梁美娜, 王敦球*, 朱義年, 肖 瑜, 朱宗強(qiáng), 唐 沈
1.廣西大學(xué)輕工與食品工程學(xué)院, 廣西 南寧 530004 2.桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院, 廣西 桂林 541004 3.廣西巖溶地區(qū)水污染控制與用水安全保障協(xié)同創(chuàng)新中心, 廣西 桂林 541004
羥基磷灰石/蔗渣炭復(fù)合吸附劑的制備及其對(duì)As(V)的吸附機(jī)理
梁美娜1,2,3, 王敦球1,2,3*, 朱義年1,2,3, 肖 瑜2,3, 朱宗強(qiáng)2,3, 唐 沈2,3
1.廣西大學(xué)輕工與食品工程學(xué)院, 廣西 南寧 530004 2.桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院, 廣西 桂林 541004 3.廣西巖溶地區(qū)水污染控制與用水安全保障協(xié)同創(chuàng)新中心, 廣西 桂林 541004
以甘蔗渣為原料,采用水熱合成法制備羥基磷灰石蔗渣炭復(fù)合吸附劑——HBA,通過靜態(tài)吸附試驗(yàn)研究HBA對(duì)As(Ⅴ)的吸附特性,并采用紅外光譜和X射線光電子能譜對(duì)吸附前后的HBA進(jìn)行表征,探討其吸附As(Ⅴ)的機(jī)理.結(jié)果表明:HBA的比表面積為89.52 m2g,pHzpc(零點(diǎn)電荷)=7.2,HBA上的羥基磷灰石的分子式為Ca10(PO4)6(OH)2.HBA吸附As(Ⅴ)的效果最佳pH為5.0~9.0.Langmuir等溫吸附模型適合擬合HBA對(duì)As(V)的吸附等溫線,25 ℃時(shí)Langmuir最大吸附量為6.76 mgg,是蔗渣炭對(duì)As(Ⅴ)最大吸附量的20多倍.紅外光譜分析表明,HBA含有的O、—OH、—COOH等含氧官能團(tuán),可為化學(xué)吸附提供充足的吸附位點(diǎn)和提高HBA的吸附能力.XPS分析表明,HBA表面的含氧官能團(tuán)〔如羧基O,532.2 eV)、羥基(—OH,530.6 eV)〕參與了吸附反應(yīng),羥基磷灰石能提高HBA吸附As(Ⅴ)的能力,被吸附到HBA表面上的As主要以AsO43-和HAsO42-形態(tài)存在.
羥基磷灰石; 蔗渣炭; 砷; 吸附; 機(jī)理
As化合物是環(huán)境中常見的污染物,由于As的毒性和其致癌性[1- 2],環(huán)境中As濃度的升高嚴(yán)重危害人類健康.因此,WHO(世界衛(wèi)生組織)1993年修訂的飲用水水質(zhì)標(biāo)準(zhǔn)中將ρ(As)的允許值從50 μgL降至10 μgL.As是導(dǎo)致RNA和DNA突變而引發(fā)癌癥的關(guān)鍵因素,而且As污染還導(dǎo)致新生兒體質(zhì)量下降、先天畸形、死亡率上升等現(xiàn)象[3- 5].因此,人們開發(fā)了許多種技術(shù)來降低水環(huán)境中的ρ(As),包括化學(xué)沉淀、離子交換、吸附、反滲透等.常用作除As吸附劑的物質(zhì)有鐵金屬、三價(jià)鐵離子及其氫氧化物、錳和鋁的氧化物、磷灰石和各種粉煤灰等[6- 9].
