• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Realization of UVB Lasing in High Quality Cubic ZnMgO Films

    2017-07-05 13:01:25ZHANGHanPEILeileiSUShichen
    發(fā)光學(xué)報 2017年7期
    關(guān)鍵詞:器件薄膜脈沖

    ZHANG Han, PEI Lei-lei, SU Shi-chen

    (Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China)

    Realization of UVB Lasing in High Quality Cubic ZnMgO Films

    ZHANG Han, PEI Lei-lei, SU Shi-chen*

    (Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China)

    The optical and structural properties of high-quality epitaxial Zn1-xMgxO films deposited by pulsed-laser deposition (PLD) were studied. Zn1-xMgxO films with ~45% Mg incorporation were measured by EDS (Energy dispersive spectroscopy). XRD (X-ray diffraction) measurement results show that Zn0.55Mg0.45O films have a cubic phase structure without phase separation and are epitaxial grown along thec-axis of Al2O3substrate. In the films, intense UVB optical pumped stimulated emission of this pure cubic-phase ZnMgO can be observed. The lasing threshold is about 22 kW/cm2. Lasing occurs at UVB wavelength of ~310 nm under optical pumping.

    ZnMgO; PLD; threshold

    1 Introduction

    Semiconductor oxide materials based on energy-gap engineering have garnered widespread interest in many aspects, for instance, in catalysts, sensors, electronic devices, UV detectors and solar cells, among others[1-11].Among these semiconductor oxide materials, ZnO as a direct wide band gap semiconductor material, because of its wide band gap energy (3.37 eV at room temperature), large exciton binding energy (60 meV), much higher than the room temperature heat ionization energy 26 meV, and high optical gain (300 cm-1). So that exciton-stimulated ultraviolet radiation at room temperature or higher can be achieved, which makes ZnO has attracted extensive studies in the preparation of UV light-emitting diodes and laser devices.

    However, the P-type doping of ZnO is still a significant difficulty[12]. In addition, another key problem in the application of ZnO materials is the regulation of the band. To utilize the optical and electrical properties of ZnO sufficiently, an excellent method is to dope proper transition elements, such as Co, Mn, Fe, Ni,etc.[13-14]. Since the radius of Mg2+(0.057 nm) is very close to the radius of Zn2+(0.060 nm), the lattice mismatch of Mg in the position of substitution of Zn is very small (only 0.1%), therefore, Mg is an appropriate element. By varying the Mg composition, the band gap can be tuned from 3.37 to 7.8 eV for wurtzite and cubic-structured MgxZn1-xO, extending the cutoff wavelength from UV-A (320-400 nm) to UV-B (280-320 nm) and UV-C (200-280 nm) regions[15-17]. Thus, ZnMgO has become a very suitable material for the preparation of ZnO/ZnMgO superlattices, quantum wells and UVB optoelectronic devices.

    Due to the high energy and short wavelength of the photon in the UVB band, the UVB laser source based on wide bandgap semiconductor has a broad prospect in high density data storage, laser precision machining, large screen display, biomedicine, food sterilization, water purification and so on, while the resulting economic and environmental benefits will be immeasurable.

    Because the lattice structure of MgO and ZnO is cubic rock salt and hexagonal wurtzite structure,when the molar fraction of Mg is in the range of 0.4-0.6, the phase separation phenomenon exists in the ZnMgO material. Despite the existence of phase separation, pulsed laser deposition(PLD)[18-20], molecular beam epitaxy(MBE)[21-23], RF reactive magnetron sputtering[24-25]and metal organic chemical vapor deposition(MOCVD)[26-27], such continuous improvement in epitaxial film deposition techniques has contributed the successful growth of wurtzite ZnMgO with a Mg content up to 0.37(4.28 eV) and cubic ZnMgO for more than 0.62(5.40 eV) Mg content.

    Band gap engineering and stimulated emissions of nanostructures with different Mg doping concentrations were demonstrated[28-30], however, the threshold for the ZnMgO nanowire is about 200 kW/cm2. It is noteworthy that few reports have been previously reported on the use of cubic ZnMgO thin films (low thresholds) in UVB lasers. It is widely accepted that high-quality film is fundamentally important for high performance optoelectronic devices. In this letter, we report the demonstration of ultraviolet (UV) laser action in Zn0.55Mg0.45O high quality films grown on sapphire substrates by PLD.

