• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    P,SV波斜入射下凹陷地形地震動(dòng)分布特征

    2017-06-19 19:35:20丁海平朱重洋于彥彥
    振動(dòng)與沖擊 2017年12期
    關(guān)鍵詞:斜入入射角震動(dòng)

    丁海平, 朱重洋,于彥彥

    (1. 蘇州科技大學(xué) 江蘇省結(jié)構(gòu)工程重點(diǎn)實(shí)驗(yàn)室,江蘇 蘇州 215011; 2. 中國(guó)地震局工程力學(xué)研究所,哈爾濱 150080)

    P,SV波斜入射下凹陷地形地震動(dòng)分布特征

    丁海平1,2, 朱重洋1,于彥彥2

    (1. 蘇州科技大學(xué) 江蘇省結(jié)構(gòu)工程重點(diǎn)實(shí)驗(yàn)室,江蘇 蘇州 215011; 2. 中國(guó)地震局工程力學(xué)研究所,哈爾濱 150080)

    采用數(shù)值模擬方法,探討了凹陷地形在P波和SV波斜入射下,入射角度θ和凹陷深寬比H/L等參數(shù)的變化對(duì)地表地震動(dòng)峰值放大系數(shù)β的影響。得到如下結(jié)論:①峰值放大系數(shù)的影響程度和范圍受不同地震波的影響較大;②凹陷兩側(cè)的放大系數(shù)比底部大,凹陷兩側(cè)頂點(diǎn)的放大系數(shù)比兩側(cè)地表的大;③凹陷深寬比一定,SV波從左邊斜入射,放大系數(shù)隨入射角的增大而增大,x分量的放大系數(shù)大于z分量,左頂點(diǎn)放大系數(shù)大于右頂點(diǎn),對(duì)于P波,x分量的放大系數(shù)小于2,放大系數(shù)隨著入射角的增大而增大,凹陷兩側(cè)頂點(diǎn)的z分量放大系數(shù)大于2,放大系數(shù)隨著入射角的增大而減?。虎苋肷浣铅炔蛔?,無(wú)論是SV波還是P波,左右兩側(cè)的放大系數(shù)隨凹陷深寬比H/L的增大而增大。當(dāng)SV波從左邊斜入射時(shí),x分量左頂點(diǎn)的放大系數(shù)大于右頂點(diǎn),z分量放大系數(shù)小于x分量;當(dāng)P波從左邊斜入射時(shí),左頂點(diǎn)x分量放大系數(shù)大于右頂點(diǎn),所有放大系數(shù)均小于2,z分量放大系數(shù)大于x分量。這些結(jié)論可為實(shí)際工程提供參考。

    凹陷地形;P,SV波斜入射;地面運(yùn)動(dòng);放大系數(shù)

    河谷凹陷地形對(duì)地表運(yùn)動(dòng)有很大影響,震害顯示,河岸兩側(cè)的常常比較嚴(yán)重[1]。比較河谷凹陷地形對(duì)工程結(jié)構(gòu)的影響,交通運(yùn)輸系統(tǒng)受害最大。據(jù)交通運(yùn)輸部統(tǒng)計(jì), 汶川地震已造成四川、甘肅、陜西、重慶等省市受損高速公路24條, 國(guó)省干線公路161條, 農(nóng)村公路8 618 條,毀壞橋梁6 140座, 毀壞隧道156座[2]。目前大多規(guī)則的河谷地形的研究以解析方法為主:如半圓、半橢圓形峽谷[3-4]和任意圓弧形凹陷地形[5]對(duì)SH波的散射問(wèn)題;圓弧形凹陷地形[6-8]對(duì)SV波的散射問(wèn)題,P波入射下半圓凹陷地形[9]和圓弧形凹陷地形表面覆蓋層場(chǎng)地[10]的動(dòng)力響應(yīng)等。但對(duì)于復(fù)雜場(chǎng)地,如本文研究的方形凹陷地形,則只能采用數(shù)值分析方法。周國(guó)良等[11]曾對(duì)二維河谷地形在SV波垂直入射和30°斜入射下進(jìn)行了地震反應(yīng)分析,比較了河谷地表各觀測(cè)點(diǎn)地震動(dòng)的差別;盛志強(qiáng)等[12]分析了河谷坡角、坡高及不對(duì)稱坡體等要素對(duì)均質(zhì)體河谷模型的地震動(dòng)(PGA)的影響;謝和平等[13-14]則直接研究了河谷凹陷地形對(duì)橋梁工程結(jié)構(gòu)的地震影響?;诤芏嗫绾庸群蜕焦葮蛄汗こ痰淖笥覙蚺_(tái)與地面垂直的現(xiàn)狀,如圖1所示。以及較少考慮地震波斜入射的情形[15],本文將采用數(shù)值模擬方法[16-17],研究方形凹陷地形在P波和SV波斜入射下的地震動(dòng)峰值放大系數(shù)的分布。

