• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of EMD filtering based on l2-norm in denoising FOG signal

    2017-06-05 14:20:15LIYuhuanYANGGongliuLIUYuanyuan
    中國慣性技術(shù)學報 2017年2期
    關(guān)鍵詞:概率密度函數(shù)范數(shù)陀螺

    LI Yu-huan, YANG Gong-liu, LIU Yuan-yuan

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    Application of EMD filtering based on l2-norm in denoising FOG signal

    LI Yu-huan1,2, YANG Gong-liu1,2, LIU Yuan-yuan3

    (1. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China;

    2. Science and Technology on Inertial Laboratory, Beijing 100191, China;

    3. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd, Beijing 100854, China)

    To reduce the random noise and drift of fiber optic gyros (FOG), a novel Hurst-exponent-based signal filtering method is introduced, which combines the empirical mode decomposition (EMD) and the similarity measure between the probability density function (pdf) of the signal and the pdf of each mode. When H<0.5, the relevant modes are selected by using l2-norm, and the partial reconstruction with relevant modes is formed and used to filter the FOG’s noisy signals; When H≥0.5, EMD interval thresholding (EMD-IT) is introduced into the relevant modes to carry on filter processing, then the FOG’s noisy signals are filtered according to partial reconstruction approach. This method is called as mixed EMD-pdf & EMD-IT method. Simulation and real data test are carried out to evaluate the effectiveness of the proposed method. Other EMD denoising methods, such as correlation-based EMD reconstruction (EMD-cor), single pdf-based EMD reconstruction (EMD-pdf), are also investigated to provide a comparison with this method. Experiment results show that its performance is superior to those of the other EMD denoising methods.

    fiber optic gyroscope; empirical mode decomposition; l2-norm; random drift

    Fiber optic gyroscope (FOG), as a kind of inertial sensors, has been widely used in inertial navigation system (INS) because of its significant advantages[1-3]. However, the random drift is the most remarkable issue that contributes to the performance degradation in inertial sensors[4-5]. Among different ways to restrain the random drift, mathematical models and denoising methods are two main techniques realized by software technology reported in relevant literatures.

    Empirical mode decomposition (EMD), first introduced by Huang et al. in [6], has been used for analyzing the non-linear and non-stationary signal processes by adaptively decomposing any signal into oscillatory components called intrinsic mode functions (IMFs)[7-8], where wavelet filtering has been the dominant technique for many years[9]. As opposed to wavelet filtering, EMDadaptively expresses the signal as an expansion of basic functions directly derived from the signal itself[10]. Recently, many EMD-based denoisings have been provided to remove noises from observed data, which can be classified into two main categories, i.e. the whole reconstruction with filtered modes and the partial reconstruction with relevant modes.

    Boudraaet al. in [9] proposed a variety of different whole reconstruction signal denoising schemes. However, it is limited to signals with white Gaussian random noise. Later, Boudraaet al. proved that EMD-based partial reconstruction performs in an adaptive way in [11], but in some cases, CMSE criterion can be trapped in local minima. A correlation-based threshold is established to distinguish relevant modes in reference [12], and its disadvantage is sensitive to different signal-to-noise power ratios (SNR). Kopsinis and Mclanglin developed a series of novel EMD-based denoisings inspired by wavelet thresholding in [13], where EMD interval thresholding termed EMD-IT is provided, while the relevant modes were selected based on experience. Quet al. provided a novel EMD-based mode cell filtering (MCF) method in [14] and selected the relevant modes from experience. Komatyet al. in [15] put forward a similarity measure between the probability density function (pdf) of the input and that of each extracted mode to determine the relevant modes, and the best results are given by the geometric similarity measures, especiallyl2-norm measure. However, the position of the first local maximum is proved to move forward by simulation when Hurst exponent of fractional Gaussian noise (fGn) increases. According to the statistical characterristics of white Gaussian noise and the fGn through EMD, the energy of noise decays at a slower rate whenHis close to 1. Thus it is disastrous for the EMD partial reconstruction usingl2-norm measure to select relevant modes. To avoid these shortcomings, a novel EMD-based signal filtering is introduced in this paper which combines Hurst exponent andl2-norm measure. WhenH≥0.5, EMD-IT is added to further denoise each relevant modes called mixed EMD-pdf & EMD-IT method; then the same partial reconstruction is implemented asH<0.5. Numerical simulation and real data test were carried out to evaluate the effectiveness of this proposed method.

