• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency Flexible Organic Solar Cells with UV-ozone Treated Silver Modification ITO Electrode

    2017-07-05 13:01:25YANMinnanZHENGShuangWANGDanbeiLIUHuanZHANGHongmei
    發(fā)光學(xué)報(bào) 2017年7期
    關(guān)鍵詞:臭氧器件薄膜

    YAN Min-nan, ZHENG Shuang, WANG Dan-bei, LIU-Huan, ZHANG Hong-mei*

    (1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Institute of The Materials Science and Technology, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; 2. Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China)

    High-efficiency Flexible Organic Solar Cells with UV-ozone Treated Silver Modification ITO Electrode

    YAN Min-nan1,2, ZHENG Shuang1,2, WANG Dan-bei1,2, LIU-Huan1,2, ZHANG Hong-mei1,2*

    (1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Institute of The Materials Science and Technology, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; 2. Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China)

    Highly efficient heterojunction polymer solar cells based on ITO flexible electrode were developed with an UV-ozone-treated ultrathin silver interlayer combined with MoO3/PEDOT∶PSS as modification materials. By optimizing UV-ozone-treated time of silver thin films, it could improve the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene) (P3HT)∶[6,6]-phenyl C61-butyric acidmethyl ester (PC61BM) from 1.68% (without UV-ozone treatment) to 2.57% (Ag with 1 min UV-ozone treatment), which might be an AgOxlayer formation that improves hole extraction and several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. Meanwhile, the devices with UV-ozone treated thin Ag layer together with MoO3or PEDOT∶ PSS improves PCEs from 2.02% for the device with PET/ITO/MoO3to 2.97% for the device with PET/ITO/AgOx/MoO3and from 2.01% to 2.93% for device with PEDOT∶PSS. In addition, the PCE of 6.21% of the flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b;4,5-b′] dithiophene-2,6-diyl-alt-(4-(2-ethylhe-xyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl(PBDTTT-EFT)∶[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) as an photoactive layer was obtained. The efficiency improvement of the flexible OPV based on ITO is due to the increase of the work function of ITO by ITO/Ag/PEDOT∶PSS or MoO3composition.

    flexible organic solar cell; electrode modification; UV-ozone treatment; ultra-thin Ag

    1 Introduction

    Organic solar cells (OSCs) have attracted increased attention due to their potential in high mechanical flexibility, simple fabrication process, low cost and light weight[1-5]. Moreover, the innately bendy characteristics of flexible organic solar cells are beneficial to their applications in outerwear, communications, and sustainable energy technology. Although their power conversion efficiency (PCE) has exceeded 10% with rapid progress in device optimization and new materials, the devices with flexible substrates have improved more slowly because of the longstanding drawbacks of flexible transparent electrodes[6]. Indium tin oxide (ITO) is the most used material for transparent electrodes, but its high sheet resistance on plastic substrates (typically >35 Ω·□-1, which is 3-4 times higher than on glass)[7-8], the chemically ill-defined nature of the surface[9]and the relatively high surface roughness[10-11]adversely impact the interface between ITO electrode and the photoactive layer. It is widely recognized that the electrode interfaces are critical determinants of the performance of OPVs[12-14]. Therefore, in order to achieve high device efficiencies on flexible ITO, it should choose the appropriate materials and preparation processing used for the flexible ITO electrode modification.

    Poly (3, 4-ethylenedioxythiophene)∶poly (sty-renesulfonate) (PEDOT∶PSS) is frequently used as an anode interfacial layer for improving anode contact and increasing hole collection[15-18]. Moreover, transition metal oxides, such as NiO[19], MoO3[20-22], V2O5[23]or WO3[24], have also been reported to be effective anode buffer layers due to their good hole-transporting and electron-blocking behavior. Due to intrinsic flexibility and high conductivity, metal thin films(such as Au[25], Ag[26]) are also suitable for modifying electrode in organic solar cells. The application of metal thin film avoids the problem of etching ITO by PEDOT∶PSS, the semi-transmittance in the visible region and appropriate treatment of metal thin film benefit the formation of Ohmic contact at the anode/donor interface to improve the PCEs of devices[27-29]. And appropriate UV-ozone treatment is employed to further efficient hole collection,which improves the performance of the device significantly[30-31]. Besides, a composited anode buffer layer including transition metal oxide (MoO3, V2O5, WO3etc.) and thin high work function metal (Au, Ag, Al) has also been proved to improve device efficiency[32-34].

    In this paper,UV-ozone-treated ultrathin Ag with PEDOT∶PSS or MoO3composited anode buffer layer is used to modify ITO electrode respectively. In order to further understand the effect of the modification onto the ITO, ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM) are analyzed in details to explain the achievements.

    2 Experiments

    Poly (3-hexylthiophene) (P3HT), [6,6]-phenyl C61butyric acid methyl ester (PCBM), poly [4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b;4,5-b0]dithiophene-2,6-diyl-alt-(4-(2- ethylh- exyl)-3- fluorothieno[3,4-b] thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT), [6,6]-phenyl C71-butyric acid methyl ester (PC71BM), and PEDOT∶PSS (Levios P VP. AL 4083), were purchased from Organtec Material, Inc., Rieke Metals Inc., Nichem-(Fine Technology Co. Ltd.), Inc. and Heraeus-(Precious Metals GmbH & Co.KG) Inc., respectively and used as received without further purification. P3HT and PC61BM were dissolved together in 1, 2-dichlorobenzene (1∶1 weight ratio with a total concentration of 34 mg/mL) and stirred and heat 60 ℃ for 12 h before use. The polymer PBDTTT-EFT and PC71BM with a weight ratio of 1∶1.5 were dissolved in 1, 2-dichlorobenzene with a total concentration of 30 mg/mL. The mixed solution was stirred with a magnetic stirrer at 70 ℃ for 12 h, and then 3%(volume ratio) 1,8-diiodooctane additive was added to form the final PBDTTTEFT∶PC71BM solution.

    The structure of the devices in this study is illustrated in Fig.1(a). ITO-coated PET substrates are cleaned sequentially in an ultrasonic bath with detergent, deionized water (DI water), acetone and alcohol for 30 s. After being dried with nitrogen gas, the ITO surface was treated with UV-ozone (the power density was 28-32 mW/cm2) for 10 min. The substrates were then transferred to vacuum chamber immediately for Ag evaporation. Thin Ag films were deposited onto PET/ITO by thermal evaporation at 3×10-4Pa, and evaporated at a rate of 0.5-0.1 nm/s. Then PEDOT∶PSS (AL4083 or PH1000) aqueous solution or MoO3was added to UV-ozone-treated thin Ag film. The corresponding device groups are as follows:

    Group A: PET/ITO (UV-ozoneXmin)/Ag (1 nm without UV-ozone)/P3HT∶PCBM/LiF/Al.

