王金武 周文琪 王金峰 張春鳳 江東璇
(1.東北農(nóng)業(yè)大學(xué)工程學(xué)院, 哈爾濱 150030; 2.北京農(nóng)業(yè)智能裝備技術(shù)研究中心, 北京 100097)
斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)工作參數(shù)試驗(yàn)優(yōu)化
王金武1周文琪1王金峰1張春鳳2江東璇1
(1.東北農(nóng)業(yè)大學(xué)工程學(xué)院, 哈爾濱 150030; 2.北京農(nóng)業(yè)智能裝備技術(shù)研究中心, 北京 100097)
為探明深施型液態(tài)施肥機(jī)扎穴機(jī)構(gòu)工作參數(shù)對(duì)作物損傷率、穴口寬度以及穴距的影響機(jī)理,設(shè)計(jì)了一種斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)。通過聯(lián)軸器使扎穴機(jī)構(gòu)滿足斜置式扎穴狀態(tài),使其扎穴軌跡平面與壟面呈一定角度變化,實(shí)現(xiàn)斜入式扎穴。采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)進(jìn)行最佳工作參數(shù)試驗(yàn),以行星架轉(zhuǎn)速、前進(jìn)速度和斜置角度為試驗(yàn)影響因素,以穴口寬度、穴距和作物損傷率為優(yōu)化指標(biāo),利用響應(yīng)曲面方法進(jìn)行優(yōu)化,運(yùn)用Design-Expert 8.0.10軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析,得到因素與指標(biāo)之間的回歸方程及響應(yīng)曲面圖。試驗(yàn)結(jié)果表明,當(dāng)行星架轉(zhuǎn)速75.0 r/min、前進(jìn)速度0.48 m/s、斜置角度23.3°時(shí),穴口寬度為40.2 mm,穴距為220 mm,作物損傷率為0.33%,此時(shí)機(jī)構(gòu)性能最優(yōu),應(yīng)用此參數(shù)組合進(jìn)行斜入式扎穴測(cè)試驗(yàn)證,驗(yàn)證了其合理性。
深施型液態(tài)施肥機(jī); 扎穴機(jī)構(gòu); 斜入式扎穴; 非規(guī)則齒輪; 優(yōu)化
引言
扎穴機(jī)構(gòu)是深施型液態(tài)施肥機(jī)的核心工作部件,該機(jī)構(gòu)實(shí)現(xiàn)噴肥針入土噴肥的功能,其性能的優(yōu)劣直接決定了施肥機(jī)扎穴噴肥的質(zhì)量和效率。
目前液態(tài)施肥機(jī)扎穴機(jī)構(gòu)分為曲柄搖桿式、橢圓-正圓齒輪行星系、全橢圓齒輪行星系以及非圓齒輪行星輪系等。每一種扎穴機(jī)構(gòu)都有不足之處:曲柄搖桿式扎穴機(jī)構(gòu)雖然能滿足深施液態(tài)肥的功能,但其固有運(yùn)動(dòng)慣性力和本身的結(jié)構(gòu)形式使得扎穴次數(shù)進(jìn)一步提高時(shí),振動(dòng)大大加劇[1-2];橢圓齒輪行星系扎穴機(jī)構(gòu)雖然經(jīng)過運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)優(yōu)化,但只有一個(gè)噴肥針工作,效率相對(duì)較低[3-4];全橢圓齒輪行星系扎穴機(jī)構(gòu),雖然扎穴速度高達(dá)450次/min,但噴肥針入出土垂直度不夠,穴口寬度較大[5-6],非圓齒輪行星輪系扎穴機(jī)構(gòu)雖然扎穴效率以及扎穴效果均明顯提高[7-8],但在田間進(jìn)行扎穴施肥時(shí),由于離作物根區(qū)很近,其固有的周轉(zhuǎn)運(yùn)動(dòng)對(duì)作物造成嚴(yán)重機(jī)械損傷,如殼體擊打莖葉,噴肥針扎莖葉等,嚴(yán)重影響了作物后期的生長(zhǎng)。上述幾類扎穴機(jī)構(gòu)均存在對(duì)作物造成機(jī)械損傷的問題[9-11]。
一種呈斜置形式的扎穴機(jī)構(gòu)可減少作物的損傷率,雖然經(jīng)過軟件優(yōu)化得到了機(jī)構(gòu)參數(shù),通過高速攝像分析了扎穴軌跡隨著斜置角度的變化規(guī)律以及在入土與出土過程中噴肥針姿態(tài)變化對(duì)形成穴口寬度的影響機(jī)理。但在實(shí)際工作狀況下,針對(duì)扎穴機(jī)構(gòu)斜置角度、機(jī)構(gòu)轉(zhuǎn)速以及機(jī)構(gòu)前進(jìn)速度對(duì)降低作物損傷率以及得到理想穴距和斜入式較小穴口的多目標(biāo)問題尚無(wú)研究。
因此,為進(jìn)一步探索斜置角度、行星架轉(zhuǎn)速與前進(jìn)速度3個(gè)工作參數(shù)及其之間的相互作用對(duì)指標(biāo)的影響,本文進(jìn)行機(jī)構(gòu)的二次正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn),從整體和相互作用上來(lái)定量研究工作參數(shù)對(duì)多目標(biāo)的影響。以期揭示參數(shù)對(duì)目標(biāo)的影響機(jī)理,并通過分析軟件優(yōu)化得到適合田間作業(yè)時(shí)的機(jī)構(gòu)相應(yīng)工作參數(shù),為建立具有適應(yīng)性和高效率的斜置式扎穴機(jī)構(gòu)模型奠定理論基礎(chǔ)。
斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)如圖1所示。由于該機(jī)構(gòu)具有對(duì)稱分布性,以單側(cè)結(jié)構(gòu)進(jìn)行闡述。斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)主要由7個(gè)不同的非規(guī)則齒輪、聯(lián)軸器、法蘭、外接板、行星架、搖臂、噴肥針等部分組成。
圖1 斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)結(jié)構(gòu)示意圖Fig.1 Diagram of pricking hole mechanism with non-circular gears for diagonal1.聯(lián)軸器 2.法蘭 3.外接板 4.行星架 5.搖臂 6.噴肥針7.太陽(yáng)輪 8.中間輪1 9.中間輪2 10.行星輪
鏈輪軸與太陽(yáng)輪軸通過聯(lián)軸器進(jìn)行連接,太陽(yáng)輪軸穿過太陽(yáng)輪并與行星架通過花鍵連接,外接板可根據(jù)其上的連接孔改變?cè)C(jī)構(gòu)的斜置角度,法蘭與外接板固結(jié)。行星架里面的非規(guī)則齒輪初始安裝相位相同,太陽(yáng)輪與行星架同軸,其他6個(gè)非規(guī)則齒輪在太陽(yáng)輪兩邊呈對(duì)稱布置(太陽(yáng)輪與法蘭固結(jié))。第1中間輪和第2中間輪同軸且固結(jié)在一起,第1中間輪與太陽(yáng)輪相互嚙合,第2中間輪與行星輪相互嚙合。搖臂與噴肥針組成的構(gòu)件固結(jié)在行星輪上[12-16](噴肥針尾部固定在搖臂的一端)。
工作時(shí),驅(qū)動(dòng)力驅(qū)動(dòng)鏈輪軸轉(zhuǎn)動(dòng)并由聯(lián)軸器帶動(dòng)太陽(yáng)輪軸,行星架里面的太陽(yáng)輪固定不動(dòng),當(dāng)行星架轉(zhuǎn)動(dòng)時(shí)行星輪繞太陽(yáng)輪公轉(zhuǎn)并與第2中間輪嚙合自轉(zhuǎn),此時(shí)第1中間輪與太陽(yáng)輪嚙合,由于聯(lián)軸器以及外接板可改變噴肥針的扎穴角度且非規(guī)則齒輪能實(shí)現(xiàn)非勻速比傳動(dòng),最終形成噴肥針尖的斜入式運(yùn)動(dòng)軌跡,保證斜入式的扎穴要求[17-18]。
經(jīng)前期研究,通過理論分析建立了該機(jī)構(gòu)噴肥針的運(yùn)動(dòng)學(xué)模型以及形成這種扎穴軌跡的逆向設(shè)計(jì)思想[19-21],經(jīng)過軟件優(yōu)化得到了相應(yīng)的機(jī)構(gòu)參數(shù)。但在不同工作參數(shù)下多目標(biāo)影響規(guī)律尚未分析。理想的工作參數(shù)應(yīng)是兼顧穴口小、作物損傷率小以及理想穴距的多目標(biāo)優(yōu)化。
2.1 試驗(yàn)材料
為探索斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)行星架轉(zhuǎn)速、前進(jìn)速度以及斜置角度對(duì)扎穴以及作物損傷的影響規(guī)律,得到其最佳工作參數(shù),本研究在東北農(nóng)業(yè)大學(xué)工程學(xué)院農(nóng)具實(shí)驗(yàn)室進(jìn)行臺(tái)架試驗(yàn)。依據(jù)中耕時(shí)期的土壤狀況要求,調(diào)整土壤硬度范圍為0.6~1.0 MPa,含水率為15%~25%。試驗(yàn)作物為中耕時(shí)期玉米,品種為東農(nóng)253,植株高115 cm,葉子外展96 cm,主根長(zhǎng)10 cm,寬7 cm,葉數(shù)7~9葉。斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)試驗(yàn)臺(tái)如圖2所示。
圖2 斜置式非規(guī)則齒輪行星輪系扎穴機(jī)構(gòu)試驗(yàn)臺(tái)Fig.2 Test-bed of non-circular planetary gear trains pricking hole mechanism for diagonal1.電動(dòng)機(jī)a 2.電動(dòng)機(jī)b 3.試驗(yàn)臺(tái)車 4.扎穴機(jī)構(gòu) 5.變頻柜6.玉米植株 7.壟
將玉米作物根據(jù)田間實(shí)際種植狀況栽到壟面上,壟行根據(jù)機(jī)構(gòu)斜置角度在橫向與縱向可調(diào),其目的為了滿足深施肥農(nóng)藝要求的“側(cè)5 cm、深8 cm”,電動(dòng)機(jī)a和電動(dòng)機(jī)b均由變頻柜控制。電動(dòng)機(jī)控制試驗(yàn)臺(tái)車在土槽導(dǎo)軌上往復(fù)運(yùn)動(dòng)(扎穴機(jī)構(gòu)前進(jìn)速度),電動(dòng)機(jī)b通過鏈條傳動(dòng)控制扎穴機(jī)構(gòu)轉(zhuǎn)動(dòng)(行星架轉(zhuǎn)速)。當(dāng)電動(dòng)機(jī)a和電動(dòng)機(jī)b同步進(jìn)行工作時(shí),即合成了扎穴機(jī)構(gòu)的絕對(duì)運(yùn)動(dòng)。