近年來,在實(shí)驗(yàn)室研究和中試中尋找、使用低成本除As吸附劑是一種發(fā)展趨勢(shì),很多研究者證實(shí)用化學(xué)改性原生生物質(zhì)能有效去除水溶液中Pb和As等重金屬[10- 13].羥基磷灰石的分子式為Ca10(PO4)6(OH)2,是六方晶系[14],這種晶體特征使不同類型的重金屬能夠取代其中Ca的位置,使其具有良好的離子吸附和交換特性,已被證實(shí)能吸附水溶液中的Cu2+、Cd2+、Pb2+和As(Ⅴ)等離子[15- 18]以及各類有機(jī)化合物[19].Islam等[20]研究了碳酸纖維素羥基磷灰石復(fù)合納米材料對(duì)水中As的吸附,他們用氫氧化鈉和尿素混合溶液溶解纖維素微晶體,制備纖維素溶液,然后將CaCl2和NaH2PO4加到纖維素溶液中,再用微波加熱到90℃,之后過濾,再用蒸餾水和乙醇洗滌到中性,在60 ℃下干燥即得產(chǎn)品.Czerniczyniec等[21]用XRD(X射線衍射)、SEM(掃描電鏡)和EDA(能譜分析)研究了生物羥基磷灰石的特性,證實(shí)生物羥基磷灰石對(duì)As具有很強(qiáng)的吸附性能.羥基磷灰石的這些吸附特點(diǎn)是與其表面特征、表面官能團(tuán)、表面酸堿性、表面電荷等有關(guān),研究[22]發(fā)現(xiàn),羥基磷灰石表面的P—OH鍵可作為吸附點(diǎn)位.
蔗渣是制糖工業(yè)的重要副產(chǎn)物,生產(chǎn)1 t蔗糖約產(chǎn)生2 t甘蔗渣.其主要成分是纖維素、半纖維素及木質(zhì)素,可以作為制備生物質(zhì)活性炭的原料.用甘蔗渣制備活性炭并用于去除水中的Pb、Zn、Cu、P、As等研究均見報(bào)道[23- 25].我國(guó)《2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)》[26]顯示,2015年全國(guó)糖料產(chǎn)量12 529×104t.蔗糖產(chǎn)量約占糖料產(chǎn)量的90%,約產(chǎn)生22 552×104t甘蔗渣.目前,甘蔗渣資源化利用主要途徑包括鍋爐燃料燃燒發(fā)電、制漿造紙、生產(chǎn)人造板、生產(chǎn)綠色環(huán)保餐具等.該研究采用羥基磷灰石化學(xué)改性甘蔗渣,制備羥基磷灰石蔗渣炭復(fù)合吸附劑——HBA,提高蔗渣生物炭吸附As(Ⅴ)的能力,同時(shí)研究了HBA對(duì)As(Ⅴ)的吸附性能,探討吸附As(Ⅴ)的機(jī)理,以期為綜合資源化利用甘蔗渣開發(fā)新的途徑、方法和提供理論依據(jù).
1.1 試驗(yàn)材料與儀器
甘蔗取自廣西貴港某糖廠未除髓的甘蔗渣,經(jīng)蒸餾水清洗,80 ℃烘干,粉碎過20目(0.84 mm)標(biāo)準(zhǔn)篩,置于干燥器中待用.
Ca(CH3COO)2、NaOH、HCl、NH3·H2O、Na3AsO4·12H2O為分析純,CH3COONH4、NH4H2PO4為優(yōu)級(jí)純,試驗(yàn)用水為超純水.As標(biāo)準(zhǔn)溶液(國(guó)家鋼鐵材料測(cè)試中心鋼鐵研究院),介質(zhì)為10%的HCl,ρ(As)為1 mgmL,使用時(shí)用超純水逐級(jí)稀釋.
FS- 20型原子熒光形態(tài)分析儀(北京吉天儀器有限公司,中國(guó));EA2400II型元素分析儀(鉑金埃爾默儀器公司,美國(guó));NEXUS470型傅里葉紅外光譜儀(ThermoNicolet公司,美國(guó));S- 4800型掃描電子顯微鏡(日本高新技術(shù)公司英國(guó)牛津公司生產(chǎn));ESCALAB 250Xi 型X射線光電子能譜(熱電公司,美國(guó));OVA Station A型比表面積分析儀(康塔儀器公司,美國(guó));X′Pert PRO X射線衍射儀(荷蘭帕納科公司,美國(guó)).
1.2 HBA的制備與表征
蔗渣生物炭的制備:將洗靜、烘干后的甘蔗渣放入馬弗爐中,在500 ℃下,碳化4 h,自然冷卻,研磨過100目(0.15 mm)篩,獲得蔗渣生物炭,備用.
采用SEM、XRD、FTIR(傅里葉紅外光譜)和XPS(X射線電子能譜)對(duì)HBA表征.
