• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬粉末的吸氫統(tǒng)計熱力學(xué)模型

    2017-06-21 12:33:11吳廣新彭望君張捷宇
    物理化學(xué)學(xué)報 2017年6期
    關(guān)鍵詞:金屬粉末上海大學(xué)熱力學(xué)

    吳廣新 彭望君 張捷宇

    (1上海大學(xué),高品質(zhì)特殊鋼冶金與制備國家重點(diǎn)實(shí)驗室,上海 200072;2上海大學(xué),上海鋼鐵冶金新技術(shù)重點(diǎn)實(shí)驗室,上海 200072;3上海大學(xué),材料科學(xué)與工程學(xué)院,上海 200072)

    [Article]

    金屬粉末的吸氫統(tǒng)計熱力學(xué)模型

    吳廣新1,2,3,*彭望君1,2,3張捷宇1,2,3

    (1上海大學(xué),高品質(zhì)特殊鋼冶金與制備國家重點(diǎn)實(shí)驗室,上海 200072;2上海大學(xué),上海鋼鐵冶金新技術(shù)重點(diǎn)實(shí)驗室,上海 200072;3上海大學(xué),材料科學(xué)與工程學(xué)院,上海 200072)

    提出了一種基于零階Bragg-Williams近似的新統(tǒng)計熱力學(xué)模型。新模型的獨(dú)特之處在于引入了表觀壓縮系數(shù)α來校正高壓氣體的體積變化,并且在擬合結(jié)果中獲得無環(huán)狀曲線。然后,新模型成功應(yīng)用于金屬粉末的吸氫過程。所有結(jié)果表明這個新模型運(yùn)行很好,特別是新模型可用于預(yù)測不同溫度下的PCT曲線。因此,我們的新模型可以在實(shí)際系統(tǒng)中應(yīng)用。

    統(tǒng)計熱力學(xué)理論;氫化過程;儲氫材料粉末

    1 Introduction

    In the analysis of data on the absorption isotherm, it is useful to have an analytic representation of phase quilibria (Pressure-Composition-Temperature, PCT diagram) to optimize the specific application of hydrogen by metals or intermetallic powder. The first model for describing the PCT curves was proposed by Lacher1in 1937 for the Pd-H system because Pd is able to absorb a lot of hydrogen. And mathematical expressions were obtained based on the interstitial site occupation to fit isothermal curves of the logarithm of hydrogen gas pressure as a function of the hydrogen concentration in the metal powder. However, Lacher-type isotherm describes a simplified ideal rather than real behaviour of metal-hydrogen systems. To extend this work, several researchers, such as Beeri et al.2,3,Lexcellent et al.4, Fang et al.5-7and Lototsky et al.8-11and so on12-18, gave more efficiency expressions to fit better these PCT experiment points. However, up to now, the loop-like curves still appear in plateau of PCT diagram.

    It is well known that for the Sievert’s system, the hydrogen capacity is calculated by general equation. It should be realized that when high pressures, about 4-5 MPa hydrogen pressure in real case, are involved, small errors in volume induce quite large errors in the calculated hydrogen capacity. Therefore, even minor volume changes should be considered. However, it is difficult for modified general equation, such as van der Waals19, Berthelot and Dieterici equations, to be applied in real case due to the reason of third degree of equations. In order to obtain the thermodynamic parameters, such as enthalpy and entropy from the PCT diagram, high pressure of hydrogen gas should be substituted by fugacity concept. Although Beeri et al.2proposed this idea and performed it in a real case, it still appears too complex to be used in a comprehensive research fields conveniently.

    In this paper, a new model of statistic thermodynamics based on Bragg-Williams approximation will be presented, which could deal with loop-like curve situation of fitting and is simple enough to be solved analytically with a personal computer. Moreover, our new model will be performed to obtain enthalpies and entropies as a function of composition in practical hydrogen storage metal powder.

    2 Derivation of formulae

    The statistical problem is to determine the distribution of hydrogen between the powder solid and gaseous phases in this chemical reaction process. The gas of the hydrogen exists mainly as molecules with a few atoms; while in the metal powder it exists mainly as protons and electrons1,20. The connection between solid and gaseous phases is the chemical potential. The hydrogen of gaseous phase could be obtained through classic thermodynamics principle while that of solid phase is more complex. The major solution is to determine the partition function of hydrogen atom which includes factors of energy and degeneracy. For the aspect of energy, it is assumed that there are several potential energy holes in the metal powder for the protons to go into. And all these holes are assumed to be equivalent and there are N of them, say in a given body of metal. The energy of a hydrogen molecular dissociation to two hydrogen atoms is denoted by X. Two interaction energy parameters are then introduced, one, Ea, associated with the energy of hydrogen-metal lattice, and the other, ω, related to pairwise nearest neighbors H-H interactions with coordinate number of Z. In order to obtain analytical expressions for the corresponding energy term and for the partition function of the solid, some simplified assumptions are usually made for the type of configurational distribution of the H atoms among the available sites. In the previous treatment of a single-site occupation, two approximations were applied, the zero-order Bragg-Williams19which assumes a random distribution of single H atoms among the available sites, and the first-order Quasi-Chemical19which allows for the formation of dimmer clustering. It has been proposed by Beeri et al.2,3that no significant differences were obtained between these two approximations. Hence, only the more simple Bragg-Williams approximation will be applied in this paper and the hydrogen will be considered to fill the occupied sites randomly.