2.2 試驗(yàn)方案設(shè)計(jì)
行星架轉(zhuǎn)速和前進(jìn)速度是影響噴肥針扎穴的重要因素,同時(shí)斜置角度的變化對(duì)作物損傷有著重要的影響。因此選取行星架轉(zhuǎn)速、前進(jìn)速度和斜置角度為試驗(yàn)影響因素。根據(jù)農(nóng)藝要求,穴口寬度越小越好,穴距為標(biāo)準(zhǔn)220 mm,作物的損傷株數(shù)與總株數(shù)的百分比作為作物損傷率(包括行星架部件打掉葉子和噴肥針扎葉、莖受到的不同程度損傷)。因此將穴口寬度、穴距與作物損傷率作為評(píng)價(jià)指標(biāo),選取二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)方案。
2.3 試驗(yàn)結(jié)果與分析
首先對(duì)扎穴機(jī)構(gòu)行星架轉(zhuǎn)速、前進(jìn)速度與斜置角度進(jìn)行單因素預(yù)備試驗(yàn),以確定各因素合理的變化范圍,試驗(yàn)因素編碼如表1所示。
根據(jù)二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)23組試驗(yàn),試驗(yàn)方案與結(jié)果見表2。其中y1為穴口寬度,y2為穴距,y3為作物損傷率。
表1 試驗(yàn)因素編碼
表2 試驗(yàn)方案與結(jié)果
通過Design-Expert 8.0.10軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,篩選出顯著的影響因素,得到相應(yīng)的回歸方程
響應(yīng)曲面圖如圖3所示。
圖3 響應(yīng)曲面Fig.3 Response surfaces
對(duì)上述回歸方程與響應(yīng)曲面進(jìn)行分析可知,行星架轉(zhuǎn)速與前進(jìn)速度的交互作用對(duì)穴口、穴距以及作物損傷率影響顯著。如圖3a所示,當(dāng)行星架轉(zhuǎn)速較小時(shí),穴口寬度隨著前進(jìn)速度的增加先減小后增大;當(dāng)行星架轉(zhuǎn)速較大時(shí),穴口寬度隨前進(jìn)速度的增大先減小后增大;當(dāng)前進(jìn)速度較小時(shí),穴口寬度隨著行星架轉(zhuǎn)速的增大而先減小后增大,當(dāng)前進(jìn)速度較大時(shí),穴口寬度隨著行星架轉(zhuǎn)速的增加而減小。由上述規(guī)律分析可知,在噴肥針入出土過程中,其水平分速度與前進(jìn)速度大小接近且方向相反時(shí),穴口寬度能達(dá)到最小。如圖3b所示,當(dāng)行星架轉(zhuǎn)速一定時(shí),穴距隨著前進(jìn)速度的增大而增大,當(dāng)前進(jìn)速度一定時(shí),穴距隨著行星架轉(zhuǎn)速的提高而減小。如圖3c所示,當(dāng)行星架轉(zhuǎn)速較小時(shí),作物損傷率隨著前進(jìn)速度的增大而先減小后增大,當(dāng)行星架轉(zhuǎn)速較大時(shí),作物損傷率隨著前進(jìn)速度的增大而增大,當(dāng)前進(jìn)速度較小時(shí),作物損傷率隨著行星架轉(zhuǎn)速提高而先減小后增大,當(dāng)前進(jìn)速度較大時(shí),作物損傷率隨著行星架轉(zhuǎn)速的提高而增大。由上述規(guī)律可知,在行星架轉(zhuǎn)速與玉米作物接觸的過程中,當(dāng)相對(duì)速度較小時(shí),此時(shí)的玉米作物損傷率較小。
為得到試驗(yàn)因素的最優(yōu)組合,應(yīng)用Design-Expert 8.0.10的曲面優(yōu)化功能對(duì)穴口寬度、穴距與作物損傷率進(jìn)行優(yōu)化。當(dāng)行星架轉(zhuǎn)速75.0 r/min,
前進(jìn)速度0.48 m/s、斜置角度23.3°時(shí),扎穴機(jī)構(gòu)性能最優(yōu),穴口寬度40.2 mm,穴距220 mm,作物損傷率0.33%。根據(jù)優(yōu)化結(jié)果對(duì)其進(jìn)一步進(jìn)行臺(tái)架試驗(yàn)驗(yàn)證,得到穴口寬度41.5 mm,穴距220 mm,作物損傷率0.32%,驗(yàn)證結(jié)果與Design-Expert 8.0.10優(yōu)化結(jié)果基本一致,其誤差主要為試驗(yàn)過程中土壤環(huán)境與理想狀態(tài)有一定的差距,但可滿足不損傷作物的扎穴要求。
(1)采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)方案進(jìn)行試驗(yàn)安排,獲得了優(yōu)化目標(biāo)與3個(gè)因素之間的回歸方程以及因素之間交互作用的響應(yīng)曲面,對(duì)其結(jié)果進(jìn)行分析,得到因素對(duì)影響指標(biāo)的變化規(guī)律為:①噴肥針在入出土過程中,其相對(duì)水平分速度與前進(jìn)速度大小接近且方向相反時(shí),穴口寬度最小。②在機(jī)組前進(jìn)速度一定,行星架轉(zhuǎn)速增大時(shí),穴距減小;在行星架轉(zhuǎn)速一定時(shí),機(jī)組前進(jìn)速度增大時(shí),穴距增大。③在扎穴機(jī)構(gòu)與玉米作物接觸的過程中,兩者相對(duì)速度較小時(shí),作物的損傷率小。