    1 Brief review of EMD

    A noisy signalx(t) is adaptively broken down intoLIMFs by EMD, termedh(i)(t) (1≤i≤L). Those basic building blocks are obtained through a sifting process according to the following steps[9]. A schematic of the inner and outer loops of the EMD is shown in Fig.1.

    Fig.1 Pictorial representation of empirical mode decomposition

    The extracted modes are nearly orthogonal to each other, which form a complete set because accumulating all modes with the residual can restore the decomposed signal. The signal can be expressed as follows:

    2 Principle of EMD-based denoising

    Consider a noiseless signaly(t) contaminated by an additive noisen(t):

    The denoising is to find an estimate(t) of the observed signalx(t). For EMD-based partial reconstructtion denoising,(t) is given by

    To identify the relevant modes of decomposed signal, the signal is first decomposed into several IMFs followed by an estimation of their pdfs using the kernel density estimator. The two pdfs, namedPandQ, can be seen as two sets of points. Thel2-norm is defined by

    From Eq.(4), we can see that thel2-norm is sensitive to the variation of the distance between two correspondding points. The similarity measure usingl2-norm is defined as follows:

    The “dist” stands for the distance between two pdfs measured by l2-norm. The first selected mode is the one when the distance starts decreasing after the first local maximum. The kthis identified by

    Fig.2 illustrates how this novel filtering works, where EMD-IT is applied to each relevant mode to further eliminate the effect of noises. Details on the EMD-IT are fully available in [13]. EMD-IT can effectively reduce the discontinuity. With respect to the threshold selection, the universal threshold is a popular candidate.

    3 Results and discussions

    To verify the effectiveness of this novel denoising method, the noisy signals considered in this section include simulation and real test signals.

    Fig.2 Illustration of novel filtering scheme using l2-norm

    3.1 E xperiment 1

    To illustrate the effectiveness of this proposed filtering, the EMD-cor and EMD-pdf methods are also investigated as comparisons in this paper. The code of EMD can serve as reference implementation.

    For the noisy “Doppler” signal with length 2048, three denoising methods can restore the denoised signal, as shown in the Fig.3. In Fig.3(1), EMD-pdf exhibits the same behavior with EMD-cor for the SNR=12.04 dB. In contrast, the mixed EMD-pdf & EMD-IT enhances the performance of denoising where the SNR is up to 13.34 dB. In Fig.3(2), the gains in SNRs are respectively up to 8.15 dB and 8.03 dB by EMD-cor and EMD-pdf, while the mixed method improves the SNR up to 9.65 dB.

    From the Fig.3, we can see that the mixed EMD-pdf & EMD-IT method has better results compared with other two methods. In this paper, we proposed this mixed method only used when H≥0.5.

    Fig.3 Results of filtered signals

    We have performed numerical simulations for the signals of “Blocks”, “Bumps”, “Heavysine”, and “ECG”, which were generated using Matlab software and the size is N=2048. We have adopted short (0

    Fig.4 Results of EMD-based filtering

    3.2 E xperiment 2

    Under the normal temperature (25℃), we make experiment testing for FOG drift signal. The sample period is 1 s, and the total number of samples is N=332 852. To avoid the variation of temperature in startup time, this paper selects the samples length of 4096 from 14 097~ 18 193 to assess the filtering, shown in Fig.5, such as EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT. The H of the signal is 0.7880 estimated by the wfbmesti function in Matlab, which affirms the fact that the timecorrelation colored noise really exists in inertial sensors.

    Fig.5 FOG drift signal

    Based on the EMD-cor, the kthis 2 where the correlation coefficient between the input and its modes starts smaller than the prefixed threshold. In contrast, the kthis 4 using l2-norm, less relevant modes are selected as useful signal for partial reconstruction.

    Additionally, our proposed mixed EMD-pdf & EMD-IT method is applied on the selected relevant modes to further filter the noises. To illustrate the differrence between EMD-pdf and the mixed EMD-pdf & EMD-IT, the results of relevant modes with IMFs number 4 to 9 before and after denoising are shown in Fig.6, where red lines are the filtered signal, those relative smaller mode cells are considered noises and discarded.