    2 Experiments

    Using pulsed laser deposition (PLD-450) to grow thec-plane sapphire ZnMgO films with thickness of 300 nm. In order to conduct systematic studies and obtain conclusive results, films are grown with substrate temperatures (Tsub=600 ℃) and oxygen pressures (P(O2)=0.5 Pa). The substrate was continuously rinsed in acetone, ethanol and distilled water and dried by nitrogen gas and then loaded into a growth chamber. In order to ensure uniform ablation without damage, the target is continuously rotated throughout the deposition process.The target used in the present study was made of Mg-doped high purity ZnO powder(99.999%, Kurt J. Lesker Co.) to achieve Mg incorporation of 45%(mole fraction) in ZnO. The background pressure for the growth is 10-4Pa.The 248 nm laser pulse from the Coherent COMPexPro 102 excimer laser with a pulse energy of 300 mJ and a repetition rate of 2 Hz was used for the PLD growth. After the end of the growth and natural cooling to room temperature, remove the sample.

    3 Results and Discussion

    Fig.1 shows XRD patterns of Zn0.55Mg0.45O film. As shown inθ-2θangular scan in the XRD patterns, only two strong peaks at 36.67° and 41.68° can be observed. The peak at 41.68° is from thec-plane sapphire substrate(006), the appearance of (111) peak at 36.67° indicates that Zn0.55Mg0.45O film is highlyc-axis preferred orientation with pure cubic phase. Obviously, the XRD of MgO (111) peak and ZnO (002) peak are at 2θ=37°and 34.4°, respectively. High-quality cubic ZnMgO(111) without phase separation was prepared in this figure and the diffraction angle is 36.67°. It is clear that the optical band gap increases with increasing Mg doping concentration. In addition, the lattice constantsaandcaxis of ZnMgO films decrease slightly with the increase of Mg content, which is indicated by the lattice geometric equation:

    (1)

    As a result, XRD results showed that (111)c-axis-preferred orientation peak has a slight shift toward the direction of angle increases with increasing Mg concentration. The above results are consistent with the reasoning by the Bragg’s law:

    2dsinθ=nλ.

    (2)

    Thefullwidthathalfmaximum(FWHM)ofthe(111)diffractionpeakofZnMgOthinfilmasshownininsertofFig.1.TheFWHMisabout0.16°.TheaboveresultsalsoprovethattheZnMgOfilmsarehigh-qualitycubicstructure.

    Fig.1XRDθ-2θangular scan of the Zn0.55Mg0.45O films deposited onc-plane sapphire substrates, the insert is theω-rocking curve of the (111) of Zn0.55Mg0.45O film.

    A typical transmission spectrum of the ZnMgO films is shown in Fig.2. The films show a high transmission of over 80% in the ultraviolet spectrum region, while they have a very sharp absorption edge at around 310 nm (4 eV). Therefore, ZnMgO thin film material for the preparation of UVB optoelectronic devices has important significance. The typical feature of phase separation is the appearance of multiphase absorption edges. For this sample, no multiphase absorption edge was observed, which confirms that in our case does not occur in phase separation which is often observed in ZnMgO alloys with high Mg content. Thus, the absence of phase separation largely improves the performance of the devices can be obtained on our films. Similarly, this reveals that this cubic ZnMgO film has a very high crystalline quality.

    Fig.2 Transmission spectrum of the cubic ZnMgO films in the UV spectrum

    The bright-field transmission electron microscope(TEM)micrograph in cross section from a Zn0.55Mg0.45O sample is shown in Fig.3, with the corresponding diffraction pattern from the ZnMgO film. As shown in Fig.3(a), the Zn0.55Mg0.45O/Al2O3structure clearly appears smooth cross-section, which is a typical image of a single crystalline material. In addition, the Zn0.55Mg0.45O films were found to cohere well to the sapphire substrate and displayed a uniform thickness on a microscopic scale. The diffraction crystal lattice pattern in Fig.3(b) shows the films are crack free, homogeneous, well covered with granular deposits and without any evidence of lattice defects. As a consequence, the micrograph and diffraction patterns clearly show the structure of single cubic phase ZnMgO (111), there is no evidence of any phase separation, which is consistent with previous results.

    Fig.3 Cross-sectional TEM and transmission lattice micrographs of a Zn0.55Mg0.45O film

    Lasing characteristics of ZnMgO film were investigated by aQ-switch Nd∶YAG laser (266 nm) under pulsed operation (6 ns, 30 Hz). Fig.4 shows the evolution of the emission spectrum as the average pump power (hereinafter referred to as pump power) increases. Comparative analysis of the three color lines in the figure, the central wavelength of the stimulated emission does not change with the pump power, which is always in the UVB about 310 nm. In the pump power from low to high changes in the process, showing a different stimulated emission spectrum, at low excitation intensity, the spectrum consisted of a single wide spontaneous emission peak. When the pump power is increased, the emission peak became narrower due to the preferential amplification at the frequency close to the maximum value of the gain spectrum. When the pump power increases further, more sharp peaks appear, and the line-width of peak drops sharply. When the pump power density is increased above the threshold, the emission intensity of the narrower feature becomes dominant. The narrow and strong emission exhibits a superlinear increase, accompanied by a slight redshift, Which indicates the appearance of stimulated emission. The stimulated emission may be attributed to the stimulated recombination of exciton-exciton scattering[26-27].

