叢 茜,陳廷坤,李 楊,孫成彬,金敬福
?
利用相變釋能的農(nóng)產(chǎn)品冷藏設(shè)備主動防除冰方法
叢 茜1,2,陳廷坤1,李 楊1,孫成彬1,金敬福1※
(1. 吉林大學生物與農(nóng)業(yè)工程學院,長春 130022; 2. 吉林大學汽車仿真與控制國家重點實驗室,長春 130022)
為減小農(nóng)副產(chǎn)品冷藏設(shè)備表面的結(jié)冰危害,提高部件表面的抗結(jié)冰能力和設(shè)備運轉(zhuǎn)效率,該文提出利用相變釋能的主動防除冰方法。試驗以帶有不同凹坑尺寸的聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)和6061鋁合金作為基體材料,凹坑內(nèi)填充氣體或不同冰點的介質(zhì),表面覆蓋雙向拉伸聚丙烯薄膜(biaxially oriented polypropylene,BOPP)。試驗采用水杯制冰法,測量表面結(jié)冰附著強度,結(jié)合剝離界面的形態(tài),分析相變時差對界面附著強度的影響機理。結(jié)果表明:相對于光滑PMMA試樣的表面附著強度169.81 kPa,試樣(凹坑內(nèi)分別填充純凈水和體積分數(shù)為6%乙醇溶液)表面的附著強度分別降低了100%和82%;對比無凹坑鋁合金試樣表面的附著強度,凹坑內(nèi)填充體積分數(shù)為15%乙醇溶液低冰點溶液的試樣表面附著強度可減小76.52%。因此利用不同水溶液的相變時間差和膨脹釋能可減小試樣表面的附著強度,并且試驗表明試樣材料、凹坑尺寸對附著強度的降低作用影響較小。利用相變時差和相變膨脹釋能破壞冰在彈性凍結(jié)界面的接觸穩(wěn)定性,達到降低結(jié)冰表面附著強度的目的,并且水溶液中水的體積分數(shù)越大,試樣結(jié)冰表面的附著強度的越小。研究結(jié)果為農(nóng)產(chǎn)品冷藏領(lǐng)域中的防、除冰方法研究和開發(fā)提供參考。
制冷;凍結(jié);界面;彈性膜;相變;膨脹;附著強度
隨著中國冷凍、冷藏行業(yè)的迅速發(fā)展,農(nóng)副產(chǎn)品、果蔬等食品對冷庫、冷藏機械的需求逐年增加,如微型冷庫在未來20年的保有量將達到50萬左右臺[1],而且保鮮冷庫的制冷效率可影響儲藏物的品質(zhì)[2-3]。因此,制冷設(shè)備高效節(jié)能的運轉(zhuǎn)一直是該行業(yè)追求的目標,但使用過程中,由于表面溫度低,空氣中的水蒸氣或雨水易附著在蒸發(fā)器、冷凝管、冷風機等制冷部件表面,發(fā)生結(jié)霜、結(jié)冰現(xiàn)象,降低了制冷器表面的熱交換效率,造成設(shè)備運行不穩(wěn)定,嚴重影響制冷設(shè)備的運轉(zhuǎn)效率和制冷速度,增加了用電量和運行成本,經(jīng)濟性差[4-10]。但日常的除冰、除霜效果是影響冷庫運轉(zhuǎn)效率的關(guān)鍵,并且常規(guī)除冰方式效率低且成本高[11-14]。因此,提高制冷設(shè)備表面的防/除冰效果一直是制冷行業(yè)中的重要研究課題。
冰凍結(jié)過程中必然發(fā)生體積變化,對農(nóng)業(yè)、南水北調(diào)等領(lǐng)域中的渡槽、溝渠容易造成膨脹損壞[15-19],能否可以將冰的凍脹力作為破壞力應(yīng)用于有益方向,如作為除冰動力進行自主破冰、提升制冷設(shè)備表面的防/除冰能力。項目組前期進行表面宏觀形態(tài)對結(jié)冰附著強度的影響試驗[20-21]:改變材料表面宏觀形態(tài)、利用冰的相變膨脹影響表面結(jié)冰附著強度,結(jié)果表明網(wǎng)格狀、條紋狀、點狀凹坑等不同形態(tài)對表面結(jié)冰附著強度的降低效果具有不同程度的影響。根據(jù)項目組提出的“一種防結(jié)冰覆膜”[22]的除冰思路,本文將彈性凍結(jié)界面與凍結(jié)過程中的相變膨脹釋能進行耦合,同時利用不同凍結(jié)介質(zhì)的相變時間差異,破壞已凍結(jié)界面的穩(wěn)定性。在耦合作用下,降低表面冰的粘附強度。同時利用試驗方法驗證相變釋能進行除冰的可行性,并分析相變時差對凍結(jié)界面穩(wěn)定性的影響機理,為開發(fā)新除冰技術(shù)提供試驗數(shù)據(jù)和理論支撐。