    Assuming that in the M-H system, the available sites of hydrogen atoms are denoted by N, one obtains:

    where Nνrepresents the corresponding void sites, Nfis occupied sites which has been filled.

    The total free energy of the absorbed phase is given by21:

    where in the right formula, the first item is heat of adsorption, the second item is the dissociation energy of hydrogen molecule and the third item represents the free energy of interaction between the absorbed hydrogen atoms. And χ is the dissociation energy of hydrogen molecule and Eais the heat of absorption at infinite dilution of site.

    Taking into account the number of physically distinguishable states, we obtain the following expression for the partition function:

    where degeneracy is treated using zero-order Bragg-Williams method22. And equation (3) has been translated with extraction method.

    The configurational part of the Helmholtz free energy of solid could be determined by

    The assumption of equality of the chemical potential in gas phase 1/2H2with one of the H in solid solution gives:

    is given by another analyse form:

    where k is Boltzmann constant.

    The left formula (6) is expanded by3,19,23:

    Due to the high pressure gas in experiments, the pressure is substituted by fugacity. And one obtains2:

    where Z(P,T) represents compressibility factors, ai(T) is the viral coefficients and Vi(P) is the molar volume of the gas.

    Because equation24is still too complex to be used to obtain the thermodynamics results in real case. This equation is further predigested as follow:

    Then one obtains:

    where α > 1.

    The right of formula (6) can be expressed as:

    Here, we define hydrogen concentration,then:

    Substituting Eqs.(11) and (13) into Eq.(6) yields:

    Equation (14) gives a relation of the hydrogen pressure as a function of the hydrogen concentration and temperature of reaction.

    3 Discussion

    3.1 Property of new model

    Fowler20suggested general theory of adsorption isotherms exhibiting plateau behaviour at temperatures below critical. Then, Lacher1modified this theory for the description of PCT diagram in H2-Pd system. Both PCT models were derived statistically using Bragg-Williams approximation of the attractive interaction between the nearest neighbours of the adsorbate species. The deviations of PCT diagrams in real metal-hydrogen systems from the modelled “ideal” behaviour so far were mainly considered as regards to sloping plateaux. Actually, in Lacher-type isotherm, loop-like curves are obtained in the plateau which is considered as phase transition between α and β phases. Compared with Lacher-type isotherm, our new model is non-antisymmetry. In this case, loop-like curves would be substituted by straight lines, thus artificial error has been introduced1. Above the critical temperature, no phase transition is encountered, and a single-phase solid solution of H in the parent metal sublattice is maintained throughout the whole composition range of the isotherms2. However, in this paper, apparent compressibility factor α has been introduced to correct the volume change of high pressure gas. And no loop-like curves are obtained in the fitting results (in Fig.1). Where C(H/Hmax) represents concentration of hydrogen. Hence, our new model could describe the experiments more suitable.

    3.2 Inflexion points

    In order to obtain the inflexion points after the apparent compressibility factor was introduced, we perform the mathematical analyse as follows:

    3.3 Apparent compressibility factor

    It must be emphasized here that, the new conception,‘‘a(chǎn)pparent compressibility factor’’ α, is a very important and useful parameter. It can be seen from Fig.2 that, if one makes a further simplifying assumption, α = 1, absorption isotherm is reduced to the Lacher equation. However, increasing the value of apparent compressibility factor α, the loop-like curve in plateau tends to be a horizontal line. Therefore, in order to describe real case accurately, the appropriate value of apparent compressibility factor would be obtained by non-linear curve fitting.

    4 Application to practical systems

    4.1 Application in MgH2powder system

    The pressure-composition-temperature curves of MgH2powder27at temperature of 543, 560 and 578 K can be fitted with good accuracy with our new model as shown in Fig.3. The apparent compressibility factor α is calculated with a value of 3.96.

    Fig.1 Schematic illumination of our new PCT model and Lacher-type model

    Fig.2 Our PCT function plots at various α valuesWith the value of α increasing from 1 to 100, it can be seen that the shape of the curves change from S-type to linear-type.

    Fig.3 Comparison between the experimental (points) and the fitted (solid lines) isotherms

    Fig.4 Van’t Hoff plots for some H/M composition ratios

    Fig.5 Partial molar ΔH and ΔS as a function of H/M composition ratio

    All pressure values were corrected to fugacities. Then, according the results of fitting, we obtain the data of 1/T versus different compositions as shown in Table 1 and Fig.4.