(2)運(yùn)用Design-Expert 8.0.10 軟件對(duì)回歸模型進(jìn)行優(yōu)化、驗(yàn)證,在行星架轉(zhuǎn)速75.0 r/min、前進(jìn)速度0.48 m/s、斜置角度23.3°時(shí)得到最優(yōu)組合,此時(shí)穴口寬度40.2 mm,穴距220 mm,作物損傷率0.33%。
1 王金武,紀(jì)文義,馮金龍,等.液態(tài)施肥機(jī)的設(shè)計(jì)與試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(6):157-159. WANG Jinwu, JI Wenyi, FENG Jinlong,et al. Design and experimental investigation of the liquid fertilizer applicator[J]. Transactions of the CSAE,2008,24(6): 157-159.(in Chinese)
2 WOMAC A R, TOMPKINS F D. Probe-type injector for fluid fertilizers[J]. Applied Engineering in Agriculture,1990,6(2):149-154.
3 王金峰,王金武,葛宜元,等.深施型液態(tài)施肥機(jī)扎穴機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(6):52-56. WANG Jinfeng, WANG Jinwu, GE Yiyuan,et al. Optimization design on pricking hole mechanism of deep-fertilization liquid fertilizer applicator[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(6): 52-56.(in Chinese)
4 CHEN Y. A liquid manure injection tool adapted to different soil conditions[J]. Transactions of the ASAE,2002,45(6):1729-1736.
5 王金武,劉亞華,王金峰,等.全橢圓齒輪行星系液態(tài)肥深施機(jī)構(gòu)優(yōu)化設(shè)計(jì)與試驗(yàn)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(10):59-65. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20121011&journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2012.10.011. WANG Jinwu, LIU Yahua, WANG Jinfeng,et al. Optimized design and experimental of the liquid fertilizer deep mechanism with planetary elliptic gears[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(10):59-65.(in Chinese)
6 王金峰,王金武,鞠金艷,等.深施型液態(tài)施肥機(jī)扎穴機(jī)構(gòu)研究進(jìn)展[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,44(5):157-160. WANG Jinfeng, WANG Jinwu, JU Jinyan,et al. Research progress on pricking hole mechanism of deep-fertilization liquid fertilizer applicator[J]. Journal of Northeast Agricultural University, 2013, 44(5): 157-160. (in Chinese)
7 劉春香,王金武,周文琪,等.液肥深施雙斜孔式噴肥針動(dòng)力學(xué)分析與試驗(yàn)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):54-58.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_ no=20160308& journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2016.03.008. LIU Chunxiang, WANG Jinwu, ZHOU Wenqi,et al. Dynamics analysis and experiment of double oblique hole spray fertilizer needle of liquid fertilizer deep-fertilization[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(3):54-58.(in Chinese)
