• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈣鈦礦鐵電納米片誘導(dǎo)的P(VDF-TrFE)取向生長

    2017-06-21 12:33:11麥江泉任召輝武夢嬌吳勇軍路新慧王宗榮韓高榮
    物理化學(xué)學(xué)報 2017年6期
    關(guān)鍵詞:香港中文大學(xué)鐵電材料科學(xué)

    劉 金 麥江泉 李 詩 任召輝,* 李 銘 武夢嬌吳勇軍 路新慧 李 翔 田 鶴 王宗榮 韓高榮,*

    (1浙江大學(xué)材料科學(xué)與工程學(xué)院,硅材料國家重點實驗室,唐仲英傳感材料及應(yīng)用研究中心,杭州 310027;2香港中文大學(xué)物理系,香港 新界 999077;3浙江大學(xué)電子顯微鏡中心,硅材料國家重點實驗室,材料科學(xué)與工程學(xué)院,杭州 310027)

    鈣鈦礦鐵電納米片誘導(dǎo)的P(VDF-TrFE)取向生長

    劉 金1,?麥江泉2,?李 詩1任召輝1,*李 銘1武夢嬌1吳勇軍1路新慧2,*李 翔1田 鶴3王宗榮1韓高榮1,*

    (1浙江大學(xué)材料科學(xué)與工程學(xué)院,硅材料國家重點實驗室,唐仲英傳感材料及應(yīng)用研究中心,杭州 310027;2香港中文大學(xué)物理系,香港 新界 999077;3浙江大學(xué)電子顯微鏡中心,硅材料國家重點實驗室,材料科學(xué)與工程學(xué)院,杭州 310027)

    半結(jié)晶的鐵電聚合物在柔性電子器件中極具應(yīng)用前景,控制晶相生長對其性能優(yōu)化至關(guān)重要。本文通過引入少量(0.2%)單晶單疇的PbTiO3納米片對P(VDF-TrFE) (簡稱PVTF)鐵電薄膜的生長進行有效調(diào)節(jié),獲得了高度取向的鐵電薄膜且鐵電性能得到了大幅提高。PbTiO3納米片鐵電極化對PVTF極性分子的誘導(dǎo)作用可能是薄膜取向生長與性能提高的原因。

    P(VDF-TrFE);PbTiO3;納米片;取向生長;鐵電性

    1 Introduction

    As a classical ferroelectric polymer, PVDF and its copolymer PVTF have been extensively explored in terms of dielectric, piezoelectric and ferroelectric properties, affording wide potential applications in flexible electronics from energy harvesting, data storage, sensors and actuators1-5. The electric properties and device performance of PVTF films highly depend on the crystallographic orientation of β phase (ferroelectric phase)6-8. A prominent example is that a PVTF film with pressure-induced oriented crystalline exhibits an improved remnant polarization, 1.6 times higher than that of disordered counterpart9. To obtain such a preferential orientation, different physical templates, including anodic aluminium oxide (AAO)10, organosilicate (OS) lamellae11, SAM-modified Au substrates12, graphene layer13, etc. have been employed. Among them, a confinement effect originating from microstructure of the templates was demonstrated to effectively induce the polarization direction along the long axis of one dimensional PVTF nanotubes14. However, the preparation and removal of the templates have been found to be very complex and tedious, significantly limiting large scale material and device fabrication. In addition, the epitaxy growth method normally employed for inorganic crystalline films cannot be simply applied for organic ferroelectric polymers due to the semi-crystalline character. Hence, it remains a great challenge to develop a facile strategy to fabricate highly oriented PVTF film.

    In this work, for the first time, we demonstrated a facile and effective approach to mediate the growth and thus the orientation of PVTF films by a strong electrostatic interaction between PVTF and perovskite ferroelectric nanoplates. A very low introduction (0.2% (w)) of single-crystal and single-domain PbTiO3(denoted by PTO) nanoplates can effectively mediate the nucleation and growth process of crystalline phase within PVTF, giving rise to highly (110)/(200) oriented films. We attributed this oriented crystallization behaviour to an alignment of polarization directions of the polymer and the nanoplates. As a result, the ferroelectric polarization of the films have been significantly improved by 53%.

    Negative or positive polar surface of ferroelectric perovskite oxides has been explored to accelerate the crystal growth of inorganic crystals15and to influence the selective deposition of Ag particles on ferroelectric substrates by a photochemical method16. Moreover, the ordering of polar water molecules is observed within the ice films growing on the surface of PVTF17.

    The electrostatic interaction between polar surface of ferroelectrics and different inorganic objects leads to fasnating phenomena. However, an effect of ferroelectric polarization on the crystal growth of semi-crystalline polymer films has not been achieved yet, and the difficulty arises from the semi-crystalline nature of polymer films with complex molecular configuration. To realize this, a strong electrostatic interaction is highly required. As a prototypical ferroelectric oxide, PTO is an ideal material to investigate the effect of electrostatic interaction on the growth of PVTF because of its simple perovskite structure and large spontaneous polarization (Ps)18.