    Fig.4 Stimulated emission spectra of the Zn0.55Mg0.45O films at different average pump powers ranging from 0.18 mW (a), 1.5 mW (b), 1.8 mW (c), respectively.

    Discrete red dots in Fig.5 show FWHM as the non-linearity reduction function of the excitation density, the FWHM narrowed much more rapidly with the excitation density at the threshold. Another set of blue dots in the figure indicates the excitation density as a non-linear increasing function of the emission intensity. On the blue dot-fitted line, it is observed that the emission intensity increased much more rapidly with the excitation density above the excitation density of multiple sharp peaks emerged in the emission spectrum, which is the threshold behavior. This increased process is superlinear, which the threshold value is 22 kW/cm2. This proves that spontaneous radiation is transformed into stimulated radiation.

    Fig.5 FWHM and emission intensity of the Zn0.55Mg0.45O films as a non-linear function of the excitation density

    These results indicate that laser action has occurred in the Zn0.55Mg0.45O films. Compared with other literatures, this result of threshold power was lower than several orders of magnitude. This is a momentous progress to improve the work performance of laser devices.

    The optical cavity formed by repeated scattering has a different loss. When the pump power increases, the gain first achieves low loss cavity loss. After that, laser oscillation occurs in these cavities, and the laser frequency is determined by the cavity resonance. Laser emission from these resonators results in a small amount of discrete emission spectra narrow peaks. When the pump power is further increased, the gain increases and exceeds the loss in the lossier cavities. Due to the laser oscillations in these cavities, the emission spectrum adds more discrete peaks. These theories are consistent with the experimental data in this paper.

    4 Conclusion

    In conclusion, pure cubic MgxZn1-xO thin films with Mg content of 45% have been prepared by PLD. High crystalline quality non-phase separation of the Zn0.55Mg0.45O films was observed in the results of XRD and TEM. Under optical pumping, excitation occurs in the UVB wavelength of ~310 nm. As the excitation density increased, the peak intensity increased superlinear, and the linewidth of peak decreased dramatically. The high-quality Zn0.55Mg0.45O alloys films with a thresholds of 22 kW/cm2that we prepared have potential applications in various optoelectronic devices.

    [1] LIU Y, YU L, HU Y,etal.. A magnetically separable photocatalyst based on nest-like γ-Fe-O-/ZnO double-shelled hollow structures with enhanced photocatalytic activity [J].Nanoscale, 2012, 4(1):183-187.

    [2] ETACHERI V, ROSHAN R, KUMAR V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis [J].AcsAppl.Mater.Interf., 2012, 4(5):2717-2725.

    [3] WANG X, LIAO M Y, ZHONG Y T,etal.. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors [J].Adv.Mater., 2012, 24(25):3421-3425.

    [4] LIU D, LI C C, ZHOU F,etal.. Rapid synthesis of monodisperse au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement [J].Sci.Rep., 2015, 5:7686-7686.

    [5] LEE C T, LIN H Y, TSENG C Y. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors [J].Sci.Rep., 2015, 5:13705.

    [6] WANG L K, JU Z G, ZHANG J Y,etal.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J].Appl.Phys.Lett., 2009, 95(13):131113-1-3.

    [7] CHEN Y Y, WANG C H, CHEN G S,etal.. Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect [J].NanoEnergy, 2015, 11:533-539.

    [8] ZENG H, CAI W P, HU J L,etal.. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation [J].Appl.Phys.Lett., 2006, 88(17):171910-1-3.

    [9] ZHENG Q, HUANG F, DING K,etal.. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J].Appl.Phys.Lett., 2011, 98(22):221112-1-3.

    [10] KUMAR M H, YANTARA N, DHARANI S,etal.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J].Chem.Commun., 2013, 49(94):11089-11091.

    [11] LIANG Z Q, ZHANG Q F, WIRANWETCHAYAN O,etal.. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells [J].Adv.Funct.Mater., 2012, 22(10):2194-2201.

    [12] TANG K, GU S L, YE J D,etal.. High-quality ZnO growth, doping, and polarization effect [J].J.Semicond., 2016, 37(3):031001.