    Group B: PET/ITO (UV-ozone 10 min)/Ag (1 nm, UV-OzoneYmin)/P3HT∶PCBM/LiF/Al.

    Device C, D: PET/ITO/Ag (1 nm, UV-ozone 1 min)/PEDOT∶PSS (MoO3)/P3HT∶PCBM/LiF/Al.

    PEDOT∶PSS layer was spin-coated at 3 500 r/min for 1 min, followed by baking at 120 ℃ for 30 min in air. When high conductivity PEDOT∶PSS (PH1000) was spin-coated on the PET/ITO/Ag (1 nm, UV-ozone 1 min) substrate, PEDOT∶PSS (PH1000) on the half side of the substrate without ITO was erased by a little cotton-bud immediately before baking in air. And this will not overestimate the PCE of the device[35-36]. MoO3layer was thermally evaporated on the substrates at a deposition rate of 0.05 nm/s under vacuum of 5×10-4Pa. After that, the PEDOT∶PSS (or MoO3)-coated substrates were immediately transferred into a nitrogen-filled dry glove box with oxygen and moisture levels below 10-7. Subsequently, blend films of photoactive layers were spin-coated on top of PEDOT∶PSS or MoO3layer. P3HT∶PC61BM solution was then spin-coated at 800 r/min for 60 s followed by slowly dried in covered petri dishes at room temperature for 1 h, and annealing at 120 ℃ for 10 min. The blend PBDTTT-EFT∶PC71BM solution was spin-coated at 1 500 r/min for 40 s to prepare the active layer. After being dried for 30 min, the active layers were treated with methanol. Finally, the devices were completed by thermally depositing a 0.8 nm LiF layer and a 100 nm-thick Al layer cathodes in vacuum chamber (5×104Pa). The evaporation rates were monitored by a quartz oscillator system, and the film thickness was calibrated by a surface profiler (Veeco Dektak 6M). The active area of each device is 0.11 cm2. The OPVs were encapsulated in the glovebox with a UV-curable epoxy and glass sheets for the electrical measurement. The current density-voltage (J-V) curves of the devices were measured with a computer-programmed Keithley 2400 source/meter under 100 mW/cm2illumination of simulated AM 1.5 G sunlight (Newport’s Oriel class A), which was calibrated by the JIS C 8912 standard. In addition, the ultraviolet photoemission spectroscopy (UPS) was carried out using a He discharged lamp (He I 21.22 eV, Kratos Analytical). The interface electronic structure was performed by X-ray photoelectron spectroscopy (XPS) with Al Kα X-ray source (1 486.6 eV). Transmittance measurement was obtained with a Shimadzu UV-1800 spectrometer. The morphology of different treatments of ITO surface was measured by atomic force microscope (AFM) (Bruker FastScan). All the measurements were carried out in ambient atmosphere at room temperature. The date listed of each different PSCs was the average date based on 20 samples for each.

    Fig.1 (a) Device architecture of the flexible OPVs with the configuration of PET/ITO/Ag (1 nm)/PEDOT∶PSS (50 nm) or MoO3(5 nm)/P3HT∶PCBM (80 nm)/LiF (0.8 nm)/Al (100 nm). (b) Energy band diagram of the device.

    3 Results and Discussion

    The current density-voltage (J-V) curves of the devices Group A and B with different UV-ozone treated ITO and Ag were present in the Fig.2(a) and (b) as well as their corresponding photovoltaic performances are summarized in Tab.1. From Fig.2 (a), it could be seen that the UV-ozone treatment time of ITO has an impact on the performance of the devices. The result shows that the device with 10 min UV-ozone treated achieved highest power conversion efficiency (PCE) of 1.68%. The device with 10 min UV-ozone treated ITO anode could achieve the best photovoltaic performance. The effect of thin Ag layer with different UV-ozone treatment time was further studied based on the device with 10 min UV-ozone treated ITO anodes. Compared with the devices without UV-ozone treatment, the performance of the devices modified by UV-ozone treated thin Ag improved significantly, with improvement in PCE (from 1.68% to over 2.0%),Voc(higher than 0.57 V) and FF (all exceed 0.50). As a result, the highest PCE of 2.57% withJscof 8.15 mA/cm2,Vocof 0.59 V, and FF of 0.536 was achieved for the device with 1 min UV-ozone treated 1 nm Ag layer. For comparison, the reference device with PET/ITO/PEDOT∶PSS as anode exhibited PCE of 2.01% withJscof 8.21 mA/cm2,Vocof 0.56 V, and FF of 0.44. It is known that PET/ITO has poor flexibility due to its fragile nature[32].

    Fig.2 Current-density (J-V) characteristics of the devices with different time UV-ozone treated ITO (a) and different time treated Ag by UV-ozone (b) based on 10 min UV-ozone treated ITO

    Tab.1 Performance parameters of the devices modified by 1 nm Ag with different UV-ozone time

    The structure is PET/ITO/Ag (1 nm, UV-ozoneYmin)/P3HT∶PCBM/LiF/Al.

    However, it can been seen from the AFM images of bare ITO, UV-ozone-treated Ag (1 nm)/ITO in the Fig.3 (a) and (b) that the root-mean-square (rms) roughness of ITO and UV-ozone-treated Ag (1 nm)/ITO was measured as 0.8 nm and 1.86 nm, respectively. Inserting the anode interfacial layer increased the surface roughness slightly, which is associated with the fact that ITO layer was not fully covered by AgOxdue to the formation of Ag islands during evaporation[37]. Therefore the increment of device efficiency can be ascribed to the oxidation of Ag by UV-ozone treatment.

    Fig.3 AFM surface images of bare ITO (a) and ITO/UV-ozone treated Ag (1 nm) (b)

    X-ray photoelectron spectroscopy (XPS) measurements were carried out. Fig.4 shows the XPS spectra of Ag 3d core levels for the pristine Ag (1 nm)/ITO, 1 min UV-ozone treated Ag (1 nm)/ITO. For the thermally deposited pristine Ag (1 nm)/ITO film, the Ag 3d peak located at 368.2 eV and it is in good agreement with former literature data[38-39]. When Ag was UV-ozone treated for 1 min, the binding energy of Ag 3d peaks shifted to 367.4 eV, suggesting that Ag0was reduced to Ag+in this cases[40]. The low binding shift of the Ag 3d spectra indicates the transition from Ag to Ag2O after 1 min UV-ozone treatment. Therefore, it is clear that the UV-ozone treatment is an effective method to change Ag into AgOxwhich is a p-type semiconductor with high work function. The work function of the UV-ozone-treated Ag was determined by UPS, which is presented in Fig.7.