    Fig.1(a, b) present the schematic view of the crystal structures for tetragonal PTO (JCPDS 70-0746) and the orthorhombic β-phase PVTF (JCPDS 42-1649), where the Psis along the c axis and b axis, respectively. The relative displacement of Ti ions from oxygen plane of octahedron in Fig.1(a) gives rise to a Psof PTO. In our previous work, single-crystal and single-domain PTO nanoplates were synthesized hydrothermally via a self-templated growth19. A cross-section STEM image of an individual PTO nanoplate is shown in Fig.1(c), and the nanoplate adopts faceted planes with a smooth surface. Fig.1(d) depicts the corresponding atomic-level HAADF-STEM of the nanoplate (red area in Fig.1(c)), where the displacement of titanium atoms deviation from the body-center downwards can be observed, opposite to the ferroelectric polarization direction20. Thus, the polarization direction (pointing by an orange arrow) of the nanoplate is perpendicular to the surface in Fig.1(d). In particular, the Curie temperature of the nanoplates was determined to be 487 °C (Fig.S2), very close to 490 °C of bulk PTO, implying a large Ps of the nanoplates with an order of 60~70 μC·cm-221. This value is much larger than those of polar organic molecules and ferroelectric polymer17,22,23. When unscreened, an electrostatic field derived from the polar surface of PTO nanoplates could be high as 108V·cm-123.

    2 Experiment section

    2.1 Material preparation

    Fig.1 Schematic view of the crystal structures for (a) tetragonal PbTiO3and (b) orthorhombic β-phase PVTF, (c) Cross-section TEM image of individual PTO nanoplate and (d) corresponding atomic level HAADF-STEM (SEM image and XRD pattern see Fig.S1(a, b)

    Single-crystal and single-domain ferroelectric PTO nanoplates were synthesized by hydrothermal synthesismethod19. TiO2nanosheets were prepared according to the method reported in the reference24. 25 mL of Ti(OBu)4and 4 mL of hydrofluoric acid solution were mixed in a dried Teflon autoclave with a capacity of 50 mL, and then kept at 200 °C for 24 h. After being cooled to room temperature, the white powder was washed with ethanol and distilled water for several times and then dried at 80 °C for 6 h.

    PVTF (the mole ratio of VDF to TrFE is 70/30) powder was dissolved in tetrahydrofuran (THF) and then a certain PTO (or TiO2) powder was introduced into the solution. The mixed hybrid was then processed with stirring for 15 min and then sonicating 30 min in order to disperse the nanoplates completely. Here we designed the weight concentration of PTO (or TiO2) nanoplates as 0.2%, 0.5%, and 1.0% within PVTF. The pure PVTF and PVTF films with 0.2% PTO (TiO2) nanoplates were prepared by a spin coating technique on the ITO glass substrates under a speed of 1500 rpm for 30 s. In particular, the substrates were cleaned by sonicating in the deionized water, acetone and ethanol for 15 min, respectively. Finally, the as-prepared films were heated under vacuum condition for different time and then cooled down to room temperature. In order to measure the electric properties, Ag film was sputtered onto the surface of films as top electrode while ITO was used as the bottom electrode.

    2.2 Characterization

    The XRD patterns were collected on a Thermo ARLXTRA powder diffractometer with Cu Kαradiation (λ = 1.54056 nm-1). SEM images were obtained from a Hitachi field emission SEM MODEL S-4800 at 5 kV. TEM specimens were examined by using an FEI Titan G2 80-200 Chemi 280 STEM with an accelerating voltage of 200 kV. Non-contact mode AFM (XE-100E, Park, Korea) was conducted to analyze topographic of films and Fourier transform infrared (FTIR) (Tensor 27, Bruker, Germany) was used to identify the molecule structures of films. The thickness of pure PVTF and PVTF (0.2%) films were detected by a step profiler (DEKTAK-XT, Bruker, America). The enthalpy values for the two samples were derived from TG curves recorded on a PE DSC 7. The Curie temperature of PTO nanoplates was detected by a technique of TG-DTA, combining TG ignition measurement and DTA analysis, equipped with the analyzer TGA7 (Perkin Elmer, San Jose, CA, USA) and DTA7 (Perkin Elmer, San Jose, CA, USA), respectively. The GIWAXS measurements were conducted at 23A SWAXS beamline at the National Synchrotron Radiation Research Center, Hsinchu, Taiwan, using a 10 KeV primary beam, 2.0° incident angle and C9728DK area detector. Dielectric properties of the samples were measured by Agilent 4292A precision impedance analyzer (HP4294ALRC) between 1 KHz and 1 MHz. Ferroelectric properties of the samples were measured at 100 Hz using a RT66A ferroelectric tester (Radiant Technologies Inc., Albuquerque, NM, USA).

    3 Results and Discucssion

    For such nanoplates, the exposed (001) is positive or negative polar surface, and the direction of Psis uniformed within the nanoplate along c axis. Different concentration of PTO nanoplates was introduced into PVTF films with similar thicknesses about 800 nm, prepared by spin-coating on ITO substrates (see Experiment section). According to the XRD patterns in Fig.S3(a), the peak intensity of (001) is the highest among those of PTO in the film, implying that most PTO nanoplates are lying in PVTF films. When PTO nanoplates were introduced, the intensity of (110)/(200) diffraction peaks in PVTF films with 0.2%, 0.5% and 1.0% PTO nanoplates is higher than that of PVTF (0%) films (Fig.S3(a)), implying that an orientation growth could occur. In particular, PVTF films with 0.2% (w) PTO nanoplates (denoted by PVTF (0.2%) films) present the highest relative intensity ratio of (110)/(200) (~19.8°). Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) was used to investigate molecular orientation. Fig.2(a, b) show GIWAXS patterns of pure PVTF and PVTF (0.2%) films, respectively. It can be clearly observed that at q ≈ 14 nm-1, PVTF (0.2%) film has two distinct reflections at meridian and 60° away from the meridian indicating a highly preferential orientation, while the pure PVTF film shows a ring-like pattern representing a randomly distributed orientation. The two reflections are corresponding to (200) and (110). These reflections arise from either (110) or (200) of PVTF crystals, based on the fact that the PVTF crystal phase has a pseudo hexagonal orthorhombic lattice which is characterized by aratio of its a and b axes and in turn leads to nearly equal (200) and (110) spacings25. Two possible orientations of the PVTF films are illustrated in Fig.3(a, b). The case one is that (200) of PVTF parallel to (001) of PTO, where the Ps direction of PVTF is perpendicular to that of PTO, as shown in Fig.3(a). This configuration gives rise to the reflection of (200) on the meridian. In the case two, (110) of PVTF is paralleled to (001) of PTO, where the reflection on the meridian is thus indexed as (110) in Fig.3(b). Although the two reflections are hard to be distinguished due to the same lattice constant, we presume that the case in Fig.3(b) is more possible since the polarization direction of PVFT and PTO should align together to induce this preferential orientation. And the aligned dipoles of PVTF would further affect the other dipoles around. In addition, 0.5%, and 1.0% samples also show the similar two reflections but their intensity is relatively weak (Fig.S4). This result indicates an orientation growth also occurred in these films as well, consistent with the XRD results of Fig.S3(a). In the emerged work, it has been discussed that an oriented growth of PVTF films could be thickness-dependent due to molecular confinement effect. However, such effect is limited to ultrathin films (<100 nm), resulting in a decreased ferroelectric property26,27. Therefore, the molecular confinement effect cannot give rise to the highly preferential orientation of PVTF films in our work.