    [13] TIAN F B, DUAN D F, LI D,etal.. Miscibility and ordered structures of MgO-ZnO alloys under high pressure [J].Sci.Rep., 2014, 4:5759-5759.

    [14] SARD A. Sol-gel derived Li-Mg co-doped ZnO films: preparation and characterizationviaXRD, XPS, FESEM [J].J.AlloysCompds., 2012, 512(1):171-178.

    [15] TENG C W, MUTH J F, ?ZGüR ü, etal.. Refractive indices and absorption coefficients of MgxZn1-xO alloys [J].Appl.Phys.Lett., 2000, 76(8):979-981.

    [16] OHTOMO A, KAWASAKI M, KOIDA T,etal.. MgxZn1-xO as a Ⅱ-Ⅳ widegap semiconductor alloy [J].Appl.Phys.Lett., 1998, 72(19):2466-2468.

    [17] TIAN Y, MA X Y , LI D S,etal.. Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon [J].Appl.Phys.Lett., 2010, 97(6):061111-1-3.

    [18] PARK W I, YI G C, JANG H M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-x-MgxO(0≤x≤0.49) thin films [J].Appl.Phys.Lett., 2001, 79(13):2022-2024.

    [19] SHARMA A K, NARAYAN J, MUTH J F,etal.. Optical and structural properties of epitaxial MgxZn1-xO alloys [J].Appl.Phys.Lett., 1999, 75(21):3327-3329.

    [20] CHOOPUN S, VISPUTE R D, YANG W,etal.. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J].Appl.Phys.Lett., 2002, 80(9):1529-1531.

    [21] TANAKA H, FUJITA S, FUJITA S. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy [J].Appl.Phys.Lett., 2005, 86(19):192911-1-3.

    [22] YANG W, HULLAVARAD S S, NAGARAJ B,etal.. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J].Appl.Phys.Lett., 2003, 82(20):3424-3426.

    [23] CHEN H X, DING J J, MA S Y. Structural and optical properties of ZnO∶Mg thin films grown under different oxygen partial pressures [J].PhysicaE, 2010, 42(5):1487-1491.

    [24] TIAN C, JIANG D Y, TAN Z D,etal.. Effects of thermal treatment on the MgxZn1-xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors [J].Mater.Res.Bull., 2014, 60:46-50.

    [25] JU Z G, SHAN C X, YANG C L,etal.. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method [J].Appl.Phys.Lett., 2009, 94(10):101902-1-3.

    [26] WANG L K, JU Z G, ZHANG J Y,etal.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J].Appl.Phys.Lett., 2009, 95(13):131113-1-3.

    [27] HSU H C, WU C Y, CHENG H M,etal.. Band gap engineering and stimulated emission of ZnMgO nanowires [J].Appl.Phys.Lett., 2006, 89(1):013101-1-3.

    [28] MUHAMMAD M M, MOHAMMAD S L, ZHENG Z,etal.. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device [J].Appl.Phys.Lett., 2014,105(21):211107-1-3.

    [29] BAGNALL D M, CHEN Y F, ZHU Z,etal.. Optically pumped lasing of ZnO at room temperature [J].Appl.Phys.Lett., 1997, 70(17):2230-2232.

    [30] CHEN Y F, TUAN N T, SEGAWA Y,etal.. Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers [J].Appl.Phys.Lett., 2001, 78(11):1469-1471.

    張晗(1991-),女,山東濟(jì)寧人,碩士研究生,2015年于曲阜師范大學(xué)獲得學(xué)士學(xué)位,主要從事半導(dǎo)體光電子材料與器件的研究。

    E-mail: 15625138017@163.com

    宿世臣(1979-), 男, 黑龍江佳木斯人,博士,副研究員,2009年于中科院長春光機(jī)所獲得博士學(xué)位,主要從事寬禁帶半導(dǎo)體的研究。

    E-mail: shichensu@126.com

    2017-03-07;

    2017-04-17

    國家自然科學(xué)基金(61574063); 廣東省科技計劃(2016A040403106); 廣州市科技計劃(2016201604030047)資助項(xiàng)目 Supported by National Natural Science Foundation of China(61574063); Science and Technology Program of Guangdong Province(2016A040403106); Science and Technology Project of Guangzhou City(2016201604030047)

    高質(zhì)量立方相ZnMgO的制備與紫外受激發(fā)射特性研究

    張 晗, 裴磊磊, 宿世臣*

    (廣東省光電功能材料與器件重點(diǎn)實(shí)驗(yàn)室, 華南師范大學(xué) 光電材料與技術(shù)研究所, 廣東 廣州 510631)