    Fig.4 XPS spectra of Ag 3d of ITO coated with ultrathin Ag treated by different UV-ozone time

    Besides the reduction of energy barrier at the anode/polymer interface due to the formation of Ag2O, the transmittance of the Ag (1 nm)/ITO film also slightly enhances after UV-ozone treatment shown in Fig.5. Therefore, the improvement ofJscis associated with the decrease of the contact resistance and the improvement of the film transmittance.

    Fig.5 Optical transmittance of bare ITO, ITO/Ag (1 nm, UV-ozone) and ITO/Ag (1 nm) films, respectively.

    Although the performance of the devices with Ag2O interfacial layer was improved, the PCE of the devices was still lower because the AgOxcan not fully covered the ITO surface which will influence free charges collection. Based on this reason, PEDOT∶PSS or MoO3was spin-coated/deposited on top of Ag2O/ITO substrates to form a continuous electrode modification layer. The current density-voltage (J-V) characteristics of the devices with the structure of ITO (UV-ozone 10 min)/Ag (1 nm, UV-ozone 1 min)/PEDOT∶PSS or MoO3are shown in Fig.6 and their performance data are listed in Tab.2, respectively. As can be seen from Fig.6, the device with PEDOT∶PSS exhibits an optimal PCE of 2.93%. TheVockeeps 0.59 V,Jscincreases from 8.21 to 8.77 mA/cm2and FF from 0.44 to 0.57, resulting in the notable increase of PCE from 2.01% based on ITO (UV-ozone 10 min)/PEDOT∶PSS to 2.93%. Although theJscincreased very slightly, there was a moderate increase in FF of these devices which led to an improvement in the PCE. The enhancement of FF is related to both of the shunt resistance (Rsh) and the series resistance (Rs) (seen from Tab.2) that stems from the smooth effect of UV-ozone treated Ag together with PEDOT∶PSS layer. It is also noted that devices with MoO3exhibit similar efficiency improvement and the maximum PCE is 2.97%. In addition to the formation of Ag2O after UV-ozone treatment, the increment of the efficiency of the device with UV-ozone treated Ag together with PEDOT∶PSS or MoO3as compound anode buffer layer can also be ascribed to the incorporation of Ag2O with PEDOT∶PSS or MoO3, which will increase the work function of ITO anode.

    Fig.6 Current-density (J-V) characteristics of the devices with UV-ozone treated Ag anode interfacial layer together with PEDOT∶PSS or MoO3

    Tab.2 Summary of the performance of devices with UV-ozone treated Ag anode interfacial layer together with PEDOT∶PSS or MoO3

    UVOdurationVoc/VJsc/(mA·cm-2)FF/%PCE/%Rs/(Ω·cm2)Rsh/(Ω·cm2)ITO/PEDOT0.568.2144.052.0140322ITO/Ag(1nm,1min)/PEDOT0.598.7756.532.9316757ITO/MoO30.568.2843.582.0240323.6ITO/Ag(1nm,1min)/MoO30.598.7657.562.9713.5610.7

    The device structure is ITO/Ag(1 nm)/PEDOT∶PSS (MoO3)/P3HT∶PCBM/LiF/Al.

    The UPS spectra of UV-ozone treated Ag for 1 min, Ag/PEDOT∶PSS, Ag/MoO3on ITO, and bare ITO are shown in Fig.7. From the UPS spectra, the work function of ITO is determined to be 4.7 eV. This value is consistent with the commonly accepted values[41]. The work functions of the other ITO surfaces modified by 1 nm Ag with UV-ozone treatment, Ag (1 nm, UV-ozone 1 min)/ PEDOT∶PSS, and Ag (1 nm, UV-ozone 1 min)/MoO3, are measured to be 5.0, 5.2, 5.3 eV, respectively. From these measured data, we observe that there are about 0.3-0.6 eV increase in the work function of ITO from ITO/Ag surface treated by UV-ozone to Ag (1 nm, UV-ozone 1 min)/MoO3, respectively. The results indicate that the barrier at the anode/polymer interface was reduced, and thus leads to better device performance.

    Fig.7 UPS spectra of various samples: A: ITO only, B: ITO/Ag (1 nm) with 1min UV-ozone treatment, C: ITO/Ag (1 nm, UV-ozone 1 min)/PEDOT∶PSS, D: ITO/Ag (1 nm, UV-ozone 1 min)/MoO3.

    The energy barrier decreased significantly, the metal/polymer interface avoids the exciton recombination on the Ag islands from the photoactive layer and extracts holes efficiently, which results in the increasement ofJscand FF. Additionally, it was also found that the performance of the devices with 3 min UV-ozone treated Ag interfacial film degraded, which arose from over oxidation of ultrathin Ag film and thus degrade interface properties and increase sheet resistance[42].

    Recently, the polymer poly[[2,6′-4,8-di(5-ethylhexylthienyl) benzo[1,2-b;3,3-b] dithiophene]3- fluoro-2[(2- ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl] (PBDTTT-EFT) (also called PTB7-Th) has ttracted intense attention due to the excellent device performance in both polymer/fullerene and polymer/polymer solar cells[43]. In this article, we use the high efficiency blend of the polymer PBDTTT-EFT with PC71BM as active layer materials to achieve higher device efficiency. As shown in Fig.8, the higher PCE of 6.21% of flexible OPVs based on PBDTTT-EFT∶PC71BM as an active layer using 1min-UV-ozone-treated Ag/PEDOT∶PSS composited layer as anode modification was obtained. The parameters of this device areJscof 13.7 mA/cm2,Vocof 0.79 V, and FF of 0.574, respectively. The performance of the device could compare with the reported OSCs with PBDTTT-EFT∶PC71BM as active layer based on glass substrate (Jscof 14.88 mA/cm2,Vocof 0.79 V, FF of 0.645 and PCE of 7.58%)[44]. This results indicated that the method of modification the ITO flexible electrode can be applied in the high efficiency polymer solar cells.