試驗測試冷表面冰的剝離強度來評價水溶液相變時差對附著強度的影響,通過剝離后界面的形狀分析相變時差對附著強度的影響效應(yīng)。試驗測試前,界面需采用丙酮溶液擦干。
1.1 試樣制備
待測試樣的材料為聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA),采用激光雕刻加工直徑30 mm、深3 mm的凹坑,如圖1所示。
制備體積分數(shù)分別為6%、8%、10%的乙醇溶液,3種體積分數(shù)溶液的冰點分別為:?1.94、?2.6、?3.26 ℃。凍結(jié)介質(zhì)填充凹坑后,表面粘貼雙向拉伸聚丙烯薄膜(biaxially oriented polypropylene,BOPP),作為試樣表面的彈性接觸界面。制備6種待測試樣,并分別命名為a、b、c、d、e、f,特征如表1所示。
表1 制備的6種PMMA試樣特征
同時為驗證該防除冰思路不受材料導熱性、凹坑尺寸的影響,本文采用導熱性差距較大的6061鋁合金(237 W/(m·k))和PMMA(0.2 W/(m·k))作為試驗材料,在材料表面制備直徑30 mm、深3.5 mm的凹坑。凹坑內(nèi)分別填充冰點為?6.8 、?10.4 ℃的15%、20%乙醇溶液,并分別命名為i~v,其具體特征如表2所示。
表2 制備的5種試樣特征
1.2 試樣制備
參考ASTM-D3528粘附劑測試標準及相關(guān)文獻中結(jié)冰表面附著強度測試方法[23-26],搭建冰的切向附著強度測量裝置,如圖2所示。
試驗中采用“水杯制冰法”,其中鋁杯內(nèi)徑為32 mm、外徑為39 mm、高度為41 mm,用水量為5 mL純凈水。采用東莞宏展儀器的LP-225U高低溫環(huán)境箱控制?25 ℃的環(huán)境溫度。制冷1 h以后,采用圖2裝置進行測量,每種試樣測試5次。
2.1 結(jié)冰表面附著強度測試
2.1.1 試驗數(shù)據(jù)
利用自制裝置測試試樣結(jié)冰的表面附著強度,并通過SPSS軟件分析試驗測試數(shù)據(jù)的顯著性,如圖3所示。
由試驗結(jié)果可知,凹坑試樣表面的附著強度明顯低于光滑試樣表面的附著強度。相對于光滑試樣表面的附著強度平均值(169.81 kPa),帶有凹坑的b~f試樣表面附著強度分別降低了56%、100%、82%、65%、59%,其中試樣b表面附著強度最大(75.51 kPa),試樣c表面附著強度為0。d~f試樣中,d試樣(6%乙醇溶液)表面的附著強度最小,e和f試樣表面的附著強度值相近。
相同試驗條件下,分別測試i~v試樣表面的附著強度,并利用SPSS軟件分析試驗測試結(jié)果的顯著性,如圖4所示。由試驗數(shù)據(jù)可知,帶有凹坑且填充低冰點乙醇溶液的ii~v試樣表面的附著強度明顯低于光滑的鋁合金、PMMA試樣表面的附著強度,其中無凹坑的鋁合金試樣i表面附著強度略小于PMMA試樣a表面的附著強度。
相對于無凹坑鋁合金試樣i表面的附著強度,帶有凹坑的ii、iii試樣表面附著強度明顯的降低了76.52%、74.91%。材質(zhì)為PMMA的iv、v試樣,其表面的凹坑尺寸及填充的介質(zhì)不同于a~f試樣表面的凹坑尺寸和填充的溶液,但其表面的附著強度值(分別為24.76 kPa、26.62 kPa)也顯著減小,明顯低于試樣a、d、e、f表面的附著強度。ii、iii鋁合金試樣表面的附著強度略高于iv、v試樣表面的附著強度。
Fig4. Surface adhesion strength of different thermal conductivity samples
