羅紅益
數(shù)學思想,就是對數(shù)學知識和方法的本質(zhì)認識,是對數(shù)學規(guī)律的理性認識。數(shù)學方法,就是解決數(shù)學問題的根本程序,是數(shù)學思想的具體反映。數(shù)學思想是數(shù)學的靈魂,數(shù)學方法是數(shù)學的行為。運用數(shù)學方法解決問題的過程就是感性認識不斷積累的過程,當這種量的積累達到一定程序時就產(chǎn)生了質(zhì)的飛躍,從而上升為數(shù)學思想。
少數(shù)民族地區(qū)的初中數(shù)學教學具有其自身的特點,因此,在教學中,如何滲透數(shù)學思想和數(shù)學方法是教學的重點,以下幾點方法值得參考:
一、了解《數(shù)學新課標》要求,把握教學方法
1.從“方法”了解“思想”,用“思想”指導“方法”。關(guān)于初中數(shù)學中的數(shù)學思想和方法內(nèi)涵與外延,目前尚無公認的定義。其實,在初中數(shù)學中,許多數(shù)學思想和方法是一致的,它們既相輔相成,又相互蘊含。只是方法較具體,是實施有關(guān)思想的技術(shù)手段,而思想是屬于數(shù)學觀念一類的東西,比較抽象。因此,在少數(shù)民族初中數(shù)學教學中,加強學生對數(shù)學方法的理解和應用,以達到對數(shù)學思想的了解,使數(shù)學思想與方法得到交融的有效方法,比如圖像法、配方法等。在數(shù)學教學中,通過對具體數(shù)學方法的學習,使學生逐步領(lǐng)略內(nèi)含于方法的數(shù)學思想;同時,數(shù)學思想的指導,又深化了數(shù)學方法的運用。這樣處置,使“方法”與“思想”珠聯(lián)璧合,將創(chuàng)新思維和創(chuàng)新精神寓于教學之中,教學才能卓有成效。
2.新課標要求,滲透“層次”教學?!稊?shù)學新課標》對初中數(shù)學中滲透的數(shù)學思想、方法劃分為三個層次,即“了解”、“理解”和“會應用”。在教學中,要求學生“了解”數(shù)學思想有:數(shù)形結(jié)合的思想、分類的思想、類比的思想和函數(shù)的思想等。
少數(shù)民族教師在整個教學過程中,不僅應該使學生能夠領(lǐng)悟到這些數(shù)學思想的應用,而且要激發(fā)學生學習數(shù)學思想的好奇心和求知欲,通過獨立思考,不斷追求新知,發(fā)現(xiàn)、提出、分析并創(chuàng)造性地解決問題。在《數(shù)學新課標》中要求“了解”的方法有:分類法、類比法、反證法等。要求“理解”的或“會應用”的方法有:待定系數(shù)法、消元法、降次法、配方法、圖像法等。在教學中,要認真把握好“了解”、“理解”、“會應用”這三個層次。不能隨意將“了解”的層次提高到“理解”的層次,把“理解”的層次提高到“會應用”的層次,不然的話,學生初次接觸就會感到數(shù)學思想、方法抽象難懂,高深莫測,從而導致他們失去信心。如初中數(shù)學三年級上冊中明確提出“反證法”的教學思想,且揭示了運用“反證法”的一般步驟,但《數(shù)學新課標》只是把“反證法”定位在通過實例,“體會”反證法的含義的層次上,我們在教學中,應牢牢地把握住這個“度”,千萬不能隨意加深。
二、遵循認識規(guī)律,把握教學原則,實施創(chuàng)新教育
1、以數(shù)學知識為載體,將數(shù)學思想方法有機地滲透入教學計劃之中
教學計劃的制訂應體現(xiàn)數(shù)學思想方法教學的綜合考慮,要明確每一階段的載體內(nèi)容、教學目標、展開步驟、教學程序和操作要點。數(shù)學思想方法往往借助現(xiàn)實原型使其得以生動地表現(xiàn),有利于對其深入理解和把握,在教學中要引導學生對所討論的對象進行合理分類,然后逐類討論,最后歸納總結(jié)。教師要幫助學生掌握好分類的方法原則,形成分類思想。
數(shù)學思想方法的滲透應根據(jù)教學計劃有步驟地進行。一般在知識的概念形成階段導入概念型數(shù)學思想,如方程思想、相似思想等等。在知識的結(jié)論、公式、法則等規(guī)律的推導階段,要強調(diào)和灌輸思維方法,如解方程的如何消元降次、函數(shù)的數(shù)與形的轉(zhuǎn)化有哪些常用思路等。在知識的總結(jié)階段或新舊知識結(jié)合部分,要選配結(jié)構(gòu)型的數(shù)學思想,如函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化,分數(shù)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化。
2、結(jié)合新課標,就初中數(shù)學教材進行數(shù)學思想方法的教學研究
要通過對教材完整的分析和研究,把握教材的體系和脈絡,統(tǒng)攬教材全局,然后,建立各類概念、知識點或知識單元之間的界面關(guān)系,歸納和揭示其特殊性質(zhì)和內(nèi)在的一般規(guī)律。如在“因式分解”這一章中,我們接觸到許多數(shù)學方法——提公因式法、運用公式法、分組分解法、十字相乘法等。這是學習這一章知識的重點,只要我們學會了這些方法,按知識──方法──思想的順序提煉數(shù)學思想方法,就能運用它們?nèi)ソ鉀Q成千上萬分解多項式因式的問題。進一步確定數(shù)學知識與其思想方法之間的結(jié)合點,建立一整套豐富的教學范例或模型,最終形成一個活動的知識與思想互聯(lián)網(wǎng)絡。毋用置疑,必須指導學生緊緊抓住掌握數(shù)學思想方法是這一數(shù)學鏈條中的最重要的一環(huán)。許多數(shù)學家和教育家歷來強調(diào)對中學生的數(shù)學思想教育,其目的就是要提高學生的數(shù)學思維能力和數(shù)學素養(yǎng)。在初中數(shù)學教材中集中了大量的優(yōu)秀例題和習題,它們所體現(xiàn)的數(shù)學知識和數(shù)學方法固然重要,但其蘊涵的數(shù)學思想?yún)s更顯重要,作為一個執(zhí)教者,要善于挖掘例題、習題的潛在功能。
總之,在少數(shù)民族地區(qū)初中數(shù)學教學中滲透數(shù)學思想和數(shù)學方法,是一項系統(tǒng)工程,需要我們廣大少數(shù)民族地區(qū)的數(shù)學教育工作者對這一工程的滿腔熱情。
參考文獻:
[1]《讓孩子在親身體驗中學習數(shù)學》,施國柱2002年第3期
[2]徐斌艷編著《數(shù)學教育展望》華東師范大學出版社endprint