    利用脈沖激光沉積(PLD)設(shè)備在藍(lán)寶石襯底上制備了高質(zhì)量Zn1-xMgxO單晶薄膜,并對其結(jié)構(gòu)和光學(xué)特性進(jìn)行了深入細(xì)致的研究。通過能量衍射譜(EDS)確認(rèn)Zn1-xMgxO薄膜的Mg組分為45%。在Zn0.55Mg0.45O薄膜的X射線衍射譜(XRD)中觀測到了明顯的位于36.67°的衍射峰,對應(yīng)的是(111)晶向的立方相ZnMgO。從透射光譜中可以看出,Zn0.55Mg0.45O具有陡峭的吸收邊,沒有發(fā)生相分離,在透射電鏡圖譜中也得到了證實(shí)。該ZnMgO薄膜還表現(xiàn)出了優(yōu)異的光學(xué)特性,在Zn0.55Mg0.45O材料體系中實(shí)現(xiàn)了峰位位于310 nm的紫外光泵浦受激發(fā)射,其激光發(fā)射的閾值僅為22 kW/cm2。

    氧化鋅鎂; 脈沖激光沉積; 閾值

    1000-7032(2017)07-0905-06

    O484.4 Document code: A

    10.3788/fgxb20173807.0905

    *Corresponding Author, E-mail: shichensu@126.com

    猜你喜歡
    器件薄膜脈沖
    他們使阿秒光脈沖成為可能
    復(fù)合土工薄膜在防滲中的應(yīng)用
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    β-Ga2O3薄膜的生長與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    CIGS薄膜太陽電池柔性化
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    99久久无色码亚洲精品果冻| 在线观看美女被高潮喷水网站| 精品久久久久久久久亚洲 | 久久精品夜夜夜夜夜久久蜜豆| 精华霜和精华液先用哪个| 搡老岳熟女国产| 亚洲精品成人久久久久久| 香蕉av资源在线| 色哟哟·www| 中文字幕熟女人妻在线| 国产一区二区激情短视频| 欧美性猛交黑人性爽| 久久久久久大精品| 一区福利在线观看| 草草在线视频免费看| 精品国产三级普通话版| 一级a爱片免费观看的视频| 久久国产乱子免费精品| 日韩欧美精品v在线| 国产不卡一卡二| www.色视频.com| 亚州av有码| 九九热线精品视视频播放| 久久久久久久久大av| 亚州av有码| 亚洲av一区综合| 成人午夜高清在线视频| 99九九线精品视频在线观看视频| 一进一出好大好爽视频| 亚洲 国产 在线| 亚洲一区二区三区色噜噜| 国产精品综合久久久久久久免费| 欧美又色又爽又黄视频| 国产一区二区三区视频了| 国产三级在线视频| 国产一区二区在线观看日韩| 3wmmmm亚洲av在线观看| 亚洲美女视频黄频| 亚州av有码| 婷婷六月久久综合丁香| 久久这里只有精品中国| 免费av毛片视频| 欧美精品国产亚洲| 舔av片在线| 成人午夜高清在线视频| 在线观看午夜福利视频| 麻豆国产av国片精品| 免费在线观看成人毛片| 老司机福利观看| 精品人妻一区二区三区麻豆 | 国产精华一区二区三区| 精品无人区乱码1区二区| 国产成人a区在线观看| 国产熟女欧美一区二区| 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 亚洲欧美日韩高清专用| 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品一区二区| 伦精品一区二区三区| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 久久久久久久久大av| 91久久精品国产一区二区三区| 美女xxoo啪啪120秒动态图| а√天堂www在线а√下载| 两个人视频免费观看高清| 制服丝袜大香蕉在线| 我要搜黄色片| 亚洲精品久久国产高清桃花| 一进一出抽搐动态| 校园春色视频在线观看| 成人综合一区亚洲| 亚洲,欧美,日韩| 精品不卡国产一区二区三区| 国产爱豆传媒在线观看| 色在线成人网| 亚洲av美国av| 少妇裸体淫交视频免费看高清| 春色校园在线视频观看| 久久国产精品人妻蜜桃| 亚洲av中文av极速乱 | 少妇熟女aⅴ在线视频| 久久国产乱子免费精品| 色精品久久人妻99蜜桃| 联通29元200g的流量卡| 午夜福利在线在线| 日本免费a在线| 久9热在线精品视频| 国内精品宾馆在线| bbb黄色大片| 久久久国产成人精品二区| 国产 一区 欧美 日韩| 欧美最黄视频在线播放免费| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 亚洲真实伦在线观看| 亚洲一级一片aⅴ在线观看| 国产伦人伦偷精品视频| 午夜爱爱视频在线播放| 人妻久久中文字幕网| 国产成人a区在线观看| 成人永久免费在线观看视频| 一区二区三区激情视频| 91午夜精品亚洲一区二区三区 | 男插女下体视频免费在线播放| 免费在线观看成人毛片| 直男gayav资源| 国产伦精品一区二区三区四那| 久久久久久久久久成人| 中文亚洲av片在线观看爽| 色在线成人网| 长腿黑丝高跟| 性插视频无遮挡在线免费观看| 久久久久性生活片| 日韩大尺度精品在线看网址| 日本五十路高清| 在线观看美女被高潮喷水网站| 