    Fig.2 (a, b) GIWAXS patterns, (c) corresponding intensity profiles along qzaxis and (d) FTIR spectrum of pure PVTF film and PVTF (0.2%) film

    We also argued that an improved crystallization cannot be the origin of such phenomenon because it can only lead to a general increase of all peaks instead of a single peak. Furthermore, the crystallinity degree Xcfor the two samples has been determined by DSC curves (Fig.S5) to be 59.6% and 61.5%, respectively. Despite of similar crystallinity, the morphology by AFM imaging is obviously different, from particle shape in pure PVTF film to long-rod shape in PVTF (0.2%) film, as shown in Fig.S6(a, b). On the basis of the corresponding 3D view image, an average diameter of the particles in pure PVTF (Fig.S6(c)) is statically about 0.38 μm, and the rods in PVTF (0.2%) film in Fig.S6(d) was determined to have an average diameter of 0.45 μm and length of 1.54 μm. The anisotropic morphological shape is most likely to result from the highly oriented growth of the film induced by the introduction of PTO nanoplates.

    On the basis of the model in Fig.3(b), the polarization axis (b axis) of PVTF film tend to be aligned by that of PTO nanoplate and thus form an angle of 60° with the normal direction of the nanoplates. Such configuration would lead to a strong electrostatic interaction between molecular chain of PVTF and PTO. The interaction can be manifested by the band of 1400 cm-1of PVTF in FTIR spectrum, corresponding to the ωCH2coupled with νasC-C28. From the FTIR spectra (Fig.2(d)), it can be observed that the peak intensity of the band of 1400 cm-1in PVTF (0.2%) film becomes much higher than that of pure PVTF, supporting our model of Fig.3(b). The other bands at 846 cm-1, 1174 cm-1and 1286 cm-1in Fig.2(d) are indexed as the CF2symmetric stretching, the CF2asymmetric stretching and the long trans sequence29-31.

    Fig.3 A schematic diagram of two possible cases that the molecular preferentially oriented

    Fig.4 GIWAXS patterns of PVTF (0.2%) films heat treated at 180 °C for (a) 0.5 h, (b) 1.0 h, (c) 1.5 h, (d) 2.0 h and (e-h) corresponding AFM topographic images (5 μm × 5 μm)

    Fig.5 Ferroelectric hysteresis loops of pure PVTF and PVTF (0.2%) films

    The growth process of PVTF film was further investigated by using PVTF (0.2%) films after a heat treatment of 180 °C for different time. The intensified GIWAXS reflection in Fig.4(a) suggests that the film became crystalline after 0.5 h heat treatment, and the crystallization gradually improved up to 1 h in Fig.4(b). A longer time of 1.5 h could also induce the (110)/(200) orientation growth of the film, confirmed by the two intensified reflections in Fig.4(c). The orientation of the film remained when the heat treatment was prolonged to 2.0 h in Fig.4(d). Corresponding topographic morphology of the samples were characterized by AFM in Fig.4(e-h). PVTF (0.2%) film was initially crystallized into particle, as shown in Fig.4(e, f), and then particle crystals gradually grew to a rod-like shape (Fig.4(g, h)). The above results provide the solid evidence to support that the films experience a nucleation-growth process, accompanied with the orientation and the distinct morphology change. One should note that a high temperature of 180 °C used for preparation is above melting temperature (Tm) (~150 °C) of PVTF (Fig.S5), at which the molecular chains of PVTF can freely reorganize. This could be particularly important for ferroelectric polarization inducing the array of the chains and subsequent preferential orientation of the films, as shown in Fig.1(d). When the thickness is below 100 nm, the annealing temperature could play an important role in modifying confinement effect and thus the orientation of P(VDF-TrFE) films26,27,32. However, no such orientation growth has been observed when our samples, such as PVTF (0.2%) films, were prepared at below Tm(120 °C) (see Fig.S7) Furthermore, non-ferroelectric TiO2nanoplates (SEM image see Fig.S8) were introduced to investigate their influence on the growth of PVTF films. And such PVTF films did not show such orientation like Fig.2(b) by analysing GIWAXS patterns (Fig.S9). It is thus reasonable to conclude that the temperature above Tmand ferroelectric polarization are crucial for the oriented growth of PVTF films. Accompanying with the oriented growth, the peak intensity at 1400 cm-1was significantly enhanced in FTIR spectra of PVTF (0.2%) films (Fig.S10) as the heat time was prolonged from 0.5 h to 2 h at 180 °C. These results strongly support our model in Fig.3(b). In particular, a significant improvement in ferroelectric property has been achieved in such PVTF (0.2%) films.