8 劉春香,王金武,唐漢,等.基于貝塞爾曲線的液肥扎穴機(jī)構(gòu)動(dòng)力學(xué)分析與試驗(yàn)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):116-122. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160516&journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2016.05.016. LIU Chunxiang, WANG Jinwu,TANG Han, et al. Dynamics analysis and test on picking hole mechanism of liquid fertilizer based on bezier curve[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(5):116-122.(in Chinese)
9 張春鳳.非圓齒輪行星系扎穴機(jī)構(gòu)的反求設(shè)計(jì)與仿真[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2014. ZHANG Chunfeng. Reverse design and kinematic analysis of non-circular planetary gear trains pricking hole mechanism[D]. Harbin:Northeast Agricultural University,2014. (in Chinese)
10 王金武,周文琪,張春鳳,等.非規(guī)則齒輪行星系扎穴機(jī)構(gòu)反求設(shè)計(jì)與試驗(yàn)[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015, 46(11):70-75.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20151111&journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2015.11.011. WANG Jinwu,ZHOU Wenqi,ZHANG Chunfeng,et al. Reverse design and experiment of non-circular gear planetary system picking hole mechanism[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2015,46(11):70-75.(in Chinese)
11 郗曉煥,王金武,郎春玲,等.液態(tài)施肥機(jī)橢圓齒輪扎穴機(jī)構(gòu)優(yōu)化設(shè)計(jì)與仿真[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):81-83. XI Xiaohuan, WANG Jinwu, LANG Chunling,et al. Optimal design and simulation on pricking hole mechanism of liquid fertilizer applicator[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(2):81-83.(in Chinese)
12 張?jiān)驶?,遲立軍,趙勻,等.斜齒外嚙傾斜式寬窄行插秧機(jī)分插機(jī)構(gòu)的設(shè)計(jì)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):8-12. ZHANG Yunhui, CHI Lijun, ZHAO Yun,et al. Design of narrow-wild rice transplanting mechanism with external helical gear transmission[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 8-12. (in Chinese)
13 陳建能,黃前澤,王英,等.缽苗移栽機(jī)橢圓齒輪行星系植苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)建模與分析[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):6-12. CHEN Jianneng, HUANG Qianze, WANG Ying, et al. Kinematics modeling and analysis of transplanting mechanism with planetary elliptic gears for pot seedling transplanter[J]. Transactions of the CSAE, 2012, 28(5): 6-12. (in Chinese)
14 EDATHIPARAMBI H V. Development of a mechanism for transplanting rice seedlings[J]. Mechanism and Machine Theory,2002,37(4):395-410.