    Fig.8 Current density-voltage (J-V) characteristics of the device with ultrathin UV-ozone treated Ag/PEEOT∶PSS based on PBDTTT-EFT∶PC71BM photoactive layer under illumination

    4 Conclusion

    In this paper, we show two kinds of flexible electrode modification approaches and study their effects on the performance of organic photovoltaics. By inserting ultra-thin Ag with UV-ozone treatment, it shows that the device with 1 nm Ag thin layer of 1 min-UV-ozone treatment together with MoO3or PEDOT∶PSS improves power conversion efficiency from 2.02% to 2.97% for device with MoO3and 2.01% to 2.93% for device with PEDOT∶PSS. The efficiency improvement of device with UV-ozone treated Ag lies in the increment of work function of AgOxdemonstrated by UPS and XPS. The device with Ag/PEDOT∶PSS or Ag/MoO3composited buffer layer between ITO and photoactive layer can further improve smooth of the ITO surface, and then significantly enhance the efficiency of the devices.

    [1] LI G, ZHU R, YANG Y. Polymer solar cells [J].Nat.Photon., 2012, 6:153-161.

    [2] LIN Q F, HUANG H T, JING Y,etal.. Flexible photovoltaic technologies [J].J.Mater.Chem. C, 2014, 2:1233-1247.

    [3] CHEN S L, DAI Y J, ZHAO D W,etal.. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3as transparent electrode [J].Semicond.Sci.Technol., 2016, 31(5):055013.

    [4] HU T, LI F, YUAN K,etal.. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly (ethylene glycol) hybrids as cathode buffer layers [J].ACSAppl.Mater.Interf., 2013, 5 5763-5770.

    [5] 吳曉曉, 李福山, 吳薇, 等. 基于石墨烯/PEDOT∶PSS疊層薄膜的柔性O(shè)LED器件 [J]. 發(fā)光學(xué)報(bào), 2014, 35(4):486-490. WU X X, LI F S, WU W,etal.. Flexible organic light emitting diodes based on double-layered graphene/PEDOT∶PSS conductive film [J].Chin.J.Lumin., 2014, 35(4):486-490. (in Chinese)

    [6] YAO K, XIN X K, CHUEN C C,etal.. Enhanced light-harvesting by integrating synergetic microcavity and plasmonic effects for high performance ITO-free flexible polymer solar cells [J].Adv.Funct.Mater., 2015, 25:567-574.

    [7] SONG S M, YANG T L, LIU J J,etal.. Rapid thermal annealing of ITO films [J].Appl.Surf.Sci., 2011, 257:7061-7064.

    [8] CHOI K H, JEONG J A, KANNG J W,etal.. Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells [J].Sol.Energy.Mater.Sol.Cells, 2009, 93:1248-1255.

    [9] STEC H M, HATTON R A. Widely applicable coinage metal window electrodes on flexible polyester substrates applied to organic photovoltaics [J].ACSAppl.Mater.Interf., 2012, 4:6013-6020.

    [10] HAMASHA M M, DHAKAL T, ALZOUBI K,etal.. Stability of ITO thin film on flexible substrate under thermal aging and thermal cycling conditions [J].J.Disp.Technol., 2012, 8:383-388.

    [11] ARMSTRONG N R, VENEMAN P A, RATCLIFF E,etal.. Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes [J].Acc.Chem.Res., 2009, 42:1748-1757.

    [12] WANG D B, ZENG W J, CHEN S L,etal.. Effect of a cathode buffer layer on the stability of organic solar cells [J].Semicond.Sci.Technol., 2015, 30 (6):085017.

    [13] JOUANE Y, COLIS S, SCHMERBER G,etal.. Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer [J].Org.Electron., 2013, 14:1861-1868.

    [14] LU Z, CHEN X H, ZHOU J P,etal.. Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer [J].Org.Electron., 2015, 17:364-370.

    [15] ZENG W J, BI R, ZHANG H M,etal.. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes [J].J.Appl.Phys., 2014, 116:224502.

    [16] 胡雪花, 李福山, 徐勝, 等. 稀釋溶劑對(duì)PEDOT∶PSS薄膜和有機(jī)太陽(yáng)能電池性能的影響 [J]. 發(fā)光學(xué)報(bào), 2014, 35(3):322-326. HU X H, LI F S, XU S,etal.. Effect of solvent dilution on preparation of PEDOT∶PSS transparent conductive films and device performance of organic solar cells [J].Chin.J.Lumin., 2014, 35(3):322-326. (in Chinese)

    [17] 趙丹, 徐登輝, 楊在發(fā), 等. 旋涂法酸處理PEDOT∶PSS薄膜對(duì)OLED性能的影響 [J]. 發(fā)光學(xué)報(bào), 2016, 37(2):174-180. ZHAO D, XU D H, YANG Z F,etal.. Optical and electrical properties of PEDOT∶PSS films treated by spin coating with acid for organic light-emitting diodes [J].Chin.J.Lumin., 2016, 37(2):174-180. (in Chinese)

    [18] ZHANG R C, WANG M Y, YANG L Y,etal.. Polymer solar cells using a PEDOT∶PSS/Cu nanowires/PEDOT∶PSS multilayer as the anode interlayer [J].Chin.Phys.Lett., 2015, 32(7):077202.

    [19] MANDERS J R, TSANG S W, HARTEL M J,etal.. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells [J].Adv.Funct.Mater., 2013, 23:2993-3001.

    [20] JASIENIAK J J, SEIFTER J, JO J,etal.. A solution-processed MoOxanodex interlayer for use within organic photovoltaic devices [J].Adv.Funct.Mater., 2012, 22:2594-2605.

    [21] WU NA, LUO Q, WU Z W,etal.. Influence of electrode interfacial buffer layers on thermal stability of P3HT∶PC61BM solar cells [J].ActaPhys.-Chim.Sinica, 2015, 31(7):1413-1420.

    [22] YANG Q Q, YANG D B, ZHAO S L,etal.. UV-ozone-treated MoO3as the hole-collecting buffer layer for high-efficiency solution-processed SQ∶PC71BM photovoltaic devices [J].Chin.Phys. B, 2014, 23(3):038405.

    [23] CHO S P, YEO J S, KIM D Y,etal.. Brush painted V2O5hole transport layer for efficient and air-stable polymer solar cells [J].Sol.EnergyMater.Sol.Cells, 2015, 132:196-203.

    [24] CHEN L, XIE C, CHEN Y W. Optimization of the power conversion efficiency of room temperature- fabricated polymer solar cells utilizing solution processed tungsten oxide and conjugated polyelectrolyte as electrode interlayer [J].Adv.Funct.Mater., 2012, 4:3986-3995.