    圖1 高原大橋破壞情況Fig.1 Damage of the Gaoyuan bridge

    1 凹陷地形的計(jì)算模型和計(jì)算方法

    1.1 計(jì)算模型

    假定一個(gè)均勻、各向同性的方形彈性凹陷地形,介

    質(zhì)參數(shù)選取為剪切波速Vs=1 000 m/s,質(zhì)量密度ρ=2 000 kg/m3,泊松比μ=0.25。計(jì)算模型及測(cè)點(diǎn)位置如圖2所示:方形凹陷的尺寸為700 m×200 m,寬度和深度分別用L、H表示,凹陷的左側(cè)地面和右側(cè)地面均為300 m,其中凹陷的寬度L=100 m為定值,而其深度H可以變化,以改變其寬深比;在凹陷左右兩側(cè)地表和凹陷底部,每隔10 m設(shè)一觀測(cè)點(diǎn),一共得到71個(gè)觀測(cè)點(diǎn),從左到右編號(hào)為1 ~ 71,如圖2所示。

    為滿足數(shù)值模擬計(jì)算結(jié)果的精度要求,本文選取有效波長(zhǎng)含有10個(gè)有限元單元網(wǎng)格(地震波的截止頻率f= 20 Hz),得到Δx=Δz=5 m。為滿足內(nèi)節(jié)點(diǎn)運(yùn)動(dòng)方程時(shí)步積分格式的穩(wěn)定條件,取Δt=0.001 s。

    圖2 凹陷地形模型及測(cè)點(diǎn)位置示意圖(m)Fig.2 Canyon model and the observers position (m)

    地震波以入射角θ從左側(cè)邊界入射,選取的輸入波為脈沖波,EI-Centro波和寧河波,如圖3所示。

    圖3 輸入脈沖波(左),EI-Centrto波(中)和寧河波(右)的加速度時(shí)程Fig.3 Acceleration time histories of the incident pulse wave(left), EI-Centro wave(middle), and Ninghe wave(right)

    1.2 計(jì)算方法

    地震波斜入射時(shí)的自由場(chǎng)是計(jì)算模型的波動(dòng)輸入,直接關(guān)系到凹陷地形的計(jì)算精度。本文根據(jù)波動(dòng)傳播規(guī)律[18]在頻域內(nèi)計(jì)算得到地震波斜入射時(shí)的均勻半空間自由場(chǎng)。凹陷模型各節(jié)點(diǎn)的運(yùn)動(dòng),采用有限元數(shù)值模擬,此時(shí),計(jì)算區(qū)域內(nèi)的節(jié)點(diǎn)可以分為內(nèi)節(jié)點(diǎn)和人工邊界節(jié)點(diǎn),位于人工邊界上的節(jié)點(diǎn)u0稱為人工邊界節(jié)點(diǎn),其余的節(jié)點(diǎn)均為內(nèi)節(jié)點(diǎn)u,自由表面上的節(jié)點(diǎn)屬于內(nèi)節(jié)點(diǎn)。全部?jī)?nèi)節(jié)點(diǎn)的運(yùn)動(dòng)方程為

    (1)

    式中:M為質(zhì)量矩陣;C為阻尼矩陣;K為剛度矩陣。P為外力矢量,對(duì)于本文計(jì)算模型,P=0。

    人工邊界點(diǎn)運(yùn)動(dòng)采用多次透射式(2)計(jì)算,即邊界上節(jié)點(diǎn)u0在p+1時(shí)刻的位移運(yùn)動(dòng)為