    Next, using the data of slope and intercept of each line, we can obtain the enthalpies and entropies of different composition as shown in Table 2. Then, the data in Table 2 will be fitted as follows (shown in Fig.5):

    Finally, partial molar ΔH and ΔS as a function of H/M composition ratio in MgH2system could be achieved as follows:

    It can be concluded that with the increasing H/M composition ratio, the enthalpy and entropy will be enhanced. The reason is that the more complete reaction, the bigger value of enthalpy, the bigger value of entropy. Meanwhile, we notice that the experimental enthalpy and entropy of MgH2is about -70 - -81.25 kJ·mol-1and -119 - 144.29 J·mol-1·K-128, which is in according with our results of calculation.

    4.2 Application in MgH2-8% LaNi0.5powder system

    The pressure-composition-temperature curves of MgH2-8% LaNi0.5(molar fraction)29at temperature of 553, 563 and 573 K can be fitted with good accuracy with our new model as shown in Fig.6. The apparent compressibility factor α is calculated with a value of 1.05.

    Then, according the results of fitting, we obtain the data of 1/T versus different compositions as shown in Table 3 and Fig.7. Next, using the data of slope and intercept of each line, we can obtain the enthalpies and entropies of different composition as shown in Table 4. Then, the data in Table 4 will be fitted as follows (shown in Fig.8).

    Finally, partial molar ΔH and ΔS as a function of H/M composition ratio in MgH2-8% LaNi0.5system could be achieved as follows:

    Table 1 Data of T-1versus lnP for C = 0.3, C = 0.5 and C = 0.7 fitted by the equation

    Table 2 Data of slope and intercept for C = 0.3,C = 0.5 and C = 0.7

    Fig.6 Comparison between the experimental (points) and the fitted (solid lines) isotherms

    Table 3 Data of T-1versus lnP for C = 0.2, C = 0.35 and C = 0.5 fitted by the equation

    ΔH = -61.65483 - 32.65899 × C (kJ·mol-1)

    ΔS = -109.3434 - 62.88946 × C (J·mol-1·K-1)

    In order to reflect the character of plateau more appropriately, H/M composition ratio C = 0.5 is chosen to compare the enthalpies and entropies of pure and doped MgH2powder system. The enthalpy and entropy for pure MgH2powder system are 84.376 - -73.166 kJ·mol-1and -151.562 - -148.48 J·mol-1·K-1, respectively, while those for MgH2-8% LaNi0.5powder system are 78.229 - -74.903 kJ·mol-1and -141.201 --136.532 J·mol-1·K-1, respectively. It could be concluded that catalyzer reactant could not affect the thermodynamic property of solvent, which is according with the classic thermodynamic principles. Meanwhile, all above show that our new model could be used not only in pure but also in catalyzer-doped hydrogen storage materials.

    Furthermore, as shown in Fig.9, partial molar ΔH and ΔS as a function of H/M composition ratio in both pure MgH2and MgH2-8% LaNi0.5systems could be obtained as follows:

    ΔH = -63.58972 - 27.00238 × C (kJ·mol-1)

    ΔS = -117.22809 - 53.05873 × C (J·mol-1·K-1)

    Fig.7 Van't Hoff plots for some H/M composition ratios

    Table 4 Data of slope and intercept for C = 0.3, C = 0.5 and C = 0.7

    Fig.8 Partial molar ΔH and ΔS as a function of H/M composition ratio

    Fig.9 Partial molar ΔH and ΔS as a function of H/M composition ratio

    5 Conclusions

    In order to overcome the disadvantage of Lacher-type model, a new statistic thermodynamic model based on zero-order Bragg-Williams approximation has been proposed in this paper.

    The distinct character of our new model is non-antisymmetry compared to Lacher-type model. In Lacher-type isotherm, below the critical temperature loop-like curves are obtained in the plateau and that would be substituted by straight lines, thus artificial error has been introduced. In this paper, apparent compressibility factor α has been introduced to correct the volume change of high pressure gas. And no loop-like curves are obtained in the fitting results. Hence, our new model could describe the experiments more suitable.

    Then, the new model is successfully applied for a real case, such as pure MgH2and MgH2-8% LaNi0.5powder systems. Partial molar ΔH and ΔS as a function of H/M composition ratio could be obtained as follows:

    ΔH = -63.58972 - 27.00238 × C (kJ·mol-1)

    ΔS = -117.22809 - 53.05873 × C (J·mol-1·K-1)

    All results indicate that this new model works very well and it should be emphasized that after optimized the parameters of new model with finite temperatures, we could predict PCT curves in other temperatures. Hence, our new model could be applied in practical system significantly.