    Fig.6 Relevant modes before and after EMD-IT denoising

    The denoising results using EMD-cor, EMD-pdf, mixed EMD-pdf & EMD-IT method are given in Fig.7.To verify the denoising performance, the most commonly used Allan variance for FOG noise analysis is employed as the criterion. As shown in Fig.8, the proposed method can effectively filter the noise, where the mixed method has lower slope as compared to EMD-cor and EMD-pdf.

    Fig.7 Results of EMD-based filtering

    Fig.8 Allan variance analysis before and after denoising

    4 C onclusion

    In this paper, a novel mixed EMD-pdf & EMD-IT method is proposed to filter noisy signals when H≥0.5 and a single EMD-pdf method is used when H<0.5, where the l2-norm is used to select relevant modes. However, the first local maximum obtained from l2-norm is sensitive to the form of noise. Thus, according to the value of H, the mixed or the single method is chosen for denoising. In addition, the threshold is estimated on the basis of the characteristics of fGn through EMD.

    To illustrate the effectiveness of this proposed method, we carried out numerical simulations with different SNR under each H level. This improved method exhibits an enhanced performance of denoising compared with EMD-cor and EMD-IT methods. Finally, this proposed method is applied to the real signal: FOG drift signal. From the Allan variance curves, we can see that the random error has been greatly decreased by the mixed EMD-pdf and EMD-IT method. Hence, the proposed FOG denoising algorithm has been proved to have potential applications in INS domain.

    [1] Liu Y Y, Yang G L, Li S Y. Application of BP-Bagging model in temperature compensation for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2014, 22(2): 254-259.

    [2] Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239.

    [3] Liu Y Y, Yang G L, Li S Y. Temperature compensation for fiber optic gyroscope based on dual model[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 131-136.

    [4] Liu Y Y, Yang G L, Li M, et al. Variational mode decomposition denoising combined the detrended fluctuation analysis[J], Signal Processing, 2016, 125: 349-364.

    [5] Yang G L, Liu Y Y, Li M, et al. AMA- and RWE-based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15: 26940-26960.

    [6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London, Series A, 1998, 454(3): 903-995.

    [7] Zhang S Y, Liu Y Y, Yang G L. EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]//Proceedings of the 34th Chinese Control Conference. 2015: 4081-4086.

    [8] Huang M, Liu Y Y, Yang G L, et al. An innovation based DFA and EMD method for denoising fiber optic gyroscope drift signal[C]//Proceedings of the 3rd International Conference on Information Science and Control Engineering. 2016: 1262-1266.

    [9] Yang G L, Liu Y Y, Wang Y Y, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109.

    [10] Tsakalozos N, Drakakis K, Rickard S. A formal study of the nonlinearity and consistency of the empirical mode decomposition[J]. Signal Proceesing, 2012, 92(9): 1961-1969.

    [11] Boudraa A O, Cexus J C. EMD-based signal fi ltering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2196-2202.

    [12] Ayenu-Prah A, Attoh-Okine N. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition[J]. Advance in Adaptive Data Analysis, 2010, 2(1): 1-24.

    [13] Kopsinis Y, Mclanglin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1351-1362.

    [14] Qu C S, Yu H, Xu H L, et al. Random signal de-noising based on empirical mode decomposition for laser gyro[J]. Infrared and Laser Engineering, 2009, 38(5): 859-863.

    [15] Komaty A, Boudraa A O, Augier B, D. et al. EMD-based filtering using similarity measure between probability density functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63 (1): 27-34.

    1005-6734(2017)02-0244-05

    基于l2范數(shù)的EMD濾波方法在光纖陀螺信號中的應(yīng)用

    李宇寰1,2,楊功流1,2,劉元元3

    (1. 北京航空航天大學 儀器科學與光電工程學院,北京 100191;2. 慣性技術(shù)國防重點實驗室,北京 100191;3. 北京航天時代光電科技有限公司,北京 100854)