一卡2卡三卡四卡精品乱码亚洲| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 88av欧美| a级毛片a级免费在线| 69av精品久久久久久| 在现免费观看毛片| 老女人水多毛片| 伦精品一区二区三区| 永久网站在线| 久久久久久久久大av| 免费人成视频x8x8入口观看| 999久久久精品免费观看国产| 免费在线观看影片大全网站| 亚洲精品成人久久久久久| 亚洲熟妇中文字幕五十中出| 欧美激情在线99| 好男人在线观看高清免费视频| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 韩国av一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 欧美bdsm另类| 最近视频中文字幕2019在线8| 精品欧美国产一区二区三| 蜜桃亚洲精品一区二区三区| 99精品在免费线老司机午夜| 精品福利观看| 精品人妻1区二区| 亚洲熟妇中文字幕五十中出| 久久国内精品自在自线图片| 国产大屁股一区二区在线视频| av在线蜜桃| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 一进一出抽搐gif免费好疼| 欧美性猛交╳xxx乱大交人| 亚洲男人的天堂狠狠| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 中出人妻视频一区二区| 午夜福利高清视频| 国产黄色小视频在线观看| 日本黄色片子视频| 可以在线观看毛片的网站| 内射极品少妇av片p| 国产一级毛片七仙女欲春2| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 国内精品宾馆在线| 国内久久婷婷六月综合欲色啪| 成人永久免费在线观看视频| 人妻久久中文字幕网| 久久精品夜夜夜夜夜久久蜜豆| 深爱激情五月婷婷| 一级黄片播放器| av专区在线播放| 午夜福利在线观看免费完整高清在 | 国产精品,欧美在线| 久久亚洲真实| 午夜福利成人在线免费观看| 久久久久久久久久成人| 村上凉子中文字幕在线| 一级毛片久久久久久久久女| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 99热6这里只有精品| 一级黄片播放器| 免费人成在线观看视频色| 亚洲成av人片在线播放无| 成人毛片a级毛片在线播放| 美女黄网站色视频| 中国美女看黄片| 精品久久久久久久久久久久久| 亚洲经典国产精华液单| 丰满的人妻完整版| 性色avwww在线观看| 亚洲av电影不卡..在线观看| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 亚洲av成人av| 岛国在线免费视频观看| 少妇猛男粗大的猛烈进出视频 | 亚洲,欧美,日韩| 国产av在哪里看| 九色成人免费人妻av| 能在线免费观看的黄片| 国产伦精品一区二区三区四那| 99久久久亚洲精品蜜臀av| 天堂动漫精品| 午夜精品在线福利| 亚洲三级黄色毛片| 22中文网久久字幕| 日韩强制内射视频| 三级毛片av免费| 日日摸夜夜添夜夜添av毛片 | 成人精品一区二区免费| 99热只有精品国产| 免费黄网站久久成人精品| 精品不卡国产一区二区三区| 日韩精品有码人妻一区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品美女特级片免费视频播放器| 精品久久久久久久久久免费视频| 午夜福利在线观看免费完整高清在 | 亚洲aⅴ乱码一区二区在线播放| 日本撒尿小便嘘嘘汇集6| 伊人久久精品亚洲午夜| 国产 一区精品| 午夜亚洲福利在线播放| 男人狂女人下面高潮的视频| 尾随美女入室| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 级片在线观看| 熟女电影av网| 五月伊人婷婷丁香| 最近中文字幕高清免费大全6 | 又黄又爽又免费观看的视频| 国产精品福利在线免费观看| 黄色视频,在线免费观看| 人妻少妇偷人精品九色| 日韩一区二区视频免费看| 久久热精品热| 亚洲无线在线观看| 成人性生交大片免费视频hd| 窝窝影院91人妻| 亚洲精品在线观看二区| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 色综合站精品国产| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 亚洲精品在线观看二区| 亚洲欧美清纯卡通| 赤兔流量卡办理| 欧美区成人在线视频| 亚洲欧美日韩无卡精品| a级毛片免费高清观看在线播放| 无人区码免费观看不卡| 日日摸夜夜添夜夜添av毛片 | 午夜精品久久久久久毛片777| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看 | 99久久九九国产精品国产免费| 国内揄拍国产精品人妻在线| 午夜福利在线观看吧| 国产 一区 欧美 日韩| 国产一区二区三区视频了| 亚洲内射少妇av| 国产淫片久久久久久久久| 赤兔流量卡办理| av在线观看视频网站免费| 亚洲av一区综合| 婷婷丁香在线五月| 国产精品一区二区三区四区免费观看 | 小说图片视频综合网站| 丝袜美腿在线中文| 久久久久国产精品人妻aⅴ院| 日韩强制内射视频| 亚洲中文日韩欧美视频| 国产国拍精品亚洲av在线观看| 