    On the basis of ferroelectric hysteresis loops in Fig.5, the remnant polarization (Pr) in Fig.5 increased from 7.0 μC·cm-2to 10.7 μC·cm-2. We believe that the improved properties should be attributed to the oriented growth and dipole arrangement in the films. One may argue that the introduction of PTO nanoplates might also contribute to the results in Fig.5. To investigate this aspect, the ferroelectric property of PVTF films with different concentrations of PTO that nanoplates were measured. The results indicate the properties were not improved upon the increased concentrations of PTO nanoplates (Fig.S11 and Fig.S12). When the concentration of PTO nanoplates is 0.2%, the properties of the films could be optimized.

    4 Summary

    In summary, a highly oriented PVTF film was obtained by the introduction of a very small amount of single-crystal and single-domain PTO nanoplates. The corresponding structural analysis revealed that with the optimum concentration of 0.2% (w), the electrostatic interaction between PTO polar surface and dipoles of PVTF molecular chains can effectively mediate the nucleation and growth of PVTF, giving rise to a strong orientation. By this means, the ferroelectric polarization of the samples have been improved by 53%, which is of great significance for device applications. The findings suggest that the introduction of ferroelectric nanoplates may be a facile approach to tailor the crystalline growth of polar organic materials and their fundamental physical properties.Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A. A; Luo, J.; Shah, T. H.; Siores, E.; Thundat, T. Chem. Commun. 2015, 51, 8257. doi: 10.1039/c5cc01688f

    (2) Hu, Z.; Tian, M.; Nysten, B.; Jonas, A. M. Nat. Mater. 2009, 8, 62. doi: 10.1038/NMAT2339

    (3) Chen, X. Z.; Li, Q.; Chen, X.; Guo, X.; Ge, H. X.; Liu, Y.; Shen, Q. D. Adv. Funct. Mater. 2013, 23, 3124. doi: 10.1002/adfm.201203042

    (4) Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; Tang, M. Adv. Mater. 2015, 27, 6575. doi: 10.1002/adma.201503340

    (5) Lee, J. S.; Shin, K. Y.; Kim, C.; Jang, J. Chem. Commun. 2013, 49, 11047. doi: 10.1039/c3cc46807k

    (6) Ohigashi, H.; Omote, K.; Gomyo, M. C. Appl. Phys. Lett. 1995, 66, 3281. doi: 10.1063/1.113730

    (7) García-Gutiérrez, M. C.; Linares, A.; Hernández, J. J.; Rueda, D. R.; Ezquerra, T. A.; Poza, P.; Davies, R. J. Nano Lett. 2010, 10, 1472. doi: 10.1021/nl100429u

    (8) Wu, Y.; Li, X.; Jonas, A. M.; Hu, Z. Phys. Rev. Lett. 2015, 115, 267601. doi: 10.1103/PhysRevLett.115.267601

    (9) Shin, Y. J.; Kim, R. H.; Jung, H. J.; Kang, S. J.; Park, Y. J.; Bae, I. Park, C. ACS Appl. Mater. Interfaces 2011, 3, 4736. doi: 10.1021/am201202w

    (10) Cauda, V.; Torre, B.; Falqui, A.; Canavese, G.; Stassi, S.; Bein, T.; Pizzi, M. Chem. Mater. 2012, 24, 4215. doi: 10.1021/cm302594s

    (11) Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S. M.; Kim, H. C.; Park, C. Nano Lett. 2010, 11, 138. doi: 10.1021/nl103094e

    (12) Park, Y. J.; Kang, S. J.; Park, C.; Lotz, B.; Thierry, A.; Kim, K. J.; Huh, J. Macromolecules 2008, 41, 109. doi: 10.1021/ma0718705

    (13) Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J. H.; Yu, Y. J. Nano Lett. 2015, 16, 334. doi: 10.1021/acs.nanolett.5b03882

    (14) Bhavanasi, V.; Kusuma, D. Y.; Lee, P. S. Adv. Energy Mater.

    (15) Sun, X.; Ma, C.; Wang, Y.; Li, H. J. Cryst. Growth 2002, 234,

    404. doi: 10.1016/S0022-0248(01)01695-5

    (16) Burbure, N. V.; Salvador, P. A.; Rohrer, G. S. Chem. Mater. 2010, 22, 5823. doi:10.1021/cm1018025

    (17) Rosa, L. G.; Xiao, J.; Losovyj, Y. B.; Gao, Y.; Yakovkin, I. N.; Zeng, X. C.; Dowben, P. A. J. Am. Chem. Soc. 2005, 127, 17261. doi: 10.1021/ja054159t

    (18) Fong, D. D.; Kolpak, A. M.; Eastman, J. A.; Streiffer, S. K.; Fuoss, P. H.; Stephenson, G. B.; Thompson, C.; Kim, D. M.; Choi, K. J.; Eom, C. B.; Grinberg, I. Phys. Rev. Lett. 2006, 96, 127601. doi: 10.1103/PhysRevLett.96.127601

    (19) Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Angew. Chem. Int. Ed. 2012, 51, 9283. doi: 10.1002/anie.201204792

    (20) Jia, C. L.; Nagarajan, V.; He, J. Q.; Houben, L.; Zhao, T.; Ramesh, R.; Urban, K.; Waser, R. Nat. Mater. 2007, 6, 64. doi: 10.1038/nmat1808

    (21) Fridkin, V. M. Ferroelectric Semiconductors, Consultants Bureau: New York, NY, USA 1980.