    光纖陀螺的隨機漂移限制了慣性導航系統(tǒng)的精度,如何減小它是一項非常艱巨的任務(wù)。結(jié)合經(jīng)驗模態(tài)分解(EMD)和信號與模態(tài)之間的概率密度函數(shù),提出了一種新型的依賴Hurst指數(shù)的信號濾波方法。當H<0.5時,利用l2范數(shù)選擇出相關(guān)模態(tài),累加并形成的部分重構(gòu)方法來對光纖陀螺的信號進行濾波;當H≥0.5時,間隔閾值的經(jīng)驗模態(tài)(EMD-IT)被引入對相關(guān)模態(tài)進行濾波,之后按照部分重構(gòu)的方法對光纖陀螺的信號進行濾波;稱為混合的EMD-pdf和EMD-IT。與其它的濾波方法進行對比,如基于相關(guān)函數(shù)的EMD部分重構(gòu)(EMD-cor),基于概率密度函數(shù)的EMD部分重構(gòu)(EMD-pdf),仿真信號和實際數(shù)據(jù)結(jié)果表明,該混合模型的優(yōu)越性,有效減小了光纖陀螺的隨機誤差。

    光纖陀螺;經(jīng)驗模態(tài)分解;l2范數(shù);隨機漂移

    V241.5

    A

    2017-01-04;

    2017-03-24

    國家自然科學基金(61340044,11202010);中央高校基本科研業(yè)務(wù)費專項資金資助項目(YWF-10-01-B30)