1.3 吸附試驗(yàn)
稱取一定質(zhì)量的HBA于一系列100 mL的聚乙烯塑料離心管中,加入已用0.1 molL NaOH或HNO3調(diào)節(jié)pH至試驗(yàn)設(shè)定值的50 mL含As(Ⅴ)溶液,蓋好瓶蓋,搖勻,用0.1 molL NaOH或HNO3溶液繼續(xù)調(diào)節(jié)溶液的pH到設(shè)定值.然后,將其置于恒溫水浴振蕩器中,以200 rmin轉(zhuǎn)速振蕩到設(shè)定吸附時(shí)間.取出后置于臺(tái)式離心機(jī)中以4 000 rmin離心5 min,然后用0.45 μm濾膜針筒過濾器過濾,收集上清液到小聚乙烯塑瓶料中(開始時(shí)的2~3 mL棄去不用).用原子熒光光譜法測(cè)定濾液中的ρ〔As(Ⅴ)〕.吸附量采用質(zhì)量平衡方程計(jì)算:
q=(C0-C)VW
(1)
式中:q為吸附量,mgg;C0為初始ρ〔As(Ⅴ)〕,mgL;C為某一時(shí)刻溶液中的ρ〔As(Ⅴ)〕,mgL;V為溶液體積,L;W為吸附劑質(zhì)量,g.
其中,pH的影響試驗(yàn)中溶液初始pH為3.0~10.0,吸附時(shí)間影響試驗(yàn)的時(shí)間為20~840 min,吸附溫度影響試驗(yàn)的溫度為25~45 ℃.吸附等溫線和吸附動(dòng)力學(xué)試驗(yàn)中溶液初始pH均為7.0;吸附等溫線試驗(yàn),初始ρ〔As(Ⅴ)〕分別為0.5、1.0、2.0、3.0、4.0、5.0、6.0、8.0、10.0、12.0、15.0和20.0 mgL;吸附動(dòng)力學(xué)試驗(yàn),初始ρ〔As(Ⅴ)〕為0.5和2.0 mgL.
2.1 HBA的表征
HBA的BET比表面積為89.52 m2g,孔體積為29.26 cm3g,其疏松的微孔結(jié)構(gòu)使其具有較高的比表面積,有利于增大其與溶質(zhì)的接觸面積,提高其吸附能力.X射線衍射分析結(jié)果見圖1(a).與標(biāo)準(zhǔn)卡圖1(b)對(duì)照發(fā)現(xiàn),HBA的大部分衍射峰與羥基磷灰石〔Ca10(PO4)6(OH)2〕的標(biāo)準(zhǔn)卡(JCPDF,No.00- 09- 0432)吻合良好.另外,44.54°的衍射峰對(duì)應(yīng)的是C(00- 011- 0646)的衍射峰,這是甘蔗渣燒結(jié)后的炭化產(chǎn)物,這與后面XPS分析的結(jié)果相吻合,而且在衍射圖譜的前段有一類似小土包的本底峰,表明有機(jī)炭晶體化程度小.
圖1 HBA的XRD圖和羥基磷灰石的標(biāo)準(zhǔn)卡Fig.1 XRD spectra of HBA and the JCPDF of hydroxylapatite
圖2 蔗渣生物炭和HBA的FTIR圖譜Fig.2 FTIR spectra of bagasse biochar and HBA
吸附劑表面的帶電性質(zhì)由其所帶正負(fù)電荷的多少?zèng)Q定,pHzpc(零點(diǎn)電荷)是所帶正負(fù)電荷相等時(shí),即Zeta電位等于零時(shí)所對(duì)應(yīng)的pH.Zeta電位與pH關(guān)系曲線如圖3所示.由圖3可知,蔗渣生物炭的pHzpc為4.4,HBA的pHzpc為7.2.可能是HBA含有羥基磷灰石,提高了HBA的pHzpc.