    (1) Lacher, J. R. A Theoretical Formula for the Solubility of Hydrogen in Palladium. In Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1937; p 525.

    (2) Beeri, O.; Cohen, D.; Gavra, Z.; Johnson, J. R.; Mintz, M. H. J. Alloy. Compd. 1998, 267, 113. doi: 10.1016/S0925-8388(97)00521-5

    (3) Beeri, O.; Cohen, D.; Gavra, Z.; Mintz, M. H. J. Alloy. Compd. 2003, 352, 111. doi: 10.1016/S0925-8388(02)01155-6

    (4) Lexcellent, C.; Gondor, G. Intermetallics.2007, 15, 934. doi: 10.1016/j.intermet.2006.11.002

    (5) Fang, S.; Zhou, Z.; Zhang, J.; Yao, M.; Feng, F.; Northwood, D. O. J. Alloy. Compd. 1999, 293-295, 10. doi: 10.1016/S0925-8388(99)00380-1

    (6) Fang, S.; Zhou, Z.; Zhang, J.; Yao, M.; Feng, F.; Northwood, D. O. Int. J. Hydrog. Energy 2000, 25, 143. doi: 10.1016/S0360-3199(99)00032-4

    (7) Zhou, Z.Q.; Fang, S.S.; Feng, F. Trans. Nonferrous Met. Soc. China 2003, 13, 864.

    (8) Lototsky, M.; Yartys, V.; Marinin, V.; Lototsky, N. J. Alloy. Compd. 2003, 356, 27. doi: 10.1016/S0925-8388(03)00095-1

    (9) Lototskyy, M.; Yartys, V.; Pollet, B.; Bowman, R. Int. J. Hydrog. Energy 2014, 39, 5818. doi:10.1016/j.ijhydene.2014.01.158

    (10) Davidson, D.; Raman, S. S.; Lototsky, M.; Srivastava, O. Int. J. Hydrog. Energy 2003, 28, 1425. doi: 10.1016/S0360-3199(02)00194-5

    (11) Lototskyy, M.; Klochko, Y.; Linkov, V.; Lawrie, P.; Pollet, B. Energy Procedia 2012, 29, 347. doi: 10.1016/j.egypro.2012.09.041

    (12) Jewell, L.L.; Davis, B. H. Appl. Catal. A-Gen. 2006, 310, 1. doi: 10.1016/j.apcata.2006.05.012

    (14) Kuji, T.; Oates, W.; Bowerman, B.; Flanagan, T. J. Phys. F: Metal. Phys. 1983, 13, 1785. doi: 0305-4608/13/9/007

    (15) Chabane, D.; Harel, F.; Djerdir, A.; Candusso, D.; Elkedim, O.; Fenineche, N. Int. J. Hydrog. Energy 2016, 41, 11682. doi: 10.1016/j.ijhydene.2015.12.048

    (16) Oates, W.; Flanagan, T.B. J. Mater. Sci. 1981, 16, 3235. doi: 10.1007/BF00586283

    (17) Young, K.; Ouchi, T.; Fetcenko, M. J. Alloy. Compd. 2009, 480, 440. doi: 10.1016/j.jallcom.2009.03.194

    (18) Payá, J.; Linder, M.; Laurien, E.; Corberán, J. J. Alloy. Compd. 2009, 484, 190. doi: 10.1016/j.jallcom.2009.05.069

    (19) Hill, T. L. An Introduction to Statistical Thermodynamics; Dover Publications: New York, 1986.

    (20) Fowler, R. H.; Guggenheim, E. A. Statistical Thermodynamics of Super-Lattices, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1940; Vol. 174, 189.

    (21) Tanaka, T.; Keita, M.; Azofeifa, D. E. Phys. Rev. B 1981, 24, 1771. doi: 10.1103/PhysRevB.24.1771

    (22) Bragg, W. L.; Williams, E. J. The Effect of Thermal Agitation on Atomic Arrangement in Alloys, In Proceedings of the Royal Society of London. Series A, 1934; p 699.

    (23) Fukai, Y. The Metal-Hydrogen System; Springer-Verlag: Berlin, Heidelberg, 1993.