綜合圖3、4的試驗數(shù)據(jù)可見,試驗材料采用導熱性良好的鋁合金和導熱性差的PMMA作為凍粘基體,利用相變膨脹釋能均明顯的減小了試樣表面的附著強度。基于防結(jié)冰模型中不同溶液的相變時間差,耦合利用凹坑內(nèi)對表面附著強度的影響效果與模型中的凹坑尺寸無關(guān)。
2.1.2 結(jié)冰界面形態(tài)
圖5為剝離后BOPP及結(jié)冰界面的表面形態(tài),并參照剝離后的界面形態(tài)添加了BOPP膜變形示意圖。表面未經(jīng)任何處理的a試樣,剝離后BOPP膜及冰的凍結(jié)界面未發(fā)生變化。具有凹坑且填充不同介質(zhì)的b~f試樣中,BOPP膜出現(xiàn)了不同程度的變形,如b試樣的凹坑表面BOPP膜出現(xiàn)凹陷現(xiàn)象,c~f凹坑部位BOPP膜呈現(xiàn)膨脹凸起。剝離測試后,采用數(shù)顯游標卡尺測量c~f表面膨脹凸起高度,平均值分別為3.34、1.25、1.13、1.04 mm,并且由圖5可見,c試樣(凹坑內(nèi)填充純凈水)表面的膨脹凸起最為明顯。
1.剝離后的BOPP膜 2.剝離后的結(jié)冰界面 3.BOPP膜 4.PMMA 5.冰
1.BOPP film after stripping 2.Freezing interface after stripping 3.BOPP film 4.PMMA 5.Ice
注:H、H、H、H、H分別為試樣b~f表面BOPP覆膜的膨脹凸起高度。
Note:H,H,H,H,Hare the expansion deformation height of the BOPP film covered on the samples b-f, respectively.
圖5 剝離后凍結(jié)界面的變形
Fig5. Deformation of freezing interface after stripping
2.2 結(jié)果分析與討論
冷表面水滴的初始形態(tài)近似半球形,從冷表面開始凍結(jié)結(jié)冰,完成后頂端產(chǎn)生膨脹凸起、高度增加,形態(tài)類似于“桃”型[27-30],如圖6所示。由于凹坑內(nèi)水溶液的冰點,鋁杯的導熱系數(shù)大于PMMA的導熱系數(shù),延長了彈性覆膜上下水溶液與水之間的相變時間差。低溫環(huán)境下,彈性覆膜表面上的水分首先開始凍結(jié)結(jié)冰,形成彈性凍結(jié)界面的同時,對凹坑內(nèi)的水溶液形成彈性約束。隨凍結(jié)時間的延長,凹坑內(nèi)填充的液體開始相變結(jié)冰,水溶液短時間內(nèi)釋放相變膨脹能。
眾所周知,水結(jié)冰產(chǎn)生會釋放大量的能量,如冬季水箱內(nèi)的水結(jié)冰引起水箱的破裂。防結(jié)冰模型中的凹坑只有表面粘貼的覆膜為彈性邊界,釋放的相變膨脹力只能加載于頂部的BOPP覆膜,引起凍結(jié)界面產(chǎn)生不規(guī)則的凹凸變形,破壞了試樣表面的附著穩(wěn)定性,如圖7所示。
由試驗結(jié)果及剝離后凹坑表面變形的BOPP覆膜可見,利用不同水溶液的相變時間差異以及膨脹釋能,彈性凍結(jié)界面發(fā)生膨脹凸起,破壞結(jié)冰界面的連續(xù)性,降低表面的附著強度。試樣凹坑內(nèi)填充的低冰點溶液,水占據(jù)的比例越大,,相變膨脹能越大,對表面結(jié)冰附著強度的影響越大,如c試樣(凹坑內(nèi)填充純凈水,表面膨脹變形最大)表面附著強度為0 kPa。
實際環(huán)境中結(jié)冰的或結(jié)霜過程受諸多復雜因素的影響,不能僅僅是通過試驗?zāi)M凍結(jié)過程,需要結(jié)合理論分析開展研究,提出的防除冰方法仍需不斷進行開發(fā)。該方法應(yīng)用在工程領(lǐng)域中時,可采用諸多方式實現(xiàn)防結(jié)冰部件表面的相變時差,如表面粘貼容納低冰點液體的覆膜,利用液體邊界約束材料導熱性差異等方式。