内地一区二区视频在线| 国产一区二区在线观看日韩| 99久国产av精品| 中文字幕av成人在线电影| 国产成人影院久久av| 尾随美女入室| 99九九线精品视频在线观看视频| 窝窝影院91人妻| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 99热网站在线观看| 在线播放国产精品三级| 国产精品av视频在线免费观看| 夜夜夜夜夜久久久久| 在线观看av片永久免费下载| 麻豆成人午夜福利视频| 国产女主播在线喷水免费视频网站 | 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 国产伦精品一区二区三区视频9| 男人和女人高潮做爰伦理| 免费一级毛片在线播放高清视频| 亚洲美女黄片视频| 久久久久国内视频| 赤兔流量卡办理| 国产伦精品一区二区三区视频9| 午夜免费激情av| 午夜精品一区二区三区免费看| 国产精品久久久久久亚洲av鲁大| 校园人妻丝袜中文字幕| 内地一区二区视频在线| 婷婷精品国产亚洲av| 香蕉av资源在线| 在线免费十八禁| 色5月婷婷丁香| 亚洲成人精品中文字幕电影| 日本 欧美在线| 99久久精品一区二区三区| 色吧在线观看| 真实男女啪啪啪动态图| 亚洲一级一片aⅴ在线观看| 国产av一区在线观看免费| 日韩精品有码人妻一区| 日本三级黄在线观看| 3wmmmm亚洲av在线观看| 亚洲avbb在线观看| 草草在线视频免费看| 欧美极品一区二区三区四区| 男人舔女人下体高潮全视频| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 亚洲avbb在线观看| 99久久精品热视频| av黄色大香蕉| 免费不卡的大黄色大毛片视频在线观看 | 观看免费一级毛片| 亚洲av免费在线观看| 老司机午夜福利在线观看视频| 国产精品国产高清国产av| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 啦啦啦观看免费观看视频高清| 久久久午夜欧美精品| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 亚洲美女黄片视频| 日本欧美国产在线视频| 亚洲欧美日韩东京热| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 日韩欧美 国产精品| 日本a在线网址| 又黄又爽又刺激的免费视频.| 97碰自拍视频| 亚洲精华国产精华精| 老师上课跳d突然被开到最大视频| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 麻豆一二三区av精品| 国产不卡一卡二| 国产淫片久久久久久久久| 国产午夜精品论理片| 我的女老师完整版在线观看| 在线看三级毛片| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产 | 人妻久久中文字幕网| 少妇丰满av| 99热这里只有精品一区| 国产伦精品一区二区三区视频9| 久久精品国产亚洲av天美| 黄色女人牲交| 一本精品99久久精品77| 免费高清视频大片| 看黄色毛片网站| 中文字幕熟女人妻在线| 老司机深夜福利视频在线观看| 嫩草影院新地址| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 国产av麻豆久久久久久久| 精品久久久久久,| 久久久久国内视频| 天天一区二区日本电影三级| 99在线人妻在线中文字幕| 色视频www国产| 国内精品一区二区在线观看| 欧美性猛交黑人性爽| 尤物成人国产欧美一区二区三区| ponron亚洲| 一本久久中文字幕| 又黄又爽又免费观看的视频| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 亚洲美女黄片视频| 性色avwww在线观看| 麻豆一二三区av精品| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片午夜丰满| 亚洲av二区三区四区| 欧美性猛交黑人性爽| 99久久成人亚洲精品观看| 午夜影院日韩av| 午夜精品在线福利| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看| 欧美极品一区二区三区四区| 男女啪啪激烈高潮av片| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 亚洲av免费在线观看| 成人一区二区视频在线观看| 极品教师在线免费播放| 伦理电影大哥的女人| 97热精品久久久久久| 国产一级毛片七仙女欲春2| 午夜精品久久久久久毛片777| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| www日本黄色视频网| 亚洲国产精品久久男人天堂| 久久中文看片网| 亚洲三级黄色毛片| 欧美性感艳星| 亚洲精品一卡2卡三卡4卡5卡| 日本一二三区视频观看| 久久久久久九九精品二区国产| 午夜激情福利司机影院| eeuss影院久久| 久久精品国产鲁丝片午夜精品 | 亚洲中文日韩欧美视频| 国产高清有码在线观看视频| 全区人妻精品视频| 老司机深夜福利视频在线观看| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 