15 俞高紅,錢孟波,趙云,等.偏心齒輪-非圓齒輪行星系分插機(jī)構(gòu)運(yùn)動(dòng)機(jī)理分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(3):82-84. YU Gaohong, QIAN Mengbo, ZHAO Yun, et al. Analysis of kinematic principle of transplanting mechanism with eccentric gears and non-circular gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3):82-84.(in Chinese)
16 俞高紅,趙鳳芹,武傳宇,等.正齒行星輪分插機(jī)構(gòu)的運(yùn)動(dòng)特性分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2004,35(6):55-57. YU Gaohong, ZHAO Fengqin, WU Chuanyu, et al. Analysis of kinematic property of separating-planting mechanism with planetary gears[J]. Transactions of the Chinese Society for Agricultural Machinery,2004,35(6):55-57.(in Chinese)
17 趙雄,陳建能,王英,等.水稻缽苗“D 形”靜軌跡移栽機(jī)構(gòu)逆向設(shè)計(jì)與分析[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):92-97. ZHAO Xiong, CHEN Jianneng, WANG Ying, et al. Reverse design and analysis of rice seedling transplanter with D-shape static trajectory[J]. Transactions of the CSAE,2012, 28(8): 92-97. (in Chinese)
18 李革,應(yīng)孔月,張繼釗,等.基于秧針靜軌跡的分插機(jī)構(gòu)非圓齒輪求解[J].機(jī)械工程學(xué)報(bào),2016,52(1):64-71. LI Ge,YING Kongyue, ZHANG Jizhao, et al. Computation method of non-circular gear based on seedling needle tip point’s static trajectory in transplanting mechanism[J]. Journal of Mechanical Engineering, 2016,52(1):64-71.(in Chinese)
19 任根勇.劍桿織機(jī)非圓齒輪行星輪系引緯機(jī)構(gòu)的反求設(shè)計(jì)與仿真分析[D].杭州:浙江理工大學(xué),2011. REN Genyong. Reverse design and simulation analysis of the planetary non-circular gears trains weft insertion mechanism applied on rapier loom[D]. Hangzhou:Zhejiang Sci-Tech University, 2011. (in Chinese)
20 武傳宇,趙勻,陳建能.水稻插秧機(jī)分插機(jī)構(gòu)人機(jī)交互可視化優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(1):47-49. WU Chuanyu, ZHAO Yun, CHEN Jianneng. Optimization design of rice transplanter separating planting mechanism with visualization human computer interaction method[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(1):47-49.(in Chinese)
21 王金武,張春鳳,周文琪,等.基于MATLAB仿真的非規(guī)則齒輪行星系扎穴機(jī)構(gòu)的優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):22-28. WANG Jinwu, ZHANG Chunfeng, ZHOU Wenqi, et al. Optimization design of non-circular planetary gear trains pricking hole mechanism based on MATLAB[J]. Transactions of the CSAE, 2016, 32(3): 22-28. (in Chinese)
Experiment and Optimization of Working Parameters for Pricking Hole Mechanism of Oblique Type Non-circular Gears Planetary System
WANG Jinwu1ZHOU Wenqi1WANG Jinfeng1ZHANG Chunfeng2JIANG Dongxuan1