1)通過試驗方法驗證了采用彈性覆膜作為結(jié)冰界面,耦合冰自身產(chǎn)生的相變膨脹以及利用不同水溶液的相變時間差,破壞彈性凍結(jié)界面的穩(wěn)定性,降低表面結(jié)冰附著強度的方法是可行的,并且防結(jié)冰模型中試樣材料、凹坑尺寸對結(jié)冰附著強度的降低效果的影響較小。
2)試驗中采用BOPP彈性覆膜作為凍結(jié)界面,利用不同水溶液的相變時差,將凍結(jié)過程中的相變膨脹能作為主動除冰動力,使彈性接觸界面發(fā)生變形,與結(jié)冰界面之間產(chǎn)生間隙,破壞凍結(jié)界面的連續(xù)性,減小表面結(jié)冰附著強度。
3)冰在凹坑試樣表面的附著強度明顯(<0.05)低于在光滑試樣表面的附著強度。相對于光滑試樣a表面的附著強度,c試樣(純凈水)對表面附著強度為0 kPa;凹坑填充不同體積分數(shù)乙醇溶液的試樣中,6%乙醇體積分數(shù)表面的附著強度降低了82%。
由于顯微觀察、計算機模擬等技術(shù)手段的限制,目前本文僅停留在理論設(shè)想及采用工程材料進行試驗驗證的階段。本文中采用的防、除冰模型對試樣材料表面附著強度的降低作用顯著,相對于常規(guī)除冰方式,該模型制備成本低,并為除冰方法的開發(fā)、升級提供了一種新的技術(shù)思路。
[1] 趙松松,楊昭,陳愛強,等. 微型冷庫復合加熱循環(huán)除霜系統(tǒng)的研制與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(2):306-311.
Zhao Songsong, Yang Zhao, Chen Aiqiang, et al. Development and experiment about recombination heating circulation defrosting system of mini cold storage house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 306-311. (in Chinese with English abstract)
[2] 蔡琰,余美麗,刑宏杰,等. 低溫預(yù)貯處理對冷藏水蜜桃冷害和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2010,26(6):334-338.
Cai Yan, Yu Meili, Xing Hongjie, et al. Effects of low temperature conditioning on chilling injury and quality of cold-stored juicy peach fruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 334-338. (in Chinese with English abstract)
[3] 申江,王曉東,王素英,等. 冰溫技術(shù)應(yīng)用實驗研究[J].制冷學報,2009,30(4):40-45.
Shen Jiang, Wang Xiaodong, Wang Suying, et al. Experimental study on application of hyo-on Technology [J]. Journal of Refrigeration, 2009, 30(4): 40-45. (in Chinese with English abstract)
[4] 鄭傳祥,卓傳敏. 大型速凍設(shè)備不同結(jié)構(gòu)蒸發(fā)器的傳熱性能比較[J]. 農(nóng)業(yè)工程學報,2006,22(8):111-115.