圖3 Zeta電位與pH關(guān)系曲線Fig.3 Zeta potential of HBA as a function of pH
2.2 pH對(duì)吸附性能的影響
pH對(duì)HBA吸附As(Ⅴ)的影響見圖4.由圖4可見,當(dāng)pH由3.0升至7.0時(shí),As(Ⅴ)的去除率由98.9%增至99.8%,當(dāng)pH由7.0升至10.0時(shí),As(Ⅴ)的去除率由99.8%緩慢下降至99.4%.HBA去除As(Ⅴ)的較佳pH范圍是5.0~9.0,As(Ⅴ)的去除率>99.6%,當(dāng)pH=7.0時(shí),As(Ⅴ)的去除率最大.溶液的pH是影響吸附劑吸附能力的重要參數(shù),它影響吸附質(zhì)在溶液中的存在形態(tài)和吸附劑表面電荷性質(zhì).As(Ⅴ)在水中主要以H3AsO4(pH<2.0)、H2AsO4-和HAsO42-(2.0
2.3 吸附時(shí)間的影響
由圖5可見,當(dāng)初始ρ〔As(Ⅴ)〕為0.5和2.0 mgL時(shí),在20 min內(nèi),As(Ⅴ)的去除率分別達(dá)到97.4%和88.1%,平均吸附速率為0.012 2和0.044 1 mg(g·min),吸附平衡時(shí)間分別為240和480 min.在不同初始ρ〔As(Ⅴ)〕下,吸附初始階段吸附速率快的原因是吸附劑表面有豐富的吸附點(diǎn)位;隨著吸附時(shí)間的延長(zhǎng),吸附速率下降的原因是吸附點(diǎn)位的減少,還有可能是As(Ⅴ)聚合于HBA吸附劑顆粒周圍,可能會(huì)阻礙吸附質(zhì)的遷移,吸附點(diǎn)位被填滿,使As(Ⅴ)在吸附劑表面的擴(kuò)散速度降低[32]所致.初始ρ〔As(Ⅴ)〕不同,吸附平衡時(shí)間不同,初始ρ〔As(Ⅴ)〕較低時(shí)會(huì)更快達(dá)到吸附平衡,究其原因,低ρ〔As(Ⅴ)〕時(shí)砷酸陰離子能通過靜電引力在數(shù)min或數(shù)h內(nèi)快速到達(dá)吸附劑的吸附點(diǎn)位,然后擴(kuò)散至吸附劑顆?;蚓w微孔中,發(fā)生表面絡(luò)合作用并使基團(tuán)結(jié)構(gòu)進(jìn)行重組.高ρ〔As(Ⅴ)〕時(shí),靜電吸引和擴(kuò)散過程緩慢,導(dǎo)致吸附平衡時(shí)間較長(zhǎng)[33].
注:初始ρ〔As(Ⅴ)〕(mgL): 1—0.5; 2—2.0.圖5 吸附時(shí)間對(duì)HBA吸附As(Ⅴ)的影響Fig.5 Effect of contact time on arsenic adsorption onto HBA
2.4 吸附等溫線
由圖6可見,在25、35、45 ℃下,隨著初始ρ〔As(Ⅴ)〕的增加,As(Ⅴ)的吸附量增大,在Ce(吸附平衡時(shí)ρ〔As(Ⅴ)〕)<1.0 mgL時(shí),3種溫度下的吸附量基本一樣;當(dāng)Ce>1.0 mgL時(shí),吸附溫度對(duì)吸附量的影響開始增大,隨著吸附溫度的升高,HBA對(duì)As(Ⅴ)的吸附量有微少的增加.其他一些研究者的研究[20,34- 35]亦表明,隨著溫度的升高,納米纖維素羥基磷灰石復(fù)合吸附劑、負(fù)載錳吸附劑、羥基鐵化合物、氫氧化鐵和紅土對(duì)As(Ⅴ)的去除率和吸附量增大.
圖6 HBA對(duì)As(Ⅴ)的吸附等溫線Fig.6 Adsorption isotherms of arsenic onto HBA
采用Langmuir等溫吸附模型〔見式(2)〕和Freundlich等溫吸附模型〔見式(3)〕對(duì)吸附等溫線進(jìn)行擬合.
Ceqe=1(qmax·KL)+Ceqmax
(2)
lnqe=lnKF+(lnCe)n
(3)
式中:qmax為最大吸附量,mgg;KL是與吸附自由能有關(guān)的常數(shù),Lmg;qe為吸附質(zhì)的平衡吸附量,mgg;KF為Freundlich常數(shù),mg(L1n·g),表明吸附容量的大??;1n表示吸附強(qiáng)度的大小,是表示不均勻性的因素.以Ceqe對(duì)Ce做圖,由直線的斜率和截距計(jì)算出qmax和KL;以lnqe對(duì)lnCe做圖,由直線的斜率和截距計(jì)算出1n和KF.吸附模型參數(shù)見表1.