    (24) Lototskyy, M. Int. J. Hydrog. Energy 2016, 41, 2739. doi: 10.1016/j.ijhydene.2015.12.055

    (25) Saita, I.; Toshima, T.; Tanda, S.; Akiyama, T. J. Alloy. Compd. 2007, 446-447, 80. doi: 10.1016/j.jallcom.2007.04.020

    (26) Zeng, K.; Klassen, T.; Oelerich, W.; Bormann, R. Int. J. Hydrog. Energy 1999, 24, 989. doi: 10.1016/S0360-3199(98)00132-3

    (27) Li, Q.; Chou, K. C.; Xu, K. D.; Lu, X. G.; Zhang, J. Y.; Lin, Q.; Jiang, L. J. J. Mater. Sci. Eng: A 2007, 457, 1. doi: 10.1016/j.msea.2007.01.120

    Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders

    WU Guang-Xin1,2,3,*PENG Wang-Jun1,2,3ZHANG Jie-Yu1,2,3
    (1State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200072, P. R. China;2Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, P. R. China;3Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China)

    Based on zero-order Bragg-Williams approximation, a new statistic thermodynamic model is presented herein. The distinctive feature of the new model is that an apparent compressibility factor α is introduced to correct the volume change of high-pressure gases and ensure no loop-like curves are obtained in the fitting results. The new model is successfully applied to investigate hydrogen absorption on metal powders. Our results indicate that the model works very well and can be used to predict PCT curves at different temperatures. Hence, our new model exhibits significant potential for application in practical systems.

    Statistic thermodynamic theory; Hydriding process; Hydrogen storage materials powder

    December 9, 2016; Revised: February 28, 2017; Published online: March 22, 2017.

    O642

    Wagner, C. Acta Metall. 1971, 19, 843.

    10.1016/0001-6160(71)90140-4

    doi: 10.3866/PKU.WHXB201703222

    *Corresponding author. Email: gxwu@shu.edu.cn; Tel/Fax: +86-21-56337920.

    The project was supported by the National Natural Science Foundation of China (51104098, 51674163) and Science and Technology Committee of Shanghai, China (14521100603, 16ZR1412000).

    國家自然科學(xué)基金(51104098, 51674163)和上海科學(xué)技術(shù)委員會(14521100603, 16ZR1412000)資助