Zheng Chuanxiang, Zhuo Chuanmin. Comparative research on the heat transfer efficiency of evaporators with different structures used in a large quick-freeze plant [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 111-115. (in Chinese with English abstract)
[5] 劉曉輝,魯墨森,王淑貞,等. 小型冷庫多效冷凝制冷機組的能耗及節(jié)能分析[J]. 農(nóng)業(yè)工程學報,2010,26(6):103-108. Liu Xiaohui, Lu Mosen, Wang Shuzhen, et al. Analysis of energy consumption and energy conservation of multi-effect condensed refrigeration unit in small cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 103-108. (in Chinese with English abstract)
[6] 劉耀民,劉中良,黃玲艷,等. 結(jié)霜對微型冷庫性能影響的實驗研究[J]. 工程熱物理學報,2010,31(10):1755-1758.
Liu Yaomin, Liu Zhongliang, Huang Lingyan, et al. An experimental study of the influences of frost deposition on the performance of a small [J]. Journal of Engineering Thermophysics, 2010, 31(10): 1755-11758. (in Chinese with English abstract)
[7] 臧潤清,陳春培,劉旭升,等. 冷卻物冷藏間冷風機的空氣除霜實驗研究[J]. 低溫與超導,2012,40(1):44-46.
Zang Runqing, Chen Chunpei, Liu Xusheng, et al. Experimental investigation on air defrosting of air cooler in cold storage[J]. Cryogenics & Superconductivity, 2012, 40(1): 44-46. (in Chinese with English abstract)
[8] Melo C, Knabben F T, Pereira P V. An experimental study on defrost heaters applied to frost-free household refrigerators[J]. Applied Thermal Engineering, 2013, 51(1): 239-245.
[9] 程建杰,陳汝東. 制冷裝置的除霜研究[J]. 流體機械,2004,32(7):64-66.
Cheng Jianjie, Chen Rudong. Study on defrosting of refrigerating plant[J]. Fluid Machinery, 2004, 32(7): 64-66. (in Chinese with English abstract)
[10] 閆勤勞,朱琳,張密娥,等. 冷風機超聲波除霜技術(shù)試驗研究[J]. 農(nóng)業(yè)機械學報,2003,34(4):83-85.
Yan Qinlao, Zhu Lin, Zhang Mie, et al. Study on ultrasonic defrost technology of refrigeration fan[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(4): 83-85. (in Chinese with English abstract)
[11] 李輝,趙蘊慧,袁曉燕. 抗結(jié)冰涂層:從表面化學到功能化表面[J]. 化學進展,2012,24(11):2087-2096.
Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-icing coatings: From surface chemistry to functional surfaces[J]. Progress in Chemistry, 2012, 24(11): 2087-2096. (in Chinese with English abstract)
[12] Lasse Makkonen. Ice adhesion-theory, measurements and countermeasures [J]. Journal of Adhesion Science and Technology, 2012(26): 413-445.
[13] Tang Yongqiang, Zhang Qinghua, Zhan Xiaoli, et al. Superhydrophobic and anti-icing properties at overcooled temperature of a fluorinated hybrid surface prepared via a sol–gel process[J]. Soft Matter, 2015(11): 4540-4550.
[14] Editorial. Anti-icing and deicing techniques[J]. Cold Regions Science and Technology, 2011(65): 1-4.
[15] 劉孟凱,王長德,馮曉波. 長距離控制渠系結(jié)冰期的水力響應(yīng)分析[J]. 農(nóng)業(yè)工程學報,2011,27(2):20-27.
Liu Mengkai, Wang Changde, Feng Xiaobo. Analysis on the hydraulic response of long distance canal control system during ice period [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 20-27. (in Chinese with English abstract)
[16] 劉月,王正中,王羿. 考慮水分遷移及相變對溫度場影響的渠道凍脹模型[J]. 農(nóng)業(yè)工程學報,2016,32(17):83-88.
Liu Yue, Wang Zhengzhong, Wang Yi. Frost heave model of canal considering influence of moisture migration and phase transformation on temperature field [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 83-88. (in Chinese with English abstract)
[17] 陳武,劉德仁,董元宏,等. 寒區(qū)封閉引水渡槽中水溫變化預(yù)測分析[J]. 農(nóng)業(yè)工程學報,2012,28(4):69-75.