由表1可見,在25、35和45 ℃下,Langmuir等溫吸附模型擬合的相關(guān)系數(shù)(R2)分別為0.996、0.994和0.989,表明Langmuir等溫吸附模型適合擬合HBA對(duì)As(Ⅴ)的吸附行為,HBA對(duì)As(Ⅴ)的吸附是均勻吸附,在吸附劑表面上的每個(gè)分子具有相同的吸附活化能[36];qmax分別為6.76、6.90、6.99 mgg,約為蔗渣生物炭的23倍,表明羥基磷灰石能提高HBA對(duì)As(Ⅴ)的吸附能力.1n在0.406~0.440之間,表明HBA對(duì)As(Ⅴ)具有較強(qiáng)的吸附能力[37].
Ca10(PO4)6(OH)2+xAs5+→xCa2++
2.5 XPS分析吸附As(Ⅴ)的機(jī)理
根據(jù)羥基磷灰石溶度積和溫度的關(guān)系式[43]:
lgKs=-8 219.41T-0.098 25T-1.665 7式中:Ks為羥基磷灰石的溶度積,25 ℃時(shí)Ks為3.695×10-59;T為絕對(duì)溫度,K.
可計(jì)算出25 ℃下,溶液pH為7.0時(shí),羥基磷灰石在水溶液中的溶解度低于0.15 mgL,因此,在吸附過程中溶解作用很少.因此用于XPS分析的吸附后樣品,其吸附試驗(yàn)條件為pH=7.0,溫度=25 ℃.分析結(jié)果見圖7.
由圖7(a)(b)可見,吸附As(Ⅴ)前后的HBA在結(jié)合能為531.08、346.54、283.98和133.12 eV處分別有O 1 s、Ca 2p、C 1s和P 2p的峰,但只有吸附As(Ⅴ)后的HBA在結(jié)合能44.32 eV處有As 3d峰.Ca 2p和P 2p的結(jié)合能分別由吸附前的346.9 eV和133.1 eV降低到吸附后的346.5 eV和132.9 eV,表明HBA上的Ca和P參與了吸附反應(yīng).
注:圖中的小圖是橫坐標(biāo)50~35 eV處的放大圖.圖7 吸附As(Ⅴ)前后的XPS分析Fig.7 XPS result of the HBA before and after adsorption As(Ⅴ)
圖8 吸附As(Ⅴ)前后O 1s的分峰擬合圖Fig.8 Sub-peak fitted spectra of O 1s of HBA before and after As(Ⅴ)adsorption
吸附As(Ⅴ)后的HBA上As的分峰擬合結(jié)果如圖9所示.由圖9可見,在44.3、45.3和46.2 eV處有3種不同形態(tài)的As峰,峰面積的大小依次減少.表明被吸附到HBA上的As(Ⅴ)主要以AsO43-和HAsO42-形態(tài)存在.究其原因,主要是在pH=7.0的條件下,溶液中的As(Ⅴ)主要以HAsO42-形態(tài)存在,另外,H2AsO4-與吸附劑形成表面絡(luò)合物之后很快反應(yīng)成HAsO42-[46].
圖9 HBA吸附As(Ⅴ)后As 3d分峰擬合Fig.9 Sub-peak fitted spectra of As after HBA adsorption As(Ⅴ)
a) HBA具有微孔結(jié)構(gòu),HBA上的羥基磷灰石是無定形態(tài),其分子式為Ca10(PO4)6(OH)2,BET比表面積為89.52 m2g,孔體積為29.26 cm3g.零點(diǎn)電位pHzpc=7.2.HBA上有羥基和羧基.
b) HBA吸附As(Ⅴ)較佳的pH范圍為5.0~9.0,最佳pH是7.0.當(dāng)初始ρ〔As(Ⅴ)〕為0.5和2.0 mgL時(shí),達(dá)到吸附平衡的時(shí)間分別是240和480 min.Langmuir等溫吸附模型適合擬合HBA對(duì)As(Ⅴ)的吸附等溫線,25、35和45 ℃下相關(guān)系數(shù)分別為0.996、0.994和0.989,qmax分別為6.76、6.90、6.99 mgg.