    (22) Wang, F.; Lack, A.; Xie, Z.; Frübing, P.; Taubert, A.; Gerhard, R. Appl. Phys. Lett. 2012, 100, 062903. doi: 10.1063/1.3683526

    (23) Salimi, A.; Yousefi, A. A. J. Polym. Sci. B: Polym. Phys. 2004, 42, 3487. doi: 10.1002/polb.20223

    (24) Han, X.; Kuang, Q.; Jin, M.; Xie Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152. doi: 10.1021/ja8092373

    (25) Park, Y. J.; Kang, S. J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 8648. doi: 10.1021/ma801495k

    (26) Guo, D.; Setter, N. Macromolecules 2013, 46, 1883. doi: 10.1021/ma302377q

    (27) Urayama, K.; Tsuji, M.; Neher, D. Macromolecules 2000, 33, 8269. doi: 10.1021/ma000855w

    (28) Prabu, A. A.; Lee, J. S.; Kim, K. J.; Lee, H. S. Vibrational Spectroscopy 2006, 41, 1-13. doi: 10.1016/j.vibspec.2005.11.005

    (29) Li, W.; Guo, S.; Tang, Y.; Zhao, X. J. Appl. Polym. Sci. 2004, 91, 2903. doi: 10.1002/app.13503

    (30) Shin, Y. J.; Kang, S. J.; Jung, H. J.; Park, Y. J.; Bae, I.; Choi, D. H. Park, C. ACS Appl. Mater. Interfaces 2011, 3, 582. doi: 10.1021/am1011657

    (31) Zhu, H.; Mitsuishi, M.; Miyashita, T. Macromolecules 2012, 45, 9076. doi: 10.1021/ma301711g

    (32) Guo, D.; Stolichnov, I.; Setter, N. J. Phys. Chem. B 2011, 115, 13455. doi: 10.1021/jp2061442

    Perovskite Ferroelectric Nanoplates Induced a Highly Oriented Growth of P(VDF-TrFE) Films

    LIU Jin1,?MAI Jiang-Quan2,?LI Shi1REN Zhao-Hui1,*LI Ming1WU Meng-Jiao1WU Yong-Jun1LU Xin-Hui2,*LI Xiang1TIAN He3WANG Zong-Rong1HAN Gao-Rong1,*
    (1State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Application, Zhejiang University, Hangzhou 310027, P. R. China;2Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong 999077, P. R. China;3State Key Laboratory of Silicon Material, School of Material Science & Engineering, Center of Electron Microscope, Zhejiang University, Hangzhou 310027, P. R. China)

    Ferroelectric polymers are particularly attractive for applications in flexible electronic devices, and controlling its crystalline phase growth is crucial for obtaining optimized ferroelectric properties. Herein we report that a very low introduction (0.2% (w)) of single-domain ferroelectric PbTiO3nanoplates can effectively mediate the nucleation and subsequent growth of a crystalline phase within P(VDF-TrFE) (denoted by PVTF), forming highly oriented films and significantly improving the ferroelectric properties due to an alignment of the polarization directions of the polymer and the nanoplates.

    P(VDF-TrFE); PbTiO3; Nanoplate; Orientation growth; Ferroelectricity

    February 15, 2017; Revised: February 27, 2017; Published online: March 6, 2017.

    O641

    , 4, 1400723.

    10.1002/aenm.201400723

    doi: 10.3866/PKU.WHXB201702281

    *Corresponding authors. REN Zhao-Hui, Email: renzh@zju.edu.cn. LU Xin-Hui, Email: xhlu@phy.cuhk.edu.hk. HAN Gao-Rong, Email: hgr@zju.edu.cn.

    ?These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China (51232006, 51472218), the National Key Basic Research Special Foundation, China (973) (2015CB654901), Fundamental Research Funds for the Central Universities, China (2016FZA4005) and RGC of Hong Kong GRF (14303314) and CUHK Direct Grant, China (4053128).