    李宇寰(1978—),男,博士研究生、陸軍參謀,從事慣性技術(shù)研究。E-mail: lyhzl1112@163.com

    聯(lián) 系 人:楊功流(1967—),男,教授,博士生導師。E-mail: bhu17-yang@139.com

    10.13695/j.cnki.12-1222/o3.2017.02.020

    猜你喜歡
    概率密度函數(shù)范數(shù)陀螺
    冪分布的有效估計*
    做個紙陀螺
    玩陀螺
    學生天地(2019年6期)2019-03-07 01:10:46
    陀螺轉(zhuǎn)轉(zhuǎn)轉(zhuǎn)
    軍事文摘(2018年24期)2018-12-26 00:58:18
    我最喜歡的陀螺
    快樂語文(2018年36期)2018-03-12 00:56:02
    已知f(x)如何求F(x)
    當代旅游(2018年8期)2018-02-19 08:04:22
    基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
    矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
    一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
    基于概率密度函數(shù)的控制系統(tǒng)性能評價
    精品人妻一区二区三区麻豆 | 亚洲国产色片| 一个人免费在线观看电影| 亚洲av熟女| 在线观看美女被高潮喷水网站| 激情 狠狠 欧美| 午夜亚洲福利在线播放| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 女同久久另类99精品国产91| 尾随美女入室| 国产成人一区二区在线| 不卡视频在线观看欧美| 国产午夜精品论理片| 黄色一级大片看看| h日本视频在线播放| 久久亚洲国产成人精品v| 99久久精品一区二区三区| 级片在线观看| 免费看av在线观看网站| 欧美激情在线99| 国产一区二区在线av高清观看| 色吧在线观看| 美女大奶头视频| 久久久久久久久中文| 欧美一级a爱片免费观看看| 国产午夜精品论理片| 亚洲性久久影院| 婷婷亚洲欧美| 中文亚洲av片在线观看爽| 三级国产精品欧美在线观看| 久久欧美精品欧美久久欧美| 欧美日韩精品成人综合77777| 五月玫瑰六月丁香| 国产私拍福利视频在线观看| 婷婷六月久久综合丁香| 亚洲精品日韩av片在线观看| 一进一出抽搐gif免费好疼| 午夜爱爱视频在线播放| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 国产免费一级a男人的天堂| 黄色配什么色好看| 欧美绝顶高潮抽搐喷水| 日韩成人伦理影院| 99热精品在线国产| 九九爱精品视频在线观看| 麻豆成人午夜福利视频| 免费人成视频x8x8入口观看| 嫩草影院入口| 天天躁日日操中文字幕| 国产精品久久视频播放| 校园人妻丝袜中文字幕| 成年女人永久免费观看视频| 久久久久久国产a免费观看| 久久久久久久午夜电影| 国产精品日韩av在线免费观看| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| 最近中文字幕高清免费大全6| av在线播放精品| 国产成人aa在线观看| 国产单亲对白刺激| 大又大粗又爽又黄少妇毛片口| av天堂中文字幕网| 日韩三级伦理在线观看| 能在线免费观看的黄片| 亚洲欧美成人精品一区二区| 最好的美女福利视频网| 国产高清有码在线观看视频| 亚洲国产精品久久男人天堂| 日本-黄色视频高清免费观看| 久久精品国产亚洲av香蕉五月| АⅤ资源中文在线天堂| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 少妇熟女aⅴ在线视频| 身体一侧抽搐| 97在线视频观看| 99在线视频只有这里精品首页| 成人综合一区亚洲| 国产高清视频在线播放一区| 超碰av人人做人人爽久久| 久久精品国产亚洲网站| 看黄色毛片网站| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 在线观看av片永久免费下载| 欧美性感艳星| 免费黄网站久久成人精品| 成人高潮视频无遮挡免费网站| 午夜影院日韩av| 日韩成人av中文字幕在线观看 | 日产精品乱码卡一卡2卡三| 丰满乱子伦码专区| 又黄又爽又免费观看的视频| 日韩欧美 国产精品| 亚洲自偷自拍三级| 热99re8久久精品国产| 少妇的逼水好多| 天天躁夜夜躁狠狠久久av| 国产一区二区在线av高清观看| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 此物有八面人人有两片| av视频在线观看入口| 国产v大片淫在线免费观看| 黄色配什么色好看| 亚洲18禁久久av| 国内精品宾馆在线| 赤兔流量卡办理| 国产av在哪里看| 成人漫画全彩无遮挡| 久久久国产成人免费| 91av网一区二区| 九九久久精品国产亚洲av麻豆| 嫩草影院精品99| 秋霞在线观看毛片| 亚洲成av人片在线播放无| 国产三级中文精品| 精品午夜福利在线看| 噜噜噜噜噜久久久久久91| 一夜夜www| 午夜免费激情av| 女人被狂操c到高潮| 亚洲在线自拍视频| 又黄又爽又免费观看的视频| 国产高潮美女av| 亚洲成人中文字幕在线播放| 哪里可以看免费的av片| 性插视频无遮挡在线免费观看| 国产精品久久久久久久久免| 欧美日本视频| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 免费观看人在逋| 在线免费观看不下载黄p国产| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 亚洲欧美精品自产自拍| 深夜a级毛片| 一级毛片电影观看 | 亚洲不卡免费看| 伦精品一区二区三区| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 国产一区二区亚洲精品在线观看| 日韩av在线大香蕉| 热99re8久久精品国产| 久久久a久久爽久久v久久| 日韩,欧美,国产一区二区三区 | 午夜福利在线观看免费完整高清在 | 草草在线视频免费看| 成人午夜高清在线视频| 午夜久久久久精精品| 精品一区二区三区人妻视频| 噜噜噜噜噜久久久久久91| 人妻久久中文字幕网| 黄色日韩在线| 色哟哟·www| 亚洲一区高清亚洲精品| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 国内少妇人妻偷人精品xxx网站| www.