    [25] KOUSKOUSSA B, MORSLI M, BENCHOUK K,etal.. On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer [J].Phys.Stat.Sol. (a), 2009, 206:311-315.

    [26] YAMBEMN S D, LIAO K S, CURRAN S A. Flexible Ag electrode for use in organic photovoltaics [J].Sol.EnergyMater.Sol.Cells, 2011, 95:3060-3064.

    [27] YAMBEMN S D, LIAO K S, ALLEY N J,etal.. Stable organic photovoltaics using Ag thin film anodes [J].J.Mater.Chem., 2012, 22:6894-6898.

    [28] HALDAR A, YAMBEM S D, LIAO K S,etal.. Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide [J].ThinSolidFilms, 2011, 519:6169-6173.

    [29] CHEN C W, HSIEH P Y, CHIANG H H,etal.. Top-emitting organic light-emitting devices using surface-modified Ag anode [J].Appl.Phys.Lett., 2003, 83:5127-5129.

    [30] WANG C D, CHOY W C H. Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells [J].Sol.EnergyMater.Sol.Cells, 2011, 95:904-908.

    [31] DAS S, ALFORD T L. Improved efficiency of P3HT∶PCBM solar cells by incorporation of silver oxide interfacial layer [J].J.Appl.Phys., 2014, 116:044905.

    [32] ZHANG H M, CHOY W C H. Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices [J].IEEETrans.ElectronDev., 2008, 55:2517-2520.

    [33] ZHU X L, SUN J X, YU X M,etal.. Investigation of Al-and Ag-based top-emitting organic light-emitting diodes with metal oxides as hole-injection layer [J].Jpn.J.Appl.Phys., 2007, 46:1033-1036.

    [34] WANG Z K, LOU Y H, NAKA S G,etal.. Bias and temperature dependent charge transport in solution-processed small molecular mixed single layer organic light emitting devices [J].Appl.Phys.Lett., 2011, 98:063302.

    [35] JEONG W, LEE J, PARK S Y,etal.. Reduction of collection efficiency of charge carriers with increasing cell size in polymer bulk heterojunction solar cells [J].Adv.Funct.Mater., 2011, 21(2):343-347.

    [36] SNAITH H J. How should you measure your excitonic solar cells [J].EnergyEnviron.Sci., 2012, 5(4):6513-6520.

    [37] CATTIN L, LARE Y, MAKHA M,etal.. Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3multilayers [J].Sol.EnergyMater.Sol.Cells, 2013, 117:103-109.

    [38] WEAVER J F, HOFLUND G B. Surface characterization study of the thermal decomposition of AgO [J].J.Phys.Chem., 1994, 98:8519-8524.

    [39] GAARENSTROOM S W, WINOGRAD N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides [J].J.Chem.Phys., 1977, 67:3500.

    [40] WATERHOUSE G I N, BOWMAKER G A, METSON J B. Oxidation of a polycrystalline silver foil by reaction with ozone [J].Appl.Surf.Sci., 2001, 183:191-204.

    [41] LEE T W, CHUNG Y. Control of the surface composition of a conducting polymer complex film to tune the work function [J].Adv.Funct.Mater., 2008, 18:2246-2252.

    [42] LIU C H, YU X. Silver nanowire-based transparent, flexible, and conductive thin film [J].NanoscaleRes.Lett., 2011, 6:75-82.

    [43] CUI C, WONG W Y, LI Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution [J].EnergyEnviron.Sci., 2014, 7:2276-2284.

    [44] WANG D, ZHANG F J, LI L L,etal.. Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells [J].RSCAdv., 2014, 4:48724-48733.

    閆敏楠(1992-),女,寧夏固原人,碩士研究生,2014年于杭州電子科技大學(xué)獲得學(xué)士學(xué)位,主要從事有機(jī)發(fā)光二極管的研究。

    E-mail: 1214063415@njupt.edu.cn

    張宏梅(1966-),女,吉林松原人,博士,教授,博士生導(dǎo)師,2006年于吉林大學(xué)獲得博士學(xué)位,主要從事半導(dǎo)體光電子器件與器件物理的研究。

    E-mail: iamhmzhang@njupt.edu.cn

    2016-12-07;

    2017-03-03

    973國(guó)家重大科學(xué)研究計(jì)劃(2015CB932203); 國(guó)家自然科學(xué)基金(91233117, 51333007); 江蘇省自然科學(xué)基金(BK2012834)資助項(xiàng)目 Supported by 973 National Basic Research Program of China (2015CB932203); National Natural Science Foundation of China (91233117,51333007) ; Natural Science Fund of Jiangsu Province (BK2012834)

    紫外臭氧處理超薄銀修飾ITO電極的高效柔性有機(jī)太陽(yáng)能電池

    閆敏楠1,2, 鄭 爽1,2, 王丹蓓1,2, 劉 緩1,2, 張宏梅1,2*

    (1. 南京郵電大學(xué) 有機(jī)電子與信息顯示國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地信息材料與納米技術(shù)研究院, 江蘇 南京 210023; 2. 南京郵電大學(xué) 江蘇國(guó)家先進(jìn)材料協(xié)同創(chuàng)新中心, 江蘇 南京 210023)

    以紫外臭氧處理超薄Ag復(fù)合MoO3或PEDOT∶PSS修飾ITO電極的高效柔性有機(jī)太陽(yáng)能電池。通過(guò)優(yōu)化紫外臭氧處理Ag薄膜的時(shí)間,提高了以P3HT∶PCBM為有源層的器件的功率轉(zhuǎn)換效率,從1.68%(未經(jīng)過(guò)紫外臭氧處理)提高到2.57%(紫外臭氧處理Ag 1 min)。提高的原因推測(cè)是紫外臭氧處理形成了AgOx薄膜,提高了電荷提取并使器件具有高光學(xué)透明度、低串聯(lián)電阻和優(yōu)異的表面功函數(shù)等一些性能。并且,紫外臭氧處理Ag薄膜與MoO3或者PEDOT∶PSS復(fù)合修飾ITO的器件效率分別得到提高,Ag薄膜與MoO3復(fù)合修飾ITO的器件效率從2.02%(PET/ITO/MoO3)提高到2.97%(PET/ITO/AgOx/MoO3),Ag薄膜與PEDOT∶PSS復(fù)合修飾ITO的器件效率從2.01%(PET/ITO/PEDOT∶PSS)提高到2.93%(PET/ITO/AgOx/PEDOT∶PSS)。此外,以PBDTTT-EFT∶PC71BM為有源層的柔性聚合物太陽(yáng)能電池效率可達(dá)6.21%?;贗TO的柔性光電器件效率的提高主要?dú)w于ITO被Ag/PEDOT∶PSS 或 Ag/MoO3修飾后功函數(shù)的提高。