[1] EBLIN K E,BOWEN M E,CROMEY D W,etal.Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture[J].Toxicology and Applied Pharmacology,2006,217(1):7- 14.
[2] HUGHES M F.Arsenic toxicity and potential mechanisms of action[J].Toxicology Letters,2002,133(1):1- 16.
[3] JAIN C K,ALI I.Arsenic:occurrence,toxicity and speciation techniques[J].Water Research,2000,34(17):4304- 4312.
[4] MONIQUE B,F(xiàn)RIMMEL F H.Arsenic-a review:Part I:occurrence,toxicity,speciation,mobility[J].ActaHydrochimica Et,Hydrobiologica,2003,31(1):9- 18.
[5] REBECCA B S,RICHARD S C.Naturally occurring arsenic in sandstone aquifer water supply wells of northeastern Wisconsin[J].Ground Water Monitoring and Remediation,1999,19(2):114- 121.
[7] DAUS B,WENNRICH R,WEISS H.Sorption materials for arsenic removal from water:a comparative study[J].Water Research,2002,38(12):2948- 2954.
[8] DEMARCO M J,SENGUPTA A K,JOHN E G.Arsenic removal using a polymericinorganic hybrid sorbent[J].Water Research,2003,37(1):164- 176.
[9] SONG S,LOPEZ- VALDIVIESO A,HERNANDEZ- CAMPOS D J,etal.Arsenic removal from high- arsenic water by enhanced coagulation with ferric ions and coarse calcite[J].Water Research,2006,40(2):364- 372.
[10] 楊軍,張玉龍,楊丹,等.稻秸對(duì)Pb2+的吸附特性[J].環(huán)境科學(xué)研究,2012,25(7):815- 819. YANG Jun,ZHANG Yulong,YANG Dan,etal.Adsorption characteristics of Pb2+on rice straw[J].Research of Environmental Sciences,2012,25(7):815 - 819.
[11] BODDU V M,ABBURI K,TALBOTT J L,etal.Removal of arsenic(III) and arsenic(V)from aqueous medium using chitosan- coated biosorbent[J].Water Research,2008,42(3):633- 642.
[12] MALAKOOTIAN M,NOURI J,HOSSAINI H.Removal of heavy metals from paint industry′s wastewater using Leca as an available adsorbent[J].International Journal of Environmental Science & Technology,2009,6(2):183- 190.
[13] RAHAMAN M S,BASU A,ISLAM M R.The removal of As(III)and As(V)from aqueous solutions by waste materials[J].Bioresource Technology,2008,99(8):2815- 2823.
[14] 劉羽,彭明生.磷灰石在廢水治理中的應(yīng)用[J].安全與環(huán)境學(xué)報(bào),2001,1(1):9- 12. LIU Yu,PENG Mingsheng.Applications of mineral apatites in the treatment of waste water[J].Journal of Safety and Environment,2001,1(1):9- 12.
[15] ZHENG Wei,LI Xiaoming,YANG Qi,etal.Adsorption of Cd(II)and Cu(II)from aqueous solution by carbonate hydroxylapatite derived from eggshell waste[J].Journal of Hazardous Materials,2007,147(1):534- 539.
[16] CORAMI A,MIGNARDI S,F(xiàn)ERRINI V.Cadmium removal from single and multi- metal(Cd+Pb+Zn+Cu)solutions by sorption on hydroxylapatite[J].Journal of Colloid and Interface Science,2008,317(2):402- 408.
[17] WANG Y J,CHEN J H,CUI Y X,etal.Effects of low- molecular- weight organic acids on Cu(II)adsorption onto hydroxylapatite nanoparticles [J].Journal of Hazardous Materials,2009,162(23):1135- 1140.
[18] MIRHOSSEINI M,BIAZAR E,SAEB K.Removal of arsenic from drinking water by hydroxylapatite nanoparticles[J].Current World Environment,2014,9(2):331.
[19] SABURO S,YOSHIO T,KATSUHLRO I.Effect of phosphorylated organic compound on the adsorption of bovine serum albumin by hydroxylapatite[J].Chemical and Pharmaceutical Bulletin,1991,39(9):2183- 2188.