    國家自然科學(xué)基金(51232006, 51472218),國家重點基礎(chǔ)研究發(fā)展項目(973)(2015CB654901),中央高校基本科研業(yè)務(wù)費專項資金(2016FZA4005),香港研究資助局科研基金(14303314),香港中文大學(xué)基金(4053128)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    香港中文大學(xué)鐵電材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    香港中文大學(xué)
    硅片上集成高介電調(diào)諧率的柱狀納米晶BaTiO3鐵電薄膜
    材料科學(xué)與工程學(xué)科
    鐵電材料中發(fā)現(xiàn)周期性半子晶格
    科學(xué)(2020年4期)2020-11-26 08:27:12
    淺談無人機和機器人的自動化控制
    香港中文大學(xué)提出環(huán)境適應(yīng)性控濕調(diào)溫織物新思路
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    鐵電隧道結(jié)界面效應(yīng)與界面調(diào)控
    亚洲人成网站在线播放欧美日韩| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 国产午夜精品论理片| 一本久久中文字幕| 日韩人妻高清精品专区| 一级av片app| 色播亚洲综合网| 国产蜜桃级精品一区二区三区| 精品福利观看| 色5月婷婷丁香| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 一个人看的www免费观看视频| 日本熟妇午夜| 国产精品人妻久久久久久| 乱码一卡2卡4卡精品| 成熟少妇高潮喷水视频| aaaaa片日本免费| 3wmmmm亚洲av在线观看| 亚洲性久久影院| 日本在线视频免费播放| 亚洲精品久久国产高清桃花| 色哟哟·www| 一进一出好大好爽视频| 又粗又爽又猛毛片免费看| 欧美日韩瑟瑟在线播放| 日本一本二区三区精品| x7x7x7水蜜桃| 性色avwww在线观看| 国产精品女同一区二区软件 | 国产高清有码在线观看视频| 亚洲内射少妇av| 亚洲自偷自拍三级| 国产精品无大码| 国产高清视频在线播放一区| 在线a可以看的网站| 国产免费男女视频| 精品久久久久久久久久免费视频| 99久久成人亚洲精品观看| 久久久色成人| 日本欧美国产在线视频| 日韩亚洲欧美综合| 午夜福利视频1000在线观看| 最后的刺客免费高清国语| 久久6这里有精品| 淫秽高清视频在线观看| 噜噜噜噜噜久久久久久91| 毛片一级片免费看久久久久 | 九色国产91popny在线| 日本黄色片子视频| 国产精品久久久久久av不卡| 狠狠狠狠99中文字幕| 九九热线精品视视频播放| 国产私拍福利视频在线观看| 高清日韩中文字幕在线| 日韩欧美一区二区三区在线观看| 男女做爰动态图高潮gif福利片| av国产免费在线观看| av国产免费在线观看| 少妇丰满av| 一区福利在线观看| 免费电影在线观看免费观看| 亚州av有码| 国产毛片a区久久久久| 窝窝影院91人妻| 久99久视频精品免费| 久久精品综合一区二区三区| 国产真实伦视频高清在线观看 | www.色视频.com| 日本五十路高清| 人妻夜夜爽99麻豆av| 天堂av国产一区二区熟女人妻| 黄色丝袜av网址大全| 高清在线国产一区| 久久久久精品国产欧美久久久| 国产av一区在线观看免费| 国产精品永久免费网站| 九色国产91popny在线| 国产色爽女视频免费观看| x7x7x7水蜜桃| 如何舔出高潮| 日韩 亚洲 欧美在线| 综合色av麻豆| 黄色女人牲交| 日本 av在线| 国产真实伦视频高清在线观看 | 俄罗斯特黄特色一大片| 九色成人免费人妻av| 国产成年人精品一区二区| 婷婷六月久久综合丁香| 国产精品av视频在线免费观看| 男女啪啪激烈高潮av片| 欧美日韩综合久久久久久 | 成年女人看的毛片在线观看| 99久久精品一区二区三区| 波多野结衣巨乳人妻| 欧美最黄视频在线播放免费| 欧美高清成人免费视频www| 亚洲国产日韩欧美精品在线观看| 久久久久免费精品人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 看免费成人av毛片| 18+在线观看网站| 亚洲av成人精品一区久久| 欧美国产日韩亚洲一区| 亚洲久久久久久中文字幕| 级片在线观看| 久久精品国产99精品国产亚洲性色| 成年女人毛片免费观看观看9| 一卡2卡三卡四卡精品乱码亚洲| 欧美另类亚洲清纯唯美| 直男gayav资源| 欧美国产日韩亚洲一区| 内地一区二区视频在线| 亚洲不卡免费看| 亚洲在线自拍视频| 99精品在免费线老司机午夜| 欧美3d第一页| bbb黄色大片| 欧美性猛交╳xxx乱大交人| 少妇人妻一区二区三区视频| 1000部很黄的大片| netflix在线观看网站| 成人亚洲精品av一区二区| 免费观看的影片在线观看| 久9热在线精品视频| 欧美黑人巨大hd| 中亚洲国语对白在线视频| 国产成人影院久久av| 99在线视频只有这里精品首页| 亚洲成人久久爱视频| 啦啦啦啦在线视频资源| 亚洲美女搞黄在线观看 | 美女高潮的动态| 久久精品国产鲁丝片午夜精品 | 国产免费一级a男人的天堂| 久久久久久九九精品二区国产| 91午夜精品亚洲一区二区三区 | 免费搜索国产男女视频| 黄色日韩在线| 国产精品99久久久久久久久| 韩国av一区二区三区四区| 在线国产一区二区在线| 欧美日本视频| 欧美+日韩+精品| 亚洲最大成人中文| 免费无遮挡裸体视频| 网址你懂的国产日韩在线| 黄色配什么色好看| 又黄又爽又免费观看的视频| 少妇熟女aⅴ在线视频| 国内少妇人妻偷人精品xxx网站| 自拍偷自拍亚洲精品老妇| 少妇人妻一区二区三区视频| 亚洲国产精品sss在线观看| 国产一区二区在线观看日韩| 我的女老师完整版在线观看| 日本精品一区二区三区蜜桃| 淫秽高清视频在线观看| 日韩高清综合在线| 精品久久久久久久末码| 亚洲aⅴ乱码一区二区在线播放| 久久久精品欧美日韩精品| 一个人免费在线观看电影| 久久国内精品自在自线图片| 在线免费观看不下载黄p国产 | 欧美人与善性xxx| 欧美日韩综合久久久久久 | 床上黄色一级片| 99国产精品一区二区蜜桃av| 美女cb高潮喷水在线观看| 亚洲人成伊人成综合网2020| 欧美高清性xxxxhd video| 午夜精品一区二区三区免费看| 成人永久免费在线观看视频| 国产老妇女一区| 欧美精品啪啪一区二区三区| 欧美精品啪啪一区二区三区| 国产精品电影一区二区三区| 国产成人a区在线观看| 尤物成人国产欧美一区二区三区| 夜夜夜夜夜久久久久| 久久草成人影院| 国产麻豆成人av免费视频| 亚洲最大成人手机在线| 久久精品国产亚洲网站| 欧美3d第一页| 国产高清三级在线| 日本熟妇午夜| 两个人的视频大全免费| 色噜噜av男人的天堂激情| 免费高清视频大片| 免费观看人在逋| 最近在线观看免费完整版| 99久国产av精品| 日本一本二区三区精品| 91在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 不卡视频在线观看欧美| 免费av观看视频| 国内精品一区二区在线观看| 久久久久国产精品人妻aⅴ院| 看免费成人av毛片| 动漫黄色视频在线观看| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 男人舔奶头视频| www日本黄色视频网| 我的女老师完整版在线观看| 女生性感内裤真人,穿戴方法视频| 国产一区二区三区在线臀色熟女| 日本爱情动作片www.