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    金屬粉末上海大學(xué)熱力學(xué)
    金屬粉末增材在飛行器發(fā)動機(jī)的應(yīng)用及挑戰(zhàn)
    金屬粉末在冶金抗磨復(fù)合材料中的應(yīng)用研究
    金屬粉末注射成形用塑基喂料研制及應(yīng)用
    昆鋼科技(2021年1期)2021-04-13 07:55:00
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    上海大學(xué)學(xué)報(自然科學(xué)版)征稿簡則
    鋁合金產(chǎn)品及其生產(chǎn)方法
    鋁加工(2020年3期)2020-12-13 18:38:03
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    Fe-C-Mn-Si-Cr的馬氏體開始轉(zhuǎn)變點(diǎn)的熱力學(xué)計算
    上海金屬(2016年1期)2016-11-23 05:17:24
    活塞的靜力學(xué)與熱力學(xué)仿真分析
    電子制作(2016年19期)2016-08-24 07:49:54
    一類非奇異黑洞的熱力學(xué)穩(wěn)定性
    国产精品 欧美亚洲| 成年女人毛片免费观看观看9 | 熟女av电影| 日韩中文字幕欧美一区二区 | 欧美 日韩 精品 国产| 秋霞在线观看毛片| 国产亚洲av高清不卡| 久久久久久免费高清国产稀缺| 如何舔出高潮| 亚洲美女搞黄在线观看| 伊人久久国产一区二区| 国产一区有黄有色的免费视频| 国产亚洲av片在线观看秒播厂| 无遮挡黄片免费观看| a级片在线免费高清观看视频| 美女高潮到喷水免费观看| 久久精品国产亚洲av涩爱| 欧美黑人精品巨大| 欧美97在线视频| 免费少妇av软件| 91成人精品电影| 老熟女久久久| 丁香六月天网| 亚洲欧美色中文字幕在线| 免费少妇av软件| 国产成人午夜福利电影在线观看| 熟女av电影| 九草在线视频观看| 国产在线视频一区二区| 国产高清不卡午夜福利| 永久免费av网站大全| av在线观看视频网站免费| 亚洲av男天堂| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频 | 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 欧美精品av麻豆av| 亚洲三区欧美一区| 国产精品国产av在线观看| 人成视频在线观看免费观看| 国产成人啪精品午夜网站| 国产精品熟女久久久久浪| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 少妇人妻 视频| 国产成人a∨麻豆精品| 中文字幕制服av| 在线天堂中文资源库| 成人黄色视频免费在线看| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 精品一品国产午夜福利视频| 久久精品国产亚洲av高清一级| 亚洲欧洲国产日韩| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 大陆偷拍与自拍| 精品久久久久久电影网| 日本欧美国产在线视频| 蜜桃在线观看..| 日韩av在线免费看完整版不卡| 国产激情久久老熟女| av女优亚洲男人天堂| 亚洲精品久久成人aⅴ小说| 国产福利在线免费观看视频| 久久影院123| 99热全是精品| 五月开心婷婷网| bbb黄色大片| 91精品伊人久久大香线蕉| 九九爱精品视频在线观看| 五月开心婷婷网| 午夜老司机福利片| 不卡av一区二区三区| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 在线观看国产h片| 国产乱来视频区| 黄片小视频在线播放| 只有这里有精品99| 9色porny在线观看| 欧美成人精品欧美一级黄| 日本黄色日本黄色录像| 日韩制服骚丝袜av| 久久久久网色| 久久亚洲国产成人精品v| 在线观看免费日韩欧美大片| 综合色丁香网| 熟妇人妻不卡中文字幕| 在线看a的网站| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 宅男免费午夜| 国产熟女午夜一区二区三区| 亚洲精品国产av成人精品| 日韩视频在线欧美| 老鸭窝网址在线观看| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 久久久国产精品麻豆| 日日撸夜夜添| 日韩 亚洲 欧美在线| 亚洲精品一二三| 青草久久国产| 国产免费视频播放在线视频| 免费少妇av软件| 亚洲国产欧美一区二区综合| av天堂久久9| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜制服| 亚洲av电影在线观看一区二区三区| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 中文字幕人妻熟女乱码| 在现免费观看毛片| 一本一本久久a久久精品综合妖精| 午夜av观看不卡| 男男h啪啪无遮挡| 女人高潮潮喷娇喘18禁视频| 一级,二级,三级黄色视频| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 夫妻午夜视频| 亚洲精品在线美女| av.在线天堂| 高清av免费在线| 国产老妇伦熟女老妇高清| 男女午夜视频在线观看| 国产精品二区激情视频| 天天添夜夜摸| 亚洲激情五月婷婷啪啪| 中国三级夫妇交换| 午夜免费鲁丝| 97精品久久久久久久久久精品| 91成人精品电影| 国产欧美亚洲国产| 国产精品 国内视频| 中国三级夫妇交换| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 国产日韩欧美在线精品| 国产av码专区亚洲av| 精品国产乱码久久久久久小说| 最新的欧美精品一区二区| 久久久国产一区二区| 少妇人妻精品综合一区二区| 天天添夜夜摸| 国产精品女同一区二区软件| 三上悠亚av全集在线观看| 欧美日韩一区二区视频在线观看视频在线| 在线观看国产h片| 天天躁夜夜躁狠狠躁躁| 久久99一区二区三区| 国产亚洲最大av| 悠悠久久av| 国产男女超爽视频在线观看| 两个人看的免费小视频| 久久国产精品男人的天堂亚洲| 汤姆久久久久久久影院中文字幕| 嫩草影院入口| 蜜桃在线观看..