    (2)

    (3)

    式中:N為透射階數(shù);0為邊界點(diǎn);j為與0相鄰的內(nèi)節(jié)點(diǎn)。

    需要注意的是:式(1)中位移u為全波場(chǎng)位移,而式(2)中的位移是散射場(chǎng)位移。對(duì)于計(jì)算模型的底邊界,散射場(chǎng)位移=全波場(chǎng)位移-入射波場(chǎng)位移;對(duì)于側(cè)邊界,散射場(chǎng)位移=全波場(chǎng)位移-斜入射自由場(chǎng)。

    2 凹陷場(chǎng)地地表地震動(dòng)響應(yīng)

    定義地震動(dòng)峰值放大系數(shù)(以下簡(jiǎn)稱放大系數(shù)),β=|Amax/Amax,input|即觀測(cè)點(diǎn)地表地震動(dòng)峰值A(chǔ)max與輸入地震動(dòng)峰值A(chǔ)max,input的比值,本文采用地震動(dòng)峰值放大系數(shù)β來(lái)描述凹陷場(chǎng)地對(duì)波動(dòng)的放大效應(yīng)。

    2.1 入射角影響

    本節(jié)將探討凹陷寬度L=100 m,高度H=50 m(深寬比為1∶2)的情況下,凹陷場(chǎng)地隨著入射波入射角度θ變化時(shí)的響應(yīng)規(guī)律。圖4~圖9分別給出了入射角θ分別為0°、10°、20°、30°時(shí),不同地震波從左側(cè)入射時(shí)凹陷場(chǎng)地地表各觀測(cè)點(diǎn)的地震動(dòng)峰值放大系數(shù)。

    圖4 凹陷深寬比H/L=1∶2,脈沖波以不同角度入射各測(cè)點(diǎn) 地震動(dòng)放大系數(shù)(SV波入射情形)Fig.4 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and pulse wave (SV wave) incidence at different angles

    圖5 凹陷深寬比H/L=1∶2,EI-Centro波以不同角度入射各 測(cè)點(diǎn)地震動(dòng)放大系數(shù)(SV波入射情形) Fig.5 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and EI-Centro wave (SV wave) incidence at different angles

    圖6 凹陷深寬比H/L=1∶2,寧河波以不同角度入射各測(cè)點(diǎn) 地震動(dòng)放大系數(shù)(SV波入射情形)Fig.6 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and Ninghe wave (SV wave) incidence at different angles

    圖7 凹陷深寬比H/L=1∶2,脈沖波以不同角度入射各 測(cè)點(diǎn)地震動(dòng)放大系數(shù)(P波入射情形) Fig.7 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and pulse wave (P wave) incidence at different angles

    圖8 凹陷深寬比H/L=1∶2,EI-Centro波以不同角度入射各 測(cè)點(diǎn)地震動(dòng)放大系數(shù)(P波入射情形)Fig.8 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and EI-Centro wave (P wave) incidence at different angles

    圖9 凹陷深寬比H/L=1∶2,寧河波以不同角度入射各 測(cè)點(diǎn)地震動(dòng)放大系數(shù)(P波入射情形) Fig.9 Amplification factors of surface points for the canyon model with aspect ratio H/L=1∶2 and Ninghe wave (P wave) incidence at different angles

    (1) SV波入射情形

    根據(jù)圖4~圖6,當(dāng)凹陷深寬比H/L=1∶2,地震波從左邊斜入射時(shí),對(duì)于x分量:凹陷左頂點(diǎn)(測(cè)點(diǎn)31)的地震動(dòng)峰值放大系數(shù)最大,離開頂點(diǎn)一定距離后,慢慢趨于平穩(wěn),且頂點(diǎn)的峰值放大系數(shù)隨著入射角的增大而增大;右頂點(diǎn)(測(cè)點(diǎn)41)的地震動(dòng)峰值放大系數(shù)小于左頂點(diǎn),入射角影響的規(guī)律性不明顯。對(duì)于z分量:放大系數(shù)小于x分量,受入射角的影響類似于x分量。無(wú)論x還是z分量,凹陷底部的地震動(dòng)峰值放大系數(shù)遠(yuǎn)小于兩側(cè)。