    柔性有機(jī)太陽(yáng)能電池; 電極修飾; 紫外臭氧處理; 超薄Ag

    1000-7032(2017)07-0882-09

    TP384.1 Document code: A

    10.3788/fgxb20173807.0882

    *Corresponding Author, E-mail: iamhmzhang@njupt.edu.cn

    猜你喜歡
    臭氧器件薄膜
    復(fù)合土工薄膜在防滲中的應(yīng)用
    文印室內(nèi)臭氧散發(fā)實(shí)測(cè)分析及模擬
    β-Ga2O3薄膜的生長(zhǎng)與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    看不見(jiàn)的污染源——臭氧
    利用臭氧水防治韭菜遲眼蕈蚊
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    CIGS薄膜太陽(yáng)電池柔性化
    臭氧分子如是說(shuō)
    面向高速應(yīng)用的GaN基HEMT器件
    99久久久亚洲精品蜜臀av| 色播亚洲综合网| 亚洲成人精品中文字幕电影| 黄色一级大片看看| 国内精品久久久久精免费| 久久久a久久爽久久v久久| 国产淫片久久久久久久久| 亚洲国产精品成人综合色| 狂野欧美激情性xxxx在线观看| 美女黄网站色视频| 午夜福利在线在线| 色哟哟哟哟哟哟| 变态另类成人亚洲欧美熟女| 国产精品不卡视频一区二区| 久久久久久久久久久丰满| 蜜桃亚洲精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 亚洲成人av在线免费| 国产伦在线观看视频一区| 中文字幕久久专区| 又爽又黄a免费视频| 99热全是精品| 亚洲最大成人手机在线| 久久九九热精品免费| 丝袜美腿在线中文| 丰满乱子伦码专区| 九九热线精品视视频播放| 丰满乱子伦码专区| 成年女人永久免费观看视频| 久久久久久伊人网av| 日本与韩国留学比较| 国产午夜福利久久久久久| 中国美白少妇内射xxxbb| 在线播放无遮挡| 亚洲欧美成人精品一区二区| 亚洲国产日韩欧美精品在线观看| 午夜精品一区二区三区免费看| 十八禁国产超污无遮挡网站| 午夜激情欧美在线| 可以在线观看的亚洲视频| 在线免费观看不下载黄p国产| 中文字幕精品亚洲无线码一区| 国产亚洲欧美98| 久久草成人影院| 日本撒尿小便嘘嘘汇集6| 日韩一区二区三区影片| 秋霞在线观看毛片| 一级黄片播放器| 一级黄片播放器| 久久久国产成人精品二区| 如何舔出高潮| 91精品国产九色| 免费看日本二区| 国产91av在线免费观看| 精品人妻一区二区三区麻豆| 免费黄网站久久成人精品| 久久精品国产鲁丝片午夜精品| 欧美高清性xxxxhd video| 国产乱人偷精品视频| 老师上课跳d突然被开到最大视频| 成人亚洲精品av一区二区| 亚洲第一电影网av| 亚洲人成网站在线播| 久久精品国产99精品国产亚洲性色| 免费看av在线观看网站| 成人亚洲精品av一区二区| 天堂影院成人在线观看| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av天美| 老女人水多毛片| 国产成人精品一,二区 | 成人三级黄色视频| 草草在线视频免费看| 亚洲欧洲国产日韩| 久久精品国产自在天天线| 日韩中字成人| 国产精品无大码| 中文字幕av成人在线电影| 国产高潮美女av| 亚洲精品自拍成人| 只有这里有精品99| 最好的美女福利视频网| 少妇人妻一区二区三区视频| 又粗又爽又猛毛片免费看| 大型黄色视频在线免费观看| 亚洲激情五月婷婷啪啪| 日韩av不卡免费在线播放| 精品人妻视频免费看| 国产av在哪里看| 亚洲精品乱码久久久久久按摩| 1000部很黄的大片| 亚洲精品乱码久久久久久按摩| 日本黄色视频三级网站网址| 国产极品精品免费视频能看的| 精品熟女少妇av免费看| 12—13女人毛片做爰片一| 久久热精品热| 久久精品人妻少妇| 欧美+亚洲+日韩+国产| 欧美又色又爽又黄视频| 国产午夜精品久久久久久一区二区三区| 久久国产乱子免费精品| 最新中文字幕久久久久| 亚洲av.av天堂| av又黄又爽大尺度在线免费看 | 赤兔流量卡办理| 中文资源天堂在线| 国产毛片a区久久久久| 免费av不卡在线播放| 国产高清不卡午夜福利| 只有这里有精品99| 亚洲欧美日韩无卡精品| 亚洲成人中文字幕在线播放| 国产一区二区在线观看日韩| 国产私拍福利视频在线观看| 丰满人妻一区二区三区视频av| 天堂√8在线中文| 免费观看人在逋| av卡一久久| 一个人观看的视频www高清免费观看| 午夜福利在线观看吧| 国产精华一区二区三区| 亚洲国产色片| 午夜激情欧美在线| 国产v大片淫在线免费观看| 人妻久久中文字幕网| 成熟少妇高潮喷水视频| 国内久久婷婷六月综合欲色啪| 久久久久久久亚洲中文字幕| 国产欧美日韩精品一区二区| 啦啦啦韩国在线观看视频| 国产亚洲精品av在线| 亚洲最大成人中文| 熟女电影av网| 天天躁夜夜躁狠狠久久av| 热99在线观看视频| 精品午夜福利在线看| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 在线观看午夜福利视频| 好男人在线观看高清免费视频| 国产视频内射| 中文字幕免费在线视频6| 天堂网av新在线| 日韩成人伦理影院| 看十八女毛片水多多多| 99久久久亚洲精品蜜臀av| 久久99精品国语久久久| 亚洲欧洲国产日韩| 欧美精品国产亚洲| 青春草亚洲视频在线观看| 一个人观看的视频www高清免费观看| 午夜老司机福利剧场| 久99久视频精品免费| 晚上一个人看的免费电影| 成年av动漫网址| 国产色婷婷99| 国产精品乱码一区二三区的特点| 国产高清不卡午夜福利| 大型黄色视频在线免费观看| 国产一区二区在线观看日韩| 又粗又硬又长又爽又黄的视频 | 国产淫片久久久久久久久| 99热6这里只有精品| 别揉我奶头 嗯啊视频| 欧美变态另类bdsm刘玥| 国产毛片a区久久久久| 久久精品91蜜桃| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 久久久久久伊人网av| 九九热线精品视视频播放| videossex国产| 狂野欧美白嫩少妇大欣赏| 午夜精品国产一区二区电影 | 国产亚洲91精品色在线| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜爱| 特大巨黑吊av在线直播| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av涩爱 | 国产黄色小视频在线观看| 一个人免费在线观看电影| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 亚洲一区高清亚洲精品| 国产91av在线免费观看| 欧美一级a爱片免费观看看| 久久精品国产亚洲av涩爱 | 欧美一区二区亚洲| 欧美成人a在线观看| 精品一区二区三区视频在线| 日本撒尿小便嘘嘘汇集6| 国产综合懂色| 亚洲国产日韩欧美精品在线观看| www.av在线官网国产| 欧美三级亚洲精品| 成人三级黄色视频| 国国产精品蜜臀av免费| 99国产精品一区二区蜜桃av| 国产成人影院久久av| 国产中年淑女户外野战色| 亚洲国产精品久久男人天堂| 欧美一级a爱片免费观看看| 成人高潮视频无遮挡免费网站| 夜夜看夜夜爽夜夜摸| 美女大奶头视频| 长腿黑丝高跟| 性插视频无遮挡在线免费观看| 久久久久网色| 老司机福利观看| 赤兔流量卡办理| 国产老妇女一区| 国产午夜精品久久久久久一区二区三区| 亚洲av.av天堂| 日本av手机在线免费观看| 国产精品伦人一区二区| 美女被艹到高潮喷水动态| 99久久精品一区二区三区| 看免费成人av毛片| 亚洲激情五月婷婷啪啪| www日本黄色视频网| 深夜精品福利| 卡戴珊不雅视频在线播放| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影 | 免费人成视频x8x8入口观看| 狂野欧美白嫩少妇大欣赏| 一本精品99久久精品77| 免费看光身美女| 午夜福利高清视频| 亚洲一级一片aⅴ在线观看| 搡老妇女老女人老熟妇| 午夜福利视频1000在线观看| 亚洲图色成人| 国产成人freesex在线| 日本五十路高清| 国产成年人精品一区二区| 国产成人a∨麻豆精品| 欧美高清性xxxxhd video| 久久久久免费精品人妻一区二区| 高清午夜精品一区二区三区 | 国产单亲对白刺激| a级一级毛片免费在线观看| 欧美三级亚洲精品| 丰满的人妻完整版| 狠狠狠狠99中文字幕| 久久久国产成人精品二区| 高清在线视频一区二区三区 | 久久6这里有精品| 三级毛片av免费| 欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 亚洲欧美成人综合另类久久久 | 菩萨蛮人人尽说江南好唐韦庄 | 国内精品美女久久久久久| www.色视频.com| 欧美激情在线99| 国产精品一二三区在线看| 尤物成人国产欧美一区二区三区| 国产精品乱码一区二三区的特点| 22中文网久久字幕| 久久中文看片网| 嫩草影院入口| 蜜桃亚洲精品一区二区三区| 欧美高清成人免费视频www| 中文字幕av成人在线电影| 波多野结衣高清作品| 国产精品久久视频播放| 内地一区二区视频在线| 亚洲在久久综合| 日本五十路高清| 日韩强制内射视频| 国产成人aa在线观看| 男女那种视频在线观看| h日本视频在线播放| 3wmmmm亚洲av在线观看| 日本免费a在线| 人妻系列 视频| kizo精华| 亚洲激情五月婷婷啪啪| 亚洲国产欧美人成| 插阴视频在线观看视频| 国产91av在线免费观看| 麻豆成人av视频| 久久99精品国语久久久| 中国国产av一级| 男人和女人高潮做爰伦理| 亚洲国产色片| 精品人妻视频免费看| 亚洲成人久久爱视频| 全区人妻精品视频| 国产亚洲91精品色在线| 色综合站精品国产| 国模一区二区三区四区视频| 国产精品久久电影中文字幕| 亚洲在久久综合| 欧美日本亚洲视频在线播放| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 亚洲美女搞黄在线观看| 色综合色国产| 国产真实伦视频高清在线观看| 国产精品精品国产色婷婷| 51国产日韩欧美| 国产色婷婷99| av福利片在线观看| 日韩欧美精品v在线| or卡值多少钱| 最近2019中文字幕mv第一页| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 两个人视频免费观看高清| 美女高潮的动态| 中国美白少妇内射xxxbb| 久久久午夜欧美精品| 国产视频首页在线观看| 能在线免费观看的黄片| 国产色婷婷99| 久久精品91蜜桃| 国产精品久久久久久精品电影| 69人妻影院| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 国产三级中文精品| 精品久久久久久久久av| 性插视频无遮挡在线免费观看| 99热这里只有是精品50| 久久久久久九九精品二区国产| 亚洲精品久久久久久婷婷小说 | 日本-黄色视频高清免费观看| 精品午夜福利在线看| 国产老妇伦熟女老妇高清| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 久久精品国产鲁丝片午夜精品| 99久久九九国产精品国产免费| 少妇丰满av| 久久午夜福利片| 日韩欧美国产在线观看| 全区人妻精品视频| 亚洲av男天堂| 男插女下体视频免费在线播放| 日本一本二区三区精品| 国产免费一级a男人的天堂| 91麻豆精品激情在线观看国产| 久久国内精品自在自线图片| 级片在线观看| 美女脱内裤让男人舔精品视频 | 青青草视频在线视频观看| 婷婷色av中文字幕| 一个人看视频在线观看www免费| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 日韩国内少妇激情av| 久久精品国产亚洲av香蕉五月| 99久久精品国产国产毛片| 色尼玛亚洲综合影院| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 国产精品一区www在线观看| 人人妻人人看人人澡| 国产精品福利在线免费观看| 嫩草影院精品99| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 国内揄拍国产精品人妻在线| 亚洲五月天丁香| 国产色爽女视频免费观看| ponron亚洲| 亚洲精品国产成人久久av| 一级黄片播放器| 99久久九九国产精品国产免费| 菩萨蛮人人尽说江南好唐韦庄 | 婷婷色综合大香蕉| 亚洲精品久久国产高清桃花| 亚洲欧美日韩高清在线视频| 亚洲av中文av极速乱| 激情 狠狠 欧美| 人妻久久中文字幕网| 美女脱内裤让男人舔精品视频 | 最近中文字幕高清免费大全6| 中文字幕免费在线视频6| 免费观看在线日韩| 淫秽高清视频在线观看| 一级黄片播放器| 国产精品.