在线观看 | 99久久九九国产精品国产免费| 国产高清不卡午夜福利| 我的老师免费观看完整版| 久久欧美精品欧美久久欧美| 婷婷六月久久综合丁香| 黄色视频,在线免费观看| 成年人黄色毛片网站| 校园春色视频在线观看| 亚洲成av人片在线播放无| 国产极品精品免费视频能看的| 97人妻精品一区二区三区麻豆| 亚洲国产欧美人成| 欧美激情在线99| 亚洲五月天丁香| 国内精品宾馆在线| 韩国av在线不卡| 欧美极品一区二区三区四区| 亚洲在线观看片| 精品久久久久久久久久免费视频| 欧美人与善性xxx| 97碰自拍视频| 国产欧美日韩精品亚洲av| 久久久久国内视频| 精品午夜福利视频在线观看一区| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| 午夜福利18| 欧美精品国产亚洲| 国产高清有码在线观看视频| 简卡轻食公司| 乱码一卡2卡4卡精品| 中文字幕高清在线视频| 在线a可以看的网站| 欧美日韩亚洲国产一区二区在线观看| 精品无人区乱码1区二区| 女的被弄到高潮叫床怎么办 | .国产精品久久| 国内精品一区二区在线观看| 看免费成人av毛片| 国产伦在线观看视频一区| 中文字幕高清在线视频| 在线天堂最新版资源| 日韩一本色道免费dvd| 人人妻人人澡欧美一区二区| 婷婷色综合大香蕉| АⅤ资源中文在线天堂| 在线观看美女被高潮喷水网站| 嫁个100分男人电影在线观看| 麻豆av噜噜一区二区三区| 国产在线精品亚洲第一网站| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区激情视频| 亚洲精品在线观看二区| 国产精品免费一区二区三区在线| 波多野结衣高清作品| 舔av片在线| 女生性感内裤真人,穿戴方法视频| 观看美女的网站| 色播亚洲综合网| 麻豆国产av国片精品| 色视频www国产| 尤物成人国产欧美一区二区三区| 免费人成在线观看视频色| 特级一级黄色大片| 国产白丝娇喘喷水9色精品| 国产精品亚洲一级av第二区| 亚洲欧美日韩无卡精品| 有码 亚洲区| 久9热在线精品视频| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 又粗又爽又猛毛片免费看| 一级a爱片免费观看的视频| 国产欧美日韩精品亚洲av| 观看美女的网站| bbb黄色大片| 精品久久久久久久久久免费视频| 在线播放无遮挡| 一进一出抽搐gif免费好疼| 久久精品久久久久久噜噜老黄 | 尤物成人国产欧美一区二区三区| 内射极品少妇av片p| 精品人妻偷拍中文字幕| 精品人妻视频免费看| 久久久久久伊人网av| 免费观看人在逋| 国产麻豆成人av免费视频| 亚洲在线自拍视频| 日韩中文字幕欧美一区二区| 91av网一区二区| 黄色视频,在线免费观看| 成年免费大片在线观看| 亚洲精华国产精华液的使用体验 | 午夜精品在线福利| 国产高清三级在线| 日本黄大片高清| 精品午夜福利在线看| 久久午夜亚洲精品久久| 99精品在免费线老司机午夜| 一区二区三区高清视频在线| 色哟哟·www| 男女之事视频高清在线观看| 亚洲欧美清纯卡通| 韩国av在线不卡| 日韩大尺度精品在线看网址| 国产午夜精品论理片| 不卡一级毛片| 亚洲美女黄片视频| 国产伦人伦偷精品视频| 日韩高清综合在线| 国产在视频线在精品| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 国产精品,欧美在线| 成人午夜高清在线视频| 久久精品国产亚洲av天美| 国产视频一区二区在线看| 国产91精品成人一区二区三区| 一本久久中文字幕| 国产探花在线观看一区二区| 日本免费一区二区三区高清不卡| 变态另类丝袜制服| 国产麻豆成人av免费视频| 少妇的逼水好多| 久久精品人妻少妇| 欧美性猛交黑人性爽| 免费在线观看成人毛片| 亚洲人成网站高清观看| 精品不卡国产一区二区三区| 久久精品久久久久久噜噜老黄 | 久久精品国产清高在天天线| 亚洲精华国产精华精| 老司机福利观看| 欧美激情久久久久久爽电影| 国产一区二区在线观看日韩| 两个人视频免费观看高清| 91麻豆av在线| 又黄又爽又免费观看的视频| 黄片wwwwww| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| 欧美成人性av电影在线观看| 欧美极品一区二区三区四区| 国产成年人精品一区二区| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| 国产高清视频在线播放一区| 亚洲最大成人av| 国产69精品久久久久777片| 欧美日韩国产亚洲二区| 日本色播在线视频| 两个人视频免费观看高清| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 少妇高潮的动态图| 精品乱码久久久久久99久播| 乱系列少妇在线播放| 日日夜夜操网爽| 亚洲色图av天堂| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区| av在线亚洲专区| 久久精品久久久久久噜噜老黄 | 免费高清视频大片| 99热这里只有是精品在线观看| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 亚洲精品久久国产高清桃花| 成人综合一区亚洲| 亚洲精品一区av在线观看| 丝袜美腿在线中文| 欧美一级a爱片免费观看看| 日日啪夜夜撸| 少妇猛男粗大的猛烈进出视频 | 欧美丝袜亚洲另类 | 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 欧美日韩综合久久久久久 | 黄色视频,在线免费观看| 99久国产av精品| 亚洲性久久影院| 草草在线视频免费看| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| 国产乱人视频| 69av精品久久久久久| 中文字幕久久专区| 午夜影院日韩av| 