    (2) P波入射情形

    根據(jù)圖7~圖9,當(dāng)?shù)卣鸩◤淖筮呅比肷鋾r(shí),對(duì)于x分量:地震動(dòng)峰值放大系數(shù)小于2.0,凹陷兩側(cè)頂點(diǎn)(測(cè)點(diǎn)31和測(cè)點(diǎn)41)的地震動(dòng)峰值放大系數(shù)大于兩側(cè)地表點(diǎn),且頂點(diǎn)的峰值放大系數(shù)隨著入射角的增大而增大。對(duì)于z分量:凹陷兩側(cè)頂點(diǎn)的地震動(dòng)峰值放大系數(shù)大于2.0,各點(diǎn)的放大系數(shù)隨著入射角的增大而減小。無(wú)論x還是z分量,凹陷底部的地震動(dòng)峰值放大系數(shù)遠(yuǎn)小于兩側(cè)。

    2.2 凹陷地形深寬比H/L影響

    本節(jié)將探討在入射角θ一定的條件下(取θ=30°),凹陷場(chǎng)地隨深寬比H/L變化時(shí)場(chǎng)地的地震動(dòng)響應(yīng)。圖10~圖15給出了凹陷寬度L=100 m,深度H分別為10 m、25 m和50 m,時(shí),即凹陷的深寬比分別取為1∶10、1∶4和1∶2時(shí),地震波從左側(cè)入射時(shí)凹陷場(chǎng)地地表各觀測(cè)點(diǎn)的地震動(dòng)峰值放大系數(shù)。

    圖10 脈沖波入射,不同深寬比H/L的各地表觀測(cè)點(diǎn) 地震動(dòng)放大系數(shù)(SV波入射情形)Fig.10 Amplification factors of surface points for the canyon model with different aspect ratio H/L and pulse wave (SV wave) incidence at angle of 30°

    圖11 EI-Centro波入射,不同深寬比H/L的各地表觀 測(cè)點(diǎn)地震動(dòng)放大系數(shù)(SV波入射情形) Fig.11 Amplification factors of surface points for the canyon model with different aspect ratio H/L and EI-Centro wave (SV wave) incidence at angle of 30°

    圖12 寧河波入射,不同深寬比H/L的各地表觀測(cè)點(diǎn) 地震動(dòng)放大系數(shù)(SV波入射情形)Fig.12 Amplification factors of surface points for the canyon model with different aspect ratio H/L and Ninghe wave (SV wave) incidence at angle of 30°

    圖13 脈沖波入射,不同深寬比H/L的各地表 觀測(cè)點(diǎn)地震動(dòng)放大系數(shù)(P波入射情形) Fig.13 Amplification factors of surface points for the canyon model with different aspect ratio H/L and pulse wave (P wave) incidence at angle of 30°

    圖14 EI-Centro波入射,不同深寬比H/L的各地表觀 地震動(dòng)放大系數(shù)(SV波入射情形)Fig.14 Amplification factors of surface points for the canyon model with different aspect ratio H/L and EI-Centro wave (P wave) incidence at angle of 30°

    圖15 寧河波入射,不同深寬比H/L的各地表 觀測(cè)點(diǎn)地震動(dòng)放大系數(shù)(P波入射情形) Fig.15 Amplification factors of surface points for the canyon model with different aspect ratio H/L and Ninghe wave (P wave) incidence at angle of 30°

    (1) SV波入射情形

    根據(jù)圖10~圖12,當(dāng)?shù)卣鸩ㄒ匀肷浣铅?30°從左邊斜入射時(shí),對(duì)于x分量:凹陷左頂點(diǎn)(測(cè)點(diǎn)31)的地震動(dòng)峰值放大系數(shù)最大,離開頂點(diǎn)一定距離后,慢慢趨于平穩(wěn);右頂點(diǎn)(測(cè)點(diǎn)41)的地震動(dòng)峰值放大系數(shù)小于左頂點(diǎn)。左右兩側(cè)的放大系數(shù)都隨凹陷深寬比H/L的增大而增大。對(duì)于z分量:放大系數(shù)小于x分量,受凹陷深寬比H/L的影響比x分量小。無(wú)論x還是z分量,凹陷底部的地震動(dòng)峰值放大系數(shù)遠(yuǎn)小于兩側(cè)。