| 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 国产激情久久老熟女| 老司机靠b影院| 免费观看人在逋| 黑人猛操日本美女一级片| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 两个人看的免费小视频| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 亚洲国产最新在线播放| 18禁国产床啪视频网站| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美精品综合一区二区三区| 十八禁网站网址无遮挡| 777米奇影视久久| 久久久久久免费高清国产稀缺| 最近中文字幕2019免费版| 久久久精品94久久精品| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 国产探花极品一区二区| 国产精品免费大片| 亚洲精品一区蜜桃| 国产精品无大码| 婷婷色综合www| 蜜桃在线观看..| 日韩制服骚丝袜av| 免费看av在线观看网站| 欧美精品一区二区大全| 天天躁日日躁夜夜躁夜夜| 国产成人午夜福利电影在线观看| 日韩中文字幕视频在线看片| 午夜精品国产一区二区电影| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 亚洲,欧美,日韩| 少妇人妻久久综合中文| 亚洲精品第二区| 亚洲av日韩精品久久久久久密 | 国产人伦9x9x在线观看| 韩国精品一区二区三区| 国产黄频视频在线观看| 亚洲一区中文字幕在线| 黄色一级大片看看| 国产亚洲最大av| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 99久国产av精品国产电影| 男女床上黄色一级片免费看| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 男女下面插进去视频免费观看| 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 亚洲欧美激情在线| 亚洲七黄色美女视频| 久久99热这里只频精品6学生| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 看十八女毛片水多多多| 国产成人av激情在线播放| 一个人免费看片子| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 成年人午夜在线观看视频| 国产99久久九九免费精品| 亚洲一区中文字幕在线| 亚洲精品一区蜜桃| 免费高清在线观看日韩| 18在线观看网站| 中文字幕最新亚洲高清| 麻豆精品久久久久久蜜桃| 亚洲成av片中文字幕在线观看| 两性夫妻黄色片| 久久青草综合色| 成年av动漫网址| 欧美日韩综合久久久久久| 极品人妻少妇av视频| 一本久久精品| 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 国产男女内射视频| 国产亚洲av高清不卡| 十八禁网站网址无遮挡| 国产成人91sexporn| 美女国产高潮福利片在线看| 国产高清不卡午夜福利| 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 日本猛色少妇xxxxx猛交久久| 国产在线一区二区三区精| 国产精品成人在线| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 国产精品麻豆人妻色哟哟久久| 欧美人与性动交α欧美精品济南到| 久久久久精品性色| av.在线天堂| 日日摸夜夜添夜夜爱| 国产不卡av网站在线观看| 成人国语在线视频| 高清在线视频一区二区三区| 又大又黄又爽视频免费| 久久久久久人人人人人| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 精品亚洲成国产av| 国产午夜精品一二区理论片| 亚洲精品成人av观看孕妇| 国产色婷婷99| 永久免费av网站大全| 色播在线永久视频| 99re6热这里在线精品视频| 国产成人啪精品午夜网站| 91成人精品电影| 操出白浆在线播放| 国产精品蜜桃在线观看| 成人黄色视频免费在线看| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 人妻人人澡人人爽人人| 国产免费现黄频在线看| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| 亚洲av综合色区一区| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 午夜福利影视在线免费观看| 国产熟女欧美一区二区| 久久精品国产综合久久久| 精品少妇黑人巨大在线播放| 久久热在线av| 亚洲视频免费观看视频| 成人影院久久| 久久亚洲国产成人精品v| svipshipincom国产片| 国产精品久久久av美女十八| 久久久久视频综合| 欧美精品高潮呻吟av久久| 一区二区av电影网| 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 国产乱来视频区| 国产精品 国内视频| 女性被躁到高潮视频| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦视频在线资源免费观看| 国产精品二区激情视频| 精品一区二区三区av网在线观看 | 男的添女的下面高潮视频| 亚洲国产最新在线播放| 国产熟女欧美一区二区| 婷婷色综合www| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 日本黄色日本黄色录像| 亚洲,一卡二卡三卡| 亚洲男人天堂网一区| 国产高清国产精品国产三级| 久久天堂一区二区三区四区| 国产男女内射视频| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱久久久久久| 一级爰片在线观看| 精品午夜福利在线看| 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线 | tube8黄色片| 国产成人免费观看mmmm| 欧美av亚洲av综合av国产av | 国产成人午夜福利电影在线观看| 国产精品欧美亚洲77777| 亚洲国产看品久久| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| 国产一区亚洲一区在线观看| 国产精品香港三级国产av潘金莲 | 国产 精品1| 纵有疾风起免费观看全集完整版| 亚洲欧美精品综合一区二区三区| 美女大奶头黄色视频| 一边摸一边抽搐一进一出视频| 满18在线观看网站| 亚洲欧美一区二区三区国产| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 国产精品成人在线| 亚洲国产成人一精品久久久| 一区二区av电影网| 无遮挡黄片免费观看| 一本色道久久久久久精品综合| 男女午夜视频在线观看| 大码成人一级视频| 久久精品熟女亚洲av麻豆精品| av网站在线播放免费| 男女无遮挡免费网站观看| 美女扒开内裤让男人捅视频| 成人午夜精彩视频在线观看| 国产一区二区 视频在线| 亚洲,欧美精品.| 两个人看的免费小视频| 成年人免费黄色播放视频| 日本爱情动作片www.