久久久| 长腿黑丝高跟| 久久久国产成人精品二区| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 日韩一区二区视频免费看| 只有这里有精品99| 六月丁香七月| 啦啦啦观看免费观看视频高清| 91午夜精品亚洲一区二区三区| 免费看美女性在线毛片视频| 极品教师在线视频| 欧美日韩综合久久久久久| 久久人人爽人人爽人人片va| 99在线视频只有这里精品首页| 黄色欧美视频在线观看| 大型黄色视频在线免费观看| 青青草视频在线视频观看| 色尼玛亚洲综合影院| 边亲边吃奶的免费视频| 99九九线精品视频在线观看视频| 久久精品夜色国产| 久久久欧美国产精品| 国产三级中文精品| 亚洲最大成人av| 久久久国产成人精品二区| 久久久久国产网址| 国产私拍福利视频在线观看| 欧美xxxx性猛交bbbb| 大香蕉久久网| 国产精品人妻久久久影院| 又爽又黄无遮挡网站| 欧美区成人在线视频| 亚洲精品国产成人久久av| 午夜精品国产一区二区电影 | 国产精品久久久久久av不卡| 99精品在免费线老司机午夜| 亚洲真实伦在线观看| 好男人视频免费观看在线| 99热精品在线国产| 亚洲精品成人久久久久久| 亚洲精品国产av成人精品| 国产亚洲精品av在线| 少妇丰满av| 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 又粗又硬又长又爽又黄的视频 | 欧美潮喷喷水| 久久精品国产自在天天线| 美女cb高潮喷水在线观看| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 日本av手机在线免费观看| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 欧美成人一区二区免费高清观看| 99精品在免费线老司机午夜| 亚洲乱码一区二区免费版| 插阴视频在线观看视频| 午夜免费男女啪啪视频观看| 久久精品久久久久久噜噜老黄 | 一本久久精品| 内射极品少妇av片p| 亚洲欧美清纯卡通| 国产真实乱freesex| 国产欧美日韩精品一区二区| 国产一区二区在线观看日韩| 老司机影院成人| 亚洲,欧美,日韩| 在线免费观看的www视频| 三级毛片av免费| 国产午夜精品论理片| 日韩制服骚丝袜av| 中文字幕精品亚洲无线码一区| 99久久九九国产精品国产免费| 国产精品日韩av在线免费观看| 久久精品国产亚洲av天美| 日本免费一区二区三区高清不卡| 69人妻影院| 国产在线男女| 亚洲av男天堂| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 丝袜美腿在线中文| 久久久久久久久中文| 亚洲av.av天堂| 中文字幕制服av| 国产精品综合久久久久久久免费| av卡一久久| 日韩成人伦理影院| 一边亲一边摸免费视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美+亚洲+日韩+国产| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 久久久成人免费电影| 又爽又黄无遮挡网站| 午夜福利在线在线| 麻豆国产av国片精品| 欧美最新免费一区二区三区| 青青草视频在线视频观看| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 青春草国产在线视频 | av免费在线看不卡| 一卡2卡三卡四卡精品乱码亚洲| 自拍偷自拍亚洲精品老妇| av女优亚洲男人天堂| 女同久久另类99精品国产91| 两个人视频免费观看高清| 97超碰精品成人国产| 有码 亚洲区| av在线老鸭窝| 一区福利在线观看| 韩国av在线不卡| 22中文网久久字幕| 亚洲av免费高清在线观看| 国产精品1区2区在线观看.| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 成人亚洲精品av一区二区| 只有这里有精品99| 国产成人aa在线观看| 国产成人精品久久久久久| 国产成人影院久久av| 变态另类成人亚洲欧美熟女| 欧美激情在线99| 伦精品一区二区三区| 亚洲欧洲日产国产| 亚洲人成网站高清观看| 国产私拍福利视频在线观看| 高清毛片免费看| 欧美bdsm另类| 久久草成人影院| 国产 一区精品| a级毛色黄片| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 能在线免费看毛片的网站| 变态另类成人亚洲欧美熟女| 日韩av在线大香蕉| 国产午夜精品论理片| 国产精品精品国产色婷婷| kizo精华| 久久久精品94久久精品| 国产探花在线观看一区二区| 久久中文看片网| 亚洲人成网站高清观看| 国产精品免费一区二区三区在线| 亚洲第一电影网av| 搡女人真爽免费视频火全软件| 精品99又大又爽又粗少妇毛片| 日本色播在线视频| 少妇熟女欧美另类| 日本五十路高清| a级毛色黄片| 欧美又色又爽又黄视频| 国产黄色视频一区二区在线观看 | 狠狠狠狠99中文字幕| www.av在线官网国产| 岛国在线免费视频观看| 国内精品一区二区在线观看| 日本免费a在线| 日韩欧美在线乱码| 偷拍熟女少妇极品色| 日韩成人伦理影院| 中国国产av一级| 国产伦理片在线播放av一区 | 中文字幕精品亚洲无线码一区| 大型黄色视频在线免费观看| 亚洲高清免费不卡视频| 99精品在免费线老司机午夜| 久久人人爽人人爽人人片va| 别揉我奶头 嗯啊视频| 久久99精品国语久久久| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 国产乱人视频| 免费在线观看成人毛片| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 黄片无遮挡物在线观看| 久久精品国产99精品国产亚洲性色| 国产乱人视频| 日本撒尿小便嘘嘘汇集6| 男人舔奶头视频| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| 欧美色欧美亚洲另类二区| 日本与韩国留学比较| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 亚洲精品乱码久久久v下载方式| 亚洲av男天堂| 日韩大尺度精品在线看网址| 国产一区二区亚洲精品在线观看| 在线国产一区二区在线| 欧美日韩乱码在线| 三级经典国产精品| 欧美成人a在线观看| 熟女电影av网| 给我免费播放毛片高清在线观看| 国产高潮美女av| 久久精品夜色国产| 亚洲成人精品中文字幕电影| 国产91av在线免费观看| www.色视频.com| 联通29元200g的流量卡| 丰满乱子伦码专区| 特级一级黄色大片| 亚洲精品影视一区二区三区av| 小说图片视频综合网站| 国产片特级美女逼逼视频| 免费看a级黄色片| 校园春色视频在线观看| 色吧在线观看|