    (2) P波入射情形

    根據(jù)圖13~圖15,當(dāng)?shù)卣鸩ㄒ匀肷浣铅?30°從左邊斜入射時(shí),對(duì)于x分量:凹陷左頂點(diǎn)的地震動(dòng)峰值放大系數(shù)最大,右頂點(diǎn)的放大系數(shù)小于左頂點(diǎn),所有放大系數(shù)均小于2,左右兩側(cè)的放大系數(shù)都隨凹陷深寬比H/L的增大而增大。對(duì)于z分量:放大系數(shù)大于x分量,總體來(lái)說(shuō),左右兩側(cè)的放大系數(shù)隨凹陷深寬比H/L的增大而增大。無(wú)論x還是z分量,凹陷底部的地震動(dòng)峰值放大系數(shù)遠(yuǎn)小于兩側(cè)。

    3 結(jié) 論

    本文針對(duì)凹陷地形,采用數(shù)值模擬方法,探討了凹陷地形在P波和SV波斜入射下,入射角度和凹陷深寬比H/L等參數(shù)的變化對(duì)地表地震動(dòng)峰值放大系數(shù)的影響,結(jié)論如下:

    (1) 峰值放大系數(shù)的影響程度和范圍受不同地震波的影響較大,影響趨勢(shì)基本類似。

    (2) 無(wú)論哪種情況,凹陷兩側(cè)的放大系數(shù)都比底部大;凹陷兩側(cè)頂點(diǎn)的放大系數(shù)比兩側(cè)地表的大。

    (3) 凹陷深寬比一定,SV波從左邊斜入射,左頂點(diǎn)x分量的放大系數(shù)隨入射角的增大而增大,且大于右頂點(diǎn)放大系數(shù),而右側(cè)地表放大系數(shù)受入射角影響的規(guī)律性不如左側(cè)明顯;z分量的放大系數(shù)小于x分量,受入射角的影響類似于x分量。

    當(dāng)P波從左邊斜入射時(shí),x分量的放大系數(shù)小于2.0,且頂點(diǎn)的峰值放大系數(shù)隨著入射角的增大而增大。兩側(cè)頂點(diǎn)z分量的放大系數(shù)大于2.0,各點(diǎn)的放大系數(shù)隨著入射角的增大而減小。

    (4) 入射角不變,當(dāng)SV波從左邊斜入射,左右兩側(cè)的放大系數(shù)隨凹陷深寬比H/L的增大而增大,x分量左頂點(diǎn)的放大系數(shù)大于右頂點(diǎn),z分量放大系數(shù)小于x分量,左右頂點(diǎn)的放大系數(shù)相差不大。

    當(dāng)P波從左邊斜入射,左右兩側(cè)的放大系數(shù)基本隨凹陷深寬比H/L的增大而增大。凹陷左頂點(diǎn)x分量放大系數(shù)大于右頂點(diǎn),所有放大系數(shù)均小于2,z分量放大系數(shù)大于x分量。

    需要說(shuō)明的是,本文的結(jié)果是在特定介質(zhì)和特定的地震波輸入下得到的,不同的計(jì)算模型和不同地震波作用下,地震動(dòng)峰值放大系數(shù)的影響程度和范圍將會(huì)有一點(diǎn)區(qū)別,但可以肯定,影響趨勢(shì)基本類似。本文得到的結(jié)論可為實(shí)際工程提供參考。

    [1] 胡聿賢, 孫平善, 章在墉,等. 場(chǎng)地條件對(duì)震害與地震動(dòng)的影響[J] . 地震工程與工程振動(dòng), 1980(試刊): 36-43. HU Yuxian, SUN Pingshan, ZHANG Zaiyong, et al. Effect of site conditions on earthquake damage and ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 1980:36-43.

    [2] 杜修力,韓強(qiáng),李忠獻(xiàn),等.“5·12”汶川地震中山公路橋梁震害及啟示[J] .北京工業(yè)大學(xué)學(xué)報(bào), 2008,34(12):1270 -1279. DU Xiuli,HAN Qiang, LI Zhongxian, et al. The seismic damage of bridge in the 2008 Wenchuan Earthguake and lessons from its damage[J] .Journal of Beijing University of Technology, 2008, 34(12):1207 -1279.