[20] ISLAM M,MISHRA P C,PATEL R.Arsenate removal from aqueous solution by cellulose- carbonated hydroxylapatite nanocomposites[J].Journal of Hazardous Materials,2011,189(3):755- 763.
[21] CZERNICZYNIEC M,F(xiàn)ARAS S,MAGALLANES J,etal.Arsenic(V)adsorption onto biogenic hydroxylapatite:solution composition effects[J].Water,Air,and Soil Pollution,2007,180(1234):75- 82.
[22] TANAKA H,F(xiàn)UTAOKA M,HINO R,etal.Structure of synthetic calcium hydroxylapatite particles modified with pyrophosphoricacid[J].Journal of Colloid and Interface Science,2005,283(2):609- 612.
[23] HONG H J,KIM H,BAEK K,etal.Removal of arsenic,chromate and ferricyanideby cationic surfactant modified powdered activated carbon[J].Desalination,2008,223:221- 228.
[24] GURGEL L V A,JNIOR O K,DE FREITAS GIL R P,etal.Adsorption of Cu(Ⅱ),Cd(Ⅱ),and Pb(Ⅱ)from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride[J].Bioresource Technology,2008,99:3077- 3083.
[26] 國(guó)家統(tǒng)計(jì)局.中華人民共和國(guó)2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)[EBOL].北京:中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局,2016[2016- 02- 29].http:www.stats.gov.cntjsjzxfb201602t20160229_1323991.html.
[27] XU Di,TAN Xiaoli,CHEN Changlun,etal.Removal of Pb(Ⅱ)from aqueous solution by oxidized multiwalled carbon nanotubes[J].Journal of Hazardous Materials,2008,154:407- 416.
[28] VINK B W.Stability relations of antimony and arsenic compounds in the light of revised and extendedEh- pH diagrams [J].Chemical Geology,1996,130(5):21- 30.
[29] TARASEVICH Y I,SHKUTKOVA E V,JANUSZ W.Sorption of ions of heavy metals from aqueous solutions on hydroxylapatite[J].Journal of Water Chemistry and Technology,2012,34(3):125- 132.
[30] MAMINDY-PAJANY Y,HUREL C,MARMIER N,etal.Arsenic(V) adsorption from aqueous solution onto goethite,hematite,magnetite and zero-valent iron:effects of pH,concentration and reversibility[J].Desalination,2011,281:93- 99.
[31] QIAO J,JIANG Z,SUN B,etal.Arsenate and arsenite removal by FeCl3:effects of pH,AsFe ratio,initial As concentration and co-existing solutes[J].Separate and Purify Technology,2012,92:106- 114.
[32] MITTAL A,MITTAL J,MALVIYA A,etal.Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials[J].Journal of Colloid and Interface Science,2012,344(2):497- 507.
[33] 劉海玲,梁美娜,朱義年.復(fù)合鐵鋁氫氧化物對(duì)As(Ⅴ)的吸附作用[J].環(huán)境化學(xué),2006,25(6):743- 747. LIU Hailing,LIANG Meina,ZHU Yinian.As(Ⅴ)Adsorption on iron-aluminum hydroxide complex[J].Environmental Chemistry,2006,25(6):743- 747.
[34] TYROVOLA K,NIKOLAIDIS N P,VERANIS N,etal.Arsenic removal from geothermal waters with zero-valent iron:effect of temperature,phosphate and nitrate[J].Water Research,2006,40(12):2375- 2386.
[35] GEN?-FUHRMAN H,TJELL J C,MCCONCHIE D.Adsorption of arsenic from water using activated neutralized red mud[J].Environmental Science & Technology,2004,38(8):2428- 2434.
[36] CHANG Q,LIN W,YING W.Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water[J].Journal of Hazardous Materials,2010,184(1):515- 522.
[37] CRINI G.Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin-polymer[J].Dyes and Pigments,2008,77(2):415- 426.
[38] GUTIERREZ-MUIZ O E,GARCA-ROSALES G,ORDOEZ-REGIL E,etal.Synthesis,characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V)from water [J].Journal of Environmental Management,2013,114:1- 7.