成人欧美大片| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 国内精品久久久久精免费| 日本五十路高清| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 黄色女人牲交| 久99久视频精品免费| 人妻制服诱惑在线中文字幕| 亚洲自偷自拍三级| 免费看日本二区| 日韩欧美 国产精品| 亚洲av一区综合| 在线播放国产精品三级| 午夜福利在线在线| 亚洲欧美清纯卡通| 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 很黄的视频免费| 小说图片视频综合网站| 国内毛片毛片毛片毛片毛片| 久久久精品大字幕| avwww免费| 国产美女午夜福利| 在线观看免费视频日本深夜| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 婷婷亚洲欧美| 成年女人永久免费观看视频| 亚洲不卡免费看| 人人妻人人澡欧美一区二区| 给我免费播放毛片高清在线观看| 不卡视频在线观看欧美| 久久久久久久午夜电影| 国产av一区在线观看免费| 日韩欧美精品v在线| 可以在线观看的亚洲视频| 欧美日韩综合久久久久久 | 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 国产主播在线观看一区二区| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| 国产精品亚洲美女久久久| 亚洲内射少妇av| 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 免费观看人在逋| 麻豆一二三区av精品| 国产成年人精品一区二区| 99热这里只有精品一区| 亚洲乱码一区二区免费版| 国产淫片久久久久久久久| 九九在线视频观看精品| 成人午夜高清在线视频| 亚洲中文日韩欧美视频| 久久久久久久久久黄片| 成人亚洲精品av一区二区| 精品人妻1区二区| 1024手机看黄色片| 又紧又爽又黄一区二区| 日本爱情动作片www.在线观看 | 人妻丰满熟妇av一区二区三区| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 22中文网久久字幕| 亚洲四区av| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 中文资源天堂在线| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 日本三级黄在线观看| 搡老岳熟女国产| 色视频www国产| 一进一出抽搐gif免费好疼| 性色avwww在线观看| 国产精品98久久久久久宅男小说| а√天堂www在线а√下载| 亚洲无线观看免费| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 日本精品一区二区三区蜜桃| 精品人妻一区二区三区麻豆 | 国产白丝娇喘喷水9色精品| 亚洲av一区综合| 在线播放无遮挡| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 欧美一级a爱片免费观看看| 99热只有精品国产| 最近最新中文字幕大全电影3| 精品一区二区免费观看| 精品久久久久久成人av| 久久人人精品亚洲av| 免费在线观看成人毛片| 久久中文看片网| 精品日产1卡2卡| 2021天堂中文幕一二区在线观| 国产真实乱freesex| 熟女电影av网| 丝袜美腿在线中文| 搞女人的毛片| 日本爱情动作片www.在线观看 | 尾随美女入室| 极品教师在线免费播放| 亚洲性久久影院| 欧美日韩乱码在线| 欧美绝顶高潮抽搐喷水| 偷拍熟女少妇极品色| 在线观看舔阴道视频| 狂野欧美激情性xxxx在线观看| 国产综合懂色| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 欧美3d第一页| 久久国产乱子免费精品| 国产精品久久久久久久久免| www日本黄色视频网| 欧美极品一区二区三区四区| eeuss影院久久| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 精品久久久久久成人av| 日本 av在线| 色尼玛亚洲综合影院| 亚洲av.av天堂| 99热这里只有是精品50| 欧美精品国产亚洲| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 国产亚洲精品综合一区在线观看| 乱人视频在线观看| 搡老熟女国产l中国老女人| 美女xxoo啪啪120秒动态图| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 最后的刺客免费高清国语| 欧美三级亚洲精品| 在线免费十八禁| 日韩欧美国产一区二区入口| 桃色一区二区三区在线观看| 精品人妻视频免费看| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 国产色爽女视频免费观看| 哪里可以看免费的av片| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 欧美绝顶高潮抽搐喷水| 欧美在线一区亚洲| 黄色日韩在线| 男人和女人高潮做爰伦理| 亚洲精品一区av在线观看| 亚洲不卡免费看| 亚洲精品粉嫩美女一区|