    [3] TRIFUNAC M D. Scattering of plane SH-waves by a semi-cylindrical canyon[J]. Earthquake Engineering and Structure Dynamics, 1973, 1: 267-281.

    [4] WONG H L, TRIFUNAC M D. Scattering of plane SH-waves by a semi-elliptical canyon[J]. Earthquake Engineering and Structure Dynamics,1974, 3: 57-169.

    [5] CAO H, LEE V W. Scattering of plane SH-waves by circular cylindrical canyons with variable depth-to-width ratio[J]. European Earthquake Engineering, 1989,2: 29-37.

    [6] LEE V W, CAO H. Diffraction of SV waves by circular cylindrical canyon of various depths [J]. Journal of Engineering Mechanics, 1989, 115:2035-2056.

    [7] 鐘慧,張郁山.圓弧狀凹陷地形對(duì)平面SV波散射問(wèn)題的寬頻帶解析解[J].中國(guó)地震,2010, 26(2):142-155. ZHONG Hui, ZHANG Yushan. Broad-frequency-band analytical solution to scattering of plane SV wave by arc-shaped canyon topography[J]. Earthquake Research in China, 2010, 26(2):142-155.

    [8] 梁建文, 嚴(yán)林雋, LEE V W. 圓弧形凹陷地形表面覆蓋層對(duì)入射平面SV波的影響[J].地震學(xué)報(bào),2001,23(6):622-636.LIANG Jianwen, YAN Linjun, LEE V W. Effects of a covering layer in a circular-ARC canyon on incident plane SV waves[J]. Acta Seismologica Sinica, 2011, 23(6):622-636.

    [9] LEE V W, SABBAN M S, GHOSH T. 3D surface motion of long semi-circular longitudinal canyons: incident plane P waves[J]. European Journal of Earthquake Engineering, 1996, 9(3): 12-22.

    [10] 梁建文, 嚴(yán)林雋. 圓弧形凹陷地形表面覆蓋層對(duì)入射平面P波的影響[J]. 固體力學(xué)學(xué)報(bào), 2002, 23(1):126-132. LIANG Jianwen, YAN Linjun. Response of circular-arc alluvial valleys under incident P wave [J]. Acta Mechanica Solida Sinica, 2002, 23(1): 126-132.

    [11] 周國(guó)良,李小軍,侯春林,等.SV波入射下河谷地形地震動(dòng)分布特征分析[J]. 巖土力學(xué), 2012, 33(4): 1161-1166. ZHOU Guoliang,LI Xiaojun,HOU Chunlin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J].Rock and Soil Mechanics, 2012, 33(4): 1161-1166.

    [12] 盛志強(qiáng),盧育霞,石玉成,等. 河谷地形的地震反應(yīng)分析[J], 地震工程與工程振動(dòng),2013, 35(1):126-132. SHENG Zhiqiang, LU Yuxia, SHI Yucheng, et al. Seismic response analysis of valley topograph [J]. Earthquane Engineering and Engineeting Vibration, 2013, 35(1):126-132.

    [13] 謝和平,臺(tái)佳佳,鄧建輝,等. 虹口高原大橋的破壞機(jī)制分析[J].四川大學(xué)學(xué)報(bào)(工程科學(xué)版),2009,41(3):51-55. XIE Heping, TAI Jiajia, DENG Jianhui, et al. Analysis of damage mechanism of Gaoyuan bridge in Hongkou[J]. Journal of Sichuan University(Engineering Science Edition), 2009,41(3):51-55.

    [14] 周國(guó)良,李小軍,李鐵萍,等. SV波入射下峽谷地形對(duì)多支撐大跨橋梁地震反應(yīng)影響分析[J]. 巖土力學(xué), 2012, 33(5): 1572-1578. ZHOU Guoliang, LI Xiaojun, LI Tieping, et al. Canyon topography effects on seismic responses of multi-support bridge under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(5): 1572-1578.