在线观看| 国产一区二区三区综合在线观看| 91精品国产国语对白视频| 国产在线免费精品| 亚洲国产最新在线播放| 国产免费福利视频在线观看| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 啦啦啦啦在线视频资源| 在线观看免费午夜福利视频| 亚洲精品一区蜜桃| 国产精品人妻久久久影院| 天天影视国产精品| www.精华液| 精品人妻在线不人妻| 欧美精品av麻豆av| 日本黄色日本黄色录像| 国产免费一区二区三区四区乱码| 男女之事视频高清在线观看 | 999精品在线视频| 国产一区二区三区av在线| 飞空精品影院首页| 极品人妻少妇av视频| 在线观看人妻少妇| www.精华液| 亚洲欧美成人精品一区二区| 啦啦啦中文免费视频观看日本| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 五月开心婷婷网| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 午夜av观看不卡| 18禁观看日本| 七月丁香在线播放| 亚洲第一av免费看| 久久久久人妻精品一区果冻| 国产探花极品一区二区| 99九九在线精品视频| 国产熟女欧美一区二区| 国产精品一区二区精品视频观看| 久久精品亚洲av国产电影网| 久久久久久人妻| 女人精品久久久久毛片| 日韩电影二区| 久久综合国产亚洲精品| 国产精品一区二区在线观看99| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 在线 av 中文字幕| 大香蕉久久成人网| www.自偷自拍.com| av网站在线播放免费| 免费看不卡的av| 久久午夜综合久久蜜桃| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 伊人亚洲综合成人网| 天堂俺去俺来也www色官网| 欧美日韩福利视频一区二区| 欧美av亚洲av综合av国产av | 国产欧美亚洲国产| 一本大道久久a久久精品| 一级片免费观看大全| 日韩中文字幕欧美一区二区 | 黄色毛片三级朝国网站| 大陆偷拍与自拍| www日本在线高清视频| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产精品人妻久久久影院| 另类亚洲欧美激情| 在线观看国产h片| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 男女免费视频国产| 亚洲婷婷狠狠爱综合网| 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久 | 国产一区二区在线观看av| 18禁动态无遮挡网站| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区国产| 国产成人精品久久二区二区91 | 美女午夜性视频免费| 国产成人欧美在线观看 | 夜夜骑夜夜射夜夜干| 免费高清在线观看日韩| 日本午夜av视频| 建设人人有责人人尽责人人享有的| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 少妇人妻 视频| 欧美在线黄色| 我的亚洲天堂| 美女脱内裤让男人舔精品视频| 午夜激情av网站| 哪个播放器可以免费观看大片| 久久精品国产a三级三级三级| av网站在线播放免费| 久久av网站| 丝袜美足系列| 精品福利永久在线观看| 国产精品蜜桃在线观看| 在线观看三级黄色| 亚洲久久久国产精品| 好男人视频免费观看在线| 中文天堂在线官网| 中文字幕制服av| xxx大片免费视频| 国产毛片在线视频| 咕卡用的链子| 亚洲av国产av综合av卡| av线在线观看网站| www.熟女人妻精品国产| 亚洲av日韩精品久久久久久密 | 蜜桃国产av成人99| 狂野欧美激情性xxxx| 熟女av电影| av国产久精品久网站免费入址| 亚洲精品aⅴ在线观看| 老司机靠b影院| 少妇的丰满在线观看| 尾随美女入室| 日韩免费高清中文字幕av| 亚洲精品久久久久久婷婷小说| 嫩草影视91久久| 又粗又硬又长又爽又黄的视频| 欧美黑人欧美精品刺激| 免费在线观看视频国产中文字幕亚洲 | 如日韩欧美国产精品一区二区三区| 老熟女久久久| 伦理电影免费视频| 天天添夜夜摸| 亚洲三区欧美一区| 日韩大片免费观看网站| 亚洲男人天堂网一区| 日韩免费高清中文字幕av| 只有这里有精品99| av在线老鸭窝| 日韩成人av中文字幕在线观看| 黄频高清免费视频| 激情视频va一区二区三区| 成人国产av品久久久| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 亚洲精品日本国产第一区| 免费观看a级毛片全部| 国产又爽黄色视频| 国产av国产精品国产| 国产女主播在线喷水免费视频网站| 飞空精品影院首页| 国产精品免费大片| 久久久久久久久久久免费av| 最近的中文字幕免费完整| 精品一区二区三区四区五区乱码 | 欧美激情极品国产一区二区三区| 久久久久精品性色| 久久精品久久久久久噜噜老黄| 在线观看免费视频网站a站| 啦啦啦中文免费视频观看日本| 国产成人精品久久二区二区91 | 欧美日韩成人在线一区二区| 精品亚洲成国产av| 日韩成人av中文字幕在线观看| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 国产男女内射视频| 色94色欧美一区二区| 久热爱精品视频在线9| 一区二区av电影网| 国产一卡二卡三卡精品 | 女人久久www免费人成看片| 曰老女人黄片| 操出白浆在线播放| 国产精品久久久人人做人人爽| 丝袜美足系列| 欧美日韩成人在线一区二区| 国产成人系列免费观看| 天美传媒精品一区二区| 亚洲国产精品一区二区三区在线| 狠狠精品人妻久久久久久综合| svipshipincom国产片| 国产高清不卡午夜福利| 久久精品久久久久久久性| 大码成人一级视频| 伦理电影大哥的女人| 亚洲欧美日韩另类电影网站| 最近最新中文字幕免费大全7| 91精品三级在线观看| www日本在线高清视频| 欧美日韩福利视频一区二区| 赤兔流量卡办理| 女人爽到高潮嗷嗷叫在线视频| 91国产中文字幕| 国产成人系列免费观看| 日日摸夜夜添夜夜爱| 亚洲av中文av极速乱| tube8黄色片| 日日爽夜夜爽网站| 这个男人来自地球电影免费观看 | 成人漫画全彩无遮挡| 国产成人精品久久久久久| 男人舔女人的私密视频| 一级毛片电影观看| 免费观看人在逋| 在线亚洲精品国产二区图片欧美| 亚洲精品国产色婷婷电影| 你懂的网址亚洲精品在线观看| 飞空精品影院首页| 精品亚洲成国产av| 精品一品国产午夜福利视频| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 亚洲免费av在线视频| 久久精品熟女亚洲av麻豆精品| 在线观看国产h片| 啦啦啦 在线观看视频| 高清欧美精品videossex| av在线观看视频网站免费| 日日啪夜夜爽| 精品一区在线观看国产| 五月开心婷婷网| 国产免费一区二区三区四区乱码| 久久天堂一区二区三区四区| 观看美女的网站| 亚洲视频免费观看视频|