Chen Wu, Liu Deren, Dong Yuanhong, et al. Prediction analysis on water temperature in closed aqueduct in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 69-75. (in Chinese with English abstract)
[18] 周庭正,趙新,黃炎. 南水北調(diào)中線工程渡槽結(jié)構(gòu)冰蓋溫度膨脹力研究[J]. 南水北調(diào)與水利科技,2012,10(3):7-11.
Zhou Tingzheng, Zhao Xin, Huang Yan. Ice thermal expansive pressure acting on aqueduct structure of middle route scheme of SNWDP[J]. South-to-North Water Diversion and Water Science &Technology, 2012, 10(3): 7-11. (in Chinese with English abstract)
[19] 徐國賓,李大冉,黃炎,等. 南水北調(diào)中線輸水工程若干冰力學問題試驗研究[J]. 水科學進展,2010,21(6):808-815.
Xu Guobin, Li Daran, Huang Yan, et al. Laboratory study of problem in ice mechanics encountered in the middle route of South-to-North Water Transfer Project[J]. Advances in Water Science, 2010, 21(6): 808-815. (in Chinese with English abstract)
[20] 曹敏,陳廷坤,叢茜,等. 表面形態(tài)對結(jié)冰附著強度的影響[J]. 吉林大學學報:工學版,2013,43(5):1314-1319.
Cao Min, Chen Tingkun, Cong Qian, et al. Influence of PMMA surface morphology on ice adhesion strength[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43(5): 1314-1319. (in Chinese with English abstract)
[21] 吉林大學. 一種降低材料表面結(jié)冰附著強度的方法:2013100115005.7 [P]. 2013-05-01.
[22] 吉林大學. 一種防結(jié)冰覆膜:201410456599.X[P]. 2014-12-10.
[23] Standard test and method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528-1996[S].
[24] 劉國敏,李建橋,田喜梅,等. 蚯蚓非光滑體表減粘降阻試驗[J]. 農(nóng)業(yè)機械學報,2008,39(9):138-143.
Liu Guomin, Li Jianqiao, Tian Ximei, et al. Experiment on reduction of soil adhesion force and sliding resistance of earthworm non-smooth surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(9): 138-143. (in Chinese with English abstract)
[25] 叢茜,楊曉東,柴雄梁,等. 仿生柔性技術(shù)減少煤粘附的試驗[J]. 農(nóng)業(yè)機械學報,2007,38(3):209-210.
Cong Qian, Yang Xiaodong, Chai Xiongliang, et al. Experiment on reducing coal adhesion by bionic flexible technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(3): 209-210. (in Chinese with English abstract)
[26] Jellinek H H G, Kacbi H, Kittaka S, et al. Ice releasing block-copolymer coatings[J]. Colloid & Polymer Sci, 1978, 256: 544-551.
[27] Snoeijer J H, Philippe B. Pointy ice-drops: How water freezes into a singular shape[J]. American Journal of Physics, 2012, 80(9): 764-771.
[28] Wang J T, Liu Z L, Gou Y J, et al. Deformation of freezing water droplets on a cold copper surfaces[J]. Science in China(Series E: Information Sciences), 2006, 49(5): 590-600.
[29] 金敬福,韓麗曼,曹敏,等. 水滴結(jié)冰相變體積膨脹規(guī)律[J].吉林大學學報:工學版,2016,46(5):1546-1551.
Jin Jingfu, Han Liman, Cao Min, et al. Volume expansion rule of water droplets during freezing process[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(5): 1546-1551. (in Chinese with English abstract)
[30] Gaurav Chaudhary, Ri Li. Freezing of water droplets on solid surfaces: An experimental and numerical study[J]. Experimental Thermal and Fluid Science, 2014(57): 86-93.
