕av成人在线电影| 操出白浆在线播放| 两个人的视频大全免费| 十八禁人妻一区二区| 在线a可以看的网站| 最近最新免费中文字幕在线| 99国产精品一区二区三区| 国产精品1区2区在线观看.| 观看美女的网站| 国产精品亚洲美女久久久| 免费观看人在逋| 日韩欧美在线乱码| 丰满乱子伦码专区| 久久久久久久久中文| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| 日韩欧美国产在线观看| 久久99热这里只有精品18| 精品久久久久久成人av| 最新中文字幕久久久久| e午夜精品久久久久久久| av天堂在线播放| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 最近最新免费中文字幕在线| 久久国产精品影院| 日本a在线网址| 国产成人a区在线观看| 88av欧美| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 免费人成在线观看视频色| 国产成年人精品一区二区| 精品一区二区三区av网在线观看| 国产精品,欧美在线| 久久国产精品人妻蜜桃| 免费av毛片视频| 亚洲不卡免费看| 他把我摸到了高潮在线观看| 亚洲av不卡在线观看| 国产成人系列免费观看| 欧美色欧美亚洲另类二区| 日本与韩国留学比较| 美女高潮的动态| 欧美av亚洲av综合av国产av| 精品午夜福利视频在线观看一区| 欧美在线黄色| svipshipincom国产片| 高清日韩中文字幕在线| 国产高清三级在线| 波多野结衣高清作品| 蜜桃久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 我的老师免费观看完整版| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 午夜免费激情av| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 欧美日本视频| 亚洲av一区综合| 国产免费男女视频| 我要搜黄色片| 亚洲成av人片在线播放无| 久久久久久久久久黄片| 老司机午夜福利在线观看视频| 日本五十路高清| 色视频www国产| 精品久久久久久,| 狂野欧美激情性xxxx| 悠悠久久av| 18美女黄网站色大片免费观看| 可以在线观看毛片的网站| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 成人欧美大片| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 久久久成人免费电影| www.熟女人妻精品国产| 亚洲激情在线av| 亚洲天堂国产精品一区在线| 欧美黑人欧美精品刺激| 级片在线观看| 精品国产美女av久久久久小说| 内地一区二区视频在线| avwww免费| 黄色片一级片一级黄色片| 1000部很黄的大片| 一区二区三区免费毛片| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 日日夜夜操网爽| 天堂动漫精品| 国产综合懂色| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清| 韩国av一区二区三区四区| 综合色av麻豆| 精品一区二区三区av网在线观看| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 久久精品国产亚洲av香蕉五月| 精品日产1卡2卡| 国产精品影院久久| 日本黄色片子视频| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 在线观看一区二区三区| 99久国产av精品| 国产一区二区在线观看日韩 | 国产欧美日韩精品一区二区| 淫秽高清视频在线观看| 一级毛片高清免费大全| 国产精品自产拍在线观看55亚洲| 国产免费男女视频| 久久久久久久精品吃奶| 在线a可以看的网站| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 一个人看视频在线观看www免费 | 99久久九九国产精品国产免费| 中国美女看黄片| 999久久久精品免费观看国产| 禁无遮挡网站| 中文字幕av成人在线电影| 亚洲欧美激情综合另类| 97人妻精品一区二区三区麻豆| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 9191精品国产免费久久| 一夜夜www| 免费av不卡在线播放| 俺也久久电影网| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 国产真实伦视频高清在线观看 | 久久久精品欧美日韩精品| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 精品国产超薄肉色丝袜足j| 欧美色欧美亚洲另类二区| 男女下面进入的视频免费午夜| 国产 一区 欧美 日韩| 淫秽高清视频在线观看| 欧美日韩精品网址| 欧美成狂野欧美在线观看| 国产精品影院久久| 色尼玛亚洲综合影院| 国产精品,欧美在线| 真人做人爱边吃奶动态| 欧美日韩乱码在线| 在线a可以看的网站| 精品欧美国产一区二区三| 成人国产一区最新在线观看| 亚洲一区高清亚洲精品| 午夜a级毛片| 男女那种视频在线观看| 国产一区二区激情短视频| 韩国av一区二区三区四区| 欧美激情在线99| 欧美最新免费一区二区三区 | 18禁国产床啪视频网站|