    [15] 谷音,江夢(mèng)霞,卓衛(wèi)東,等. 考慮地震波斜入射下河谷地形的大跨橋梁動(dòng)力反應(yīng)研究[J]. 福州大學(xué)學(xué)報(bào)(自然科學(xué)版),2013, 41(4):517-522. GU Yin,JIANG Mengxia,ZHUO Weidong, et al. Seismic response analysis of long-span bridges subjected to spatially non-uniform seismic ground motions[J]. Journal of Fuzhou University (Natural Science Edition), 2013, 41(4): 517-522.

    [16] 廖振鵬.工程波動(dòng)理論導(dǎo)論[M]. 北京:科學(xué)出版社,2002.

    [17] 孔戈,丁海平,金星,等.多次透射邊界在ANSYS軟件中應(yīng)用[J]. 工程抗震與加固改造,2005,27(2):67-70. KONG Ge, DING Haiping, JIN Xing, et al. The application of multi-transmitting boundary in ANSYS[J]. Earthquake Resistant Engineering and Retrofitting, 2005,27(2): 67-70.

    [18] 傅淑芳,劉寶成. 地震學(xué)教程[M]. 北京:地震出版社,1991.

    Characteristic of ground motions of a canyon topography under inclined P and SV waves

    DING Haiping1,2, ZHU Chongyang1, YU Yanyan2

    (1. Key Laboratory of Structure Engineering of Jiangsu Province, Suzhou University of Science and Technology, Suzhou 215011, China;2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China)

    Seismic ground motion of a canyon topography under left inclined incident P and SV waves was analyzed using a numerical simulation method. The effects of the incident angleθand the aspect ratio (ratio of the canyon depth and width) on the ground motion amplification factorβof the surface were discussed. It is showed that: (1) the influence degree and range of theβare strongly related to the incident waves. (2)βof the canyon’s side is generally larger than the bottom, andβof the side corner is larger than the top surface. (3) For fixed aspect ratio and SV wave incidence, the amplification factor increases with incident angle, andβof the x component is greater than the z component. Besides,βof left side corner is larger than the right. For P wave incidence,βof thexcomponent is less than 2, andβis also increaseing with the incident angle. Thezcomponent amplification factors at the two side corners of the canyon exceed 2, andβdecreases withθ. (4) For fixedθ, no matter of SV and P wave incidence,βof the canyon’s two sides increases with the aspect ratio. For SV wave incidence,βof thexcomponent at the left side corner is greater than the right ones, andβof thezcomponent is less than thex. For P wave incidence,βof thexcomponent at the left side corner is also greater than the right ones, withβat any positions less than 2, andβof thezcomponent is larger than thexcomponent.

    canyon topography; inclined P and SV wave; ground motion; amplification factor

    國(guó)家自然科學(xué)基金(51278323)

    2016-02-24 修改稿收到日期: 2016-05-05

    丁海平 男,博士,教授,1966年生

    P315.9

    A

    10.13465/j.cnki.jvs.2017.12.015

    猜你喜歡
    斜入入射角震動(dòng)
    基于Mathematica的平行光斜入射光柵衍射的模擬和可視化研究
    一般三棱鏡偏向角與入射角的關(guān)系
    震動(dòng)減脂儀可以減肥?
    預(yù)制圓柱形鎢破片斜穿甲鋼靶的破孔能力分析*
    水電工程場(chǎng)地地震動(dòng)確定方法
    臨江樓聯(lián)話
    振動(dòng)攪拌 震動(dòng)創(chuàng)新
    用經(jīng)典定理證明各向異性巖石界面異常入射角的存在
    航行器低速斜入水運(yùn)動(dòng)規(guī)律
    地震動(dòng)斜入射對(duì)樁-土-網(wǎng)殼結(jié)構(gòu)地震響應(yīng)影響
    广元市| 灌南县| 长春市| 辽阳县| 偏关县| 越西县| 楚雄市| 宁南县| 上杭县| 和顺县| 泊头市| 东山县| 丁青县| 南康市| 琼中| 九龙城区| 清远市| 南昌市| 紫阳县| 定边县| 沂水县| 郯城县| 齐齐哈尔市| 和田市| 大名县| 封开县| 安西县| 黔江区| 蒙山县| 二连浩特市| 江达县| 信丰县| 阿荣旗| 临澧县| 加查县| 永城市| 梨树县| 临朐县| 蒙自县| 榆社县| 靖安县|