(1.CollegeofEngineering,NortheastAgriculturalUniversity,Harbin150030,China2.BeijingResearchCenterforIntelligentAgriculturalEquipment,Beijing100097,China)
Deep-fertilization liquid fertilizer applicator with high efficiency, low price, easy operation and environment protection attracts more and more concerns, which can decrease fertilizer volatilization and increase crop yield and quality. Aiming to explore the influence mechanism that working parameters of pricking hole mechanism with crop damage rate,hole size and hole distance, a new type of non-circular gears planetary system of pricking hole mechanism for oblique type of liquid fertilizer applicator for deep-into type was designed. Through coupling part let pricking hole mechanism meet prick hole condition for oblique type, to make the trajectory of pricking hole mechanism side and ridge side reach the changes of different angles, it was achieved to prick hole for oblique type based on the above conditions. Kinematics model was set up, the influence relationship was obtained between the goals and working parameters. Test-bed experiment of working parameters was carried out. The design of quadratic regression rotational quadratic orthogonal experiment was used, with the speed of planet frame, the forward speed and oblique angle as the test factors, the hole mouth width, the hole distance and the rate of crop damage as the test optimization index. The optimization of response surface method was used. Experimental data was analyzed by Design-Expert software so as to establish the regression equation and obtain the diagram of response surface. Test results showed that when the speed of planet frame was 75.0 r/min, the forward speed was 0.48 m/s and the oblique angle was 23.3°, the hole mouth width was 40.2 mm, hole distance was 220 mm and rate of crop damage was 0.33%, the performance of mechanism was optimal under above conditions. The test was verified by applying these parameters to validate its rationality.
liquid fertilizer applicator for deep-into type; pricking hole mechanism; pricking hole for oblique type; non-circular gear; optimization
10.6041/j.issn.1000-1298.2017.06.008
2016-09-06
2016-09-30
國(guó)家自然科學(xué)基金項(xiàng)目(51675093)和東北農(nóng)業(yè)大學(xué)青年才俊項(xiàng)目(14QC34)
王金武(1968—),男,教授,博士生導(dǎo)師,主要從事田間機(jī)械及機(jī)械可靠性研究,E-mail: jinwuw@163.com
王金峰(1981—),男,副教授,主要從事田間機(jī)械研究,E-mail: jinfengw@126.com
S224.21
A
1000-1298(2017)06-0066-05