Active anti-icing method for agricultural product refrigerated equipment based on phase change energy release
Cong Qian1,2, Chen Tingkun1, Li Yang1, Sun Chengbin1, Jin Jingfu1※
(1.130022,;2.130022,)
The application of refrigeration in agricultural and sideline products preservation is getting more and more extensive. However, the surface of refrigeration equipment, such as evaporator, condenser and chiller, is prone to freeze, and ice and frost are easy to occur, which seriously affect the operation efficiency of refrigeration equipment and increase the cost. The formation of ice must be accompanied by the phase expansion. So, why not use the phase transition expansion as the deicing power, and make the refrigeration equipment surface own active control ability of ice? During the test, the polymethyl methacrylate (PMMA) with pit and the aluminum alloy were used as the matrix materials, which were bonded with the biaxially oriented polypropylene (BOPP) elastic film as the freezing interface. The pit of the PMMA was filled with gas or aqueous solution with different freezing point. The test adopted the cup method to make the ice under -25 ℃ temperature. With the same cup, the test directly adopted the measured peeling force as the icing adhesion strength. The experimental results showed that the influence of the freezing medium with different freezing point on the icing adhesion strength was different. Compared with icing adhesion strength on the smooth specimen surface 169.81 kPa, the icing adhesion strength of the sample filled with the pure water in the pit was 0 kPa, decreased by 100%. And the icing adhesion strength of the sample filled with 6% ethanol solution was declined by 82% compared with the smooth specimen. Compared with the aluminum alloy sample surface, the icing adhesion strength of the sample filled with the solution of low freezing point was reduced by 76.52%. The icing adhesion strength of the sample filled with 6% ethanol solution was the smallest among the samples with the pits filled with alcohol solution. After the test, it was found that the expansion bump with different height occurred on the surface of the BOPP film on the surface of the pits, and the maximum height (3.34 mm) was on the surface of the specimen filled with pure water, followed by the sample filled with 6%, 8% and 10% ethanol solution, whose swell bump heights were 1.25, 1.13 and 1.04 mm, respectively. The results showed that the icing adhesion strength would be reduced by the phase expansion energy owing to the time difference of phase change. What was more, the influence of sample material, size of pit and filled solution on the icing adhesion strength decrease was very small. During the test, BOPP elastic film was used as the icing interface, and the rigid freezing interface under normal conditions was transformed into a flexible freezing interface. Due to the different thermal conductivity, the moisture on the film was first frozen, and the water solution in the pit formed the boundary constraints. After the aqueous solution was frozen into ice, the swell was generated and the energy was released. The energy played a role on the BOPP elastic film, and it destroyed the contact stability of the interface and reduced the icing adhesion strength. Therefore, it is feasible to destroy the contact stability of the elastic freezing interface and reduce the surface icing strength by the phase transition expansion caused by the coupled effect of ice itself and time difference of the phase transition using different aqueous solutions. The experimental results could provide a reference for studying and developing of anti-icing during agricultural product refrigeration field.
refrigeration; freezing; interface; elastic film; phase transition; expansion; adhesion strength
10.11975/j.issn.1002-6819.2017.09.036
TB131
A
1002-6819(2017)-09-0276-06
2016-11-20
2017-04-10
吉林省教育廳“十二五”科學研究項目(2015-473,2015-417)和吉林大學研究生創(chuàng)新基金項目(2016167)聯(lián)合資助。
叢 茜,女(漢族),吉林長春人,教授,博士,博士生導師,主要從事工程仿生學及低溫防凍粘技術(shù)。長春吉林大學生物與農(nóng)業(yè)工程學院 130022。Email: congqian@jlu.edu.cn
金敬福,男(朝鮮族),吉林長春人,副教授,博士,主要從事工程仿生學及表面與界面效應(yīng)分析。長春吉林大學生物與農(nóng)業(yè)工程學院 130022。Email: jinjingfu@jlu.edu.cn
叢 茜,陳廷坤,李 楊,孫成彬,金敬福. 利用相變釋能的農(nóng)產(chǎn)品冷藏設(shè)備主動防除冰方法[J]. 農(nóng)業(yè)工程學報,2017,33(9):276-281. doi:10.11975/j.issn.1002-6819.2017.09.036 http://www.tcsae.org
Cong Qian, Chen Tingkun, Li Yang, Sun Chengbin, Jin Jingfu. Active anti-icing method for agricultural product refrigerated equipment based on phase change energy release[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 276-281. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.036 http://www.tcsae.org