久久午夜福利片| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 午夜精品在线福利| 特级一级黄色大片| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 日日撸夜夜添| 成人av在线播放网站| 国产精品电影一区二区三区| 国产黄片美女视频| 美女黄网站色视频| 男人和女人高潮做爰伦理| 中文资源天堂在线| 国产主播在线观看一区二区| 嫁个100分男人电影在线观看| 免费在线观看日本一区| 亚洲精品一区av在线观看| 天天躁日日操中文字幕| 日韩大尺度精品在线看网址| 国产三级在线视频| 午夜福利在线观看吧| 99久久精品一区二区三区| 无遮挡黄片免费观看| 高清毛片免费观看视频网站| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 日韩高清综合在线| av专区在线播放| 高清毛片免费观看视频网站| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 国产精品人妻久久久久久| 国产伦精品一区二区三区视频9| 亚洲最大成人手机在线| 内射极品少妇av片p| 欧美黑人欧美精品刺激| 91麻豆av在线| 成人av一区二区三区在线看| 听说在线观看完整版免费高清| 少妇人妻精品综合一区二区 | 亚洲av二区三区四区| 美女大奶头视频| 美女cb高潮喷水在线观看| 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 免费观看人在逋| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 美女高潮喷水抽搐中文字幕| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 少妇被粗大猛烈的视频| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 日韩一本色道免费dvd| 免费大片18禁| 少妇的逼水好多| 国产高清视频在线观看网站| 欧美极品一区二区三区四区| 此物有八面人人有两片| 国产伦人伦偷精品视频| 韩国av在线不卡| 国产精品国产高清国产av| 变态另类丝袜制服| 一级av片app| 国产爱豆传媒在线观看| 中国美女看黄片| 国产精品99久久久久久久久| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 国产三级在线视频| 亚洲国产色片| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 成人综合一区亚洲| 久久这里只有精品中国| 国产亚洲欧美98| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 亚洲avbb在线观看| 日韩精品青青久久久久久| 久久午夜福利片| 亚洲午夜理论影院| 97超视频在线观看视频| 熟女人妻精品中文字幕| 伦理电影大哥的女人| 琪琪午夜伦伦电影理论片6080| 九色国产91popny在线| 久久人人精品亚洲av| 毛片女人毛片| 亚洲色图av天堂| av在线天堂中文字幕| 国产色婷婷99| 色综合亚洲欧美另类图片| 91精品国产九色| 神马国产精品三级电影在线观看| 国产精华一区二区三区| 黄色一级大片看看| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 亚洲一级一片aⅴ在线观看| 亚洲欧美精品综合久久99| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 国产精品自产拍在线观看55亚洲| 亚洲在线观看片| 黄色女人牲交| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 欧美xxxx性猛交bbbb| av.在线天堂| 最近最新免费中文字幕在线| 尾随美女入室| 亚洲无线在线观看| 国产色婷婷99| 日韩欧美三级三区| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看| 久久精品国产亚洲网站| 大型黄色视频在线免费观看| 日韩亚洲欧美综合| 精品一区二区三区视频在线观看免费| 中国美女看黄片| 变态另类成人亚洲欧美熟女| 欧美激情在线99| 国产伦一二天堂av在线观看| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 精品久久久久久,| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在 | 成人国产麻豆网| 男人狂女人下面高潮的视频| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费| 久久久色成人| 午夜福利在线观看免费完整高清在 | 精品午夜福利视频在线观看一区| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 国产精品久久久久久亚洲av鲁大| 国产人妻一区二区三区在| 身体一侧抽搐| 日韩亚洲欧美综合| 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 一级黄色大片毛片| 丝袜美腿在线中文| av在线亚洲专区| 国产精品日韩av在线免费观看| 成人美女网站在线观看视频| 热99在线观看视频| 欧美3d第一页| 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 午夜福利在线观看免费完整高清在 | 久久久国产成人免费| 在线观看免费视频日本深夜| 国产精品久久久久久av不卡| 老司机深夜福利视频在线观看| 露出奶头的视频| 日韩在线高清观看一区二区三区 | 午夜老司机福利剧场| 国产乱人伦免费视频| 日本 欧美在线| 在线观看66精品国产| 在线观看午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 在线a可以看的网站| www.www免费av| 国产精品亚洲一级av第二区| 国产成人影院久久av| av.在线天堂| 亚洲欧美日韩高清专用| 国产高清视频在线播放一区| 国产精品一区www在线观看 | 久久久久九九精品影院| av.在线天堂| 国内精品宾馆在线| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| av.在线天堂| 国产精品嫩草影院av在线观看 | 亚洲成人中文字幕在线播放| 中出人妻视频一区二区| 久久精品国产自在天天线| 亚洲不卡免费看| 国产精品一及| 国产高清三级在线| 国产亚洲91精品色在线| 美女被艹到高潮喷水动态| 男女边吃奶边做爰视频| 中文资源天堂在线| 最近中文字幕高清免费大全6 | 国产真实伦视频高清在线观看 | 亚洲美女黄片视频|