[39] TUNA A ? A,?ZDEMIR E,IMEK E B,etal.Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents:Impact of experimental conditions[J].Chemical Engineering Journal,2013,223:116- 128.
[40] 陳云嫩,柴立元,舒余德.骨炭去除水中As(V)的試驗(yàn)研究[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,39(2):279- 283. CHEN Yunnen,CHAI Liyuan,SHU Yude.Arsenic(V)removal from drinking water by bone char[J].Journal Center South University(Science and Technology),2008,39(2):279- 283.
[41] MAHSA M,ESMAEIL B,KEIVAN S.Removal of Arsenic from Drinking Water by Hydroxylapatite Nanoparticles[J].Current World Environment,2014,9(2):331- 338.
[42] MA Q Y,TRAINA S J,LOGAN T J,etal.Effect of aqueous Al,Cd,Cu,F(xiàn)e(II),Ni,and Zn on Pb(II)immobilization by hydroxylapatite[J].Environmental Science Technology,1994,28:1219- 1228.
[43] ELLIOT J C.Structure and chemistry of apatite and other calcium orthophosphates [M].Amsterdam:Elsevier Science Publishers,1994:157
[44] REN Y M,YAN N,JING F,etal.Adsorption mechanism of copper and lead ions onto graphenenanosheetδ-MnO2[J].Materials Chemistry and Physics,2012,136(2):538- 544.
[46] ZHANG S J,LI X Y,CHEN J P.An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J].Journal of Colloid and Interface Science,2010,343(1):232- 238.
Preparation of Hydroxylapatite/Bagasse Biochar Composite Adsorbent and Its Adsorption Mechanism of As(V) from Aqueous Solution
LIANG Meina1,2,3, WANG Dunqiu1,2,3*, ZHU Yinian1,2,3, XIAO Yu2,3, ZHU Zhongqiang2,3, TANG Shen2,3
1.College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China 2.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China 3.Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
Hydroxylapatitebagasse biochar composite adsorbent(HBA)was prepared from sugarcane bagasse by using the hydrothermal synthesis method.The adsorption capacity for As(V)on HBA was measured through a series of batch adsorption experiments.The adsorption mechanism of As(V)from aqueous solution onto HBA was investigated using Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).The results showed that the specific surface area of HBA was 89.52 m2g,and the point of zero charge values of HBA was 7.2.The molecular formula of hydroxylapatite in HBA was Ca10(PO4)6(OH)2.The pH range for the optimal As(V)adsorption was between 5.0 and 9.0.The As(V)adsorption isotherm could be well fitted with the Langmuir model.The maximum As(V)adsorption capacity for HBA was 6.76 mgg at 25 ℃,which is 23 times that of the bagasse biochar.FTIR analysis indicated that oxygen-containing functional groups presented abundantly on the external and internal surfaces of HBA,which provided numerous chemical sorption sites and thereby increased the adsorption capacity of HBA.XPS analysis showed that the oxygen-containing functional groups,carboxyl oxygenO,532.2 eV] and hydroxyl [—OH,530.6 eV],were involved in adsorption.Hydroxylapatite in HBA played the key role in the As(V)adsorption process.The As(V)adsorbed on the HBA surface existed mainly as AsO43-and HAsO42-.
hydroxylapatite; bagasse biochar; arsenic(V); adsorption; mechanism
2016- 08- 29
2016- 11- 04
國(guó)家自然科學(xué)基金項(xiàng)目(21367010,51638006)
梁美娜(1974-),女,廣西環(huán)江人,研究員,碩士,主要從事環(huán)境化學(xué)、環(huán)境功能材料的制備及應(yīng)用研究,liangmeinaa@163.com.
*責(zé)任作者,王敦球(1969-),男,江蘇徐州人,教授,博士,博導(dǎo),主要從事水污染控制、固體廢棄物資源化利用研究,wangdunqiu@sohu.com
X52; X712
1001- 6929(2017)04- 0607- 08
A
10.13198j.issn.1001- 6929.2017.01.67
LIANG Meina,WANG Dunqiu,ZHU Yinian,etal.Preparation of hydroxylapatitebagasse biochar composite adsorbent and its adsorption mechanism on As(V)from aqueous solution[J].Research of Environmental Sciences,2017,30(4):607-614.