色视频.com| 国产不卡一卡二| 97超视频在线观看视频| 变态另类丝袜制服| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 欧美色视频一区免费| 尤物成人国产欧美一区二区三区| 免费一级毛片在线播放高清视频| 精品福利观看| 成人毛片a级毛片在线播放| 午夜a级毛片| 久久久久久大精品| 精品午夜福利视频在线观看一区| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| 亚洲av一区综合| 亚洲国产精品成人久久小说 | 午夜激情福利司机影院| 国内久久婷婷六月综合欲色啪| 国产av麻豆久久久久久久| 国产精品永久免费网站| 日韩成人伦理影院| 嫩草影视91久久| 国产黄a三级三级三级人| 成人午夜高清在线视频| 99热全是精品| 可以在线观看毛片的网站| 中文资源天堂在线| 插逼视频在线观看| 亚洲精品一区av在线观看| 一进一出好大好爽视频| 亚洲最大成人av| 嫩草影院精品99| 给我免费播放毛片高清在线观看| 亚洲天堂国产精品一区在线| 老熟妇乱子伦视频在线观看| 美女大奶头视频| 精品午夜福利在线看| 色视频www国产| 99视频精品全部免费 在线| 97在线视频观看| 人妻久久中文字幕网| 亚洲电影在线观看av| 淫秽高清视频在线观看| 老女人水多毛片| 亚洲真实伦在线观看| 99riav亚洲国产免费| 少妇的逼水好多| 国产成人91sexporn| 少妇熟女欧美另类| 精品一区二区三区人妻视频| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看| 亚洲成人中文字幕在线播放| 麻豆乱淫一区二区| 亚洲中文字幕日韩| 69av精品久久久久久| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 亚洲婷婷狠狠爱综合网| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 日本一本二区三区精品| 日本 av在线| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 欧美日韩国产亚洲二区| 高清午夜精品一区二区三区 | 久久鲁丝午夜福利片| 精华霜和精华液先用哪个| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 赤兔流量卡办理| 精品熟女少妇av免费看| 色噜噜av男人的天堂激情| 精品一区二区三区人妻视频| 丰满人妻一区二区三区视频av| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 亚洲图色成人| 久久久久国产精品人妻aⅴ院| 久久国产乱子免费精品| 麻豆国产av国片精品| 91狼人影院| 五月伊人婷婷丁香| 给我免费播放毛片高清在线观看| 91精品国产九色| 中文资源天堂在线| 成人毛片a级毛片在线播放| 少妇被粗大猛烈的视频| 久久久久久国产a免费观看| 一本久久中文字幕| 中出人妻视频一区二区| 精品久久久久久久久久免费视频| 中文资源天堂在线| 亚洲国产色片| 免费搜索国产男女视频| 午夜福利在线观看吧| a级毛色黄片| 国产aⅴ精品一区二区三区波| 中文在线观看免费www的网站| 精品久久久噜噜| 国产综合懂色| 久久久色成人| 欧美丝袜亚洲另类| 99久国产av精品| 亚洲国产精品久久男人天堂| 看免费成人av毛片| 日本五十路高清| 国产精品久久久久久精品电影| 国产不卡一卡二| 天美传媒精品一区二区| 欧美精品国产亚洲| 狂野欧美激情性xxxx在线观看| 久久久久久久午夜电影| 国产精品嫩草影院av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 日韩制服骚丝袜av| 国产国拍精品亚洲av在线观看| 日本a在线网址| 精品一区二区三区视频在线| 九九爱精品视频在线观看| 日本在线视频免费播放| 亚洲国产日韩欧美精品在线观看| 亚洲天堂国产精品一区在线| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 中文字幕人妻熟人妻熟丝袜美| 午夜日韩欧美国产| 高清午夜精品一区二区三区 | 老师上课跳d突然被开到最大视频| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 国产精品一及| 卡戴珊不雅视频在线播放| 久久草成人影院| 免费黄网站久久成人精品| 国产亚洲精品av在线| av天堂中文字幕网| 欧美三级亚洲精品| 久久久久久伊人网av| 色哟哟·www| 亚洲欧美日韩高清专用| 波多野结衣巨乳人妻| 亚洲人成网站高清观看| 亚洲av二区三区四区| 国产一区二区三区av在线 | 老熟妇乱子伦视频在线观看| 久久精品91蜜桃| 国产一级毛片七仙女欲春2| 婷婷六月久久综合丁香| 综合色丁香网| 99久国产av精品国产电影| 欧美国产日韩亚洲一区| 欧美日本视频| 嫩草影视91久久| 少妇裸体淫交视频免费看高清| 非洲黑人性xxxx精品又粗又长| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av人片在线播放无| 精品不卡国产一区二区三区| 国产高清视频在线播放一区| 搡老岳熟女国产| 亚洲av一区综合| 午夜激情福利司机影院| 欧美性猛交黑人性爽| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 日韩强制内射视频| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 给我免费播放毛片高清在线观看| 国产精品野战在线观看| 悠悠久久av| 亚洲国产欧美人成| 六月丁香七月| 国产成人福利小说| 一级av片app| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添小说| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 成人性生交大片免费视频hd| 精品午夜福利视频在线观看一区| 国产大屁股一区二区在线视频| 人妻丰满熟妇av一区二区三区| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 国产成人影院久久av| 成人美女网站在线观看视频| 亚洲最大成人中文| 精品久久久久久久久亚洲| 日日摸夜夜添夜夜爱| 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 亚洲av五月六月丁香网| 午夜福利18| 久久韩国三级中文字幕| 天堂影院成人在线观看| 国产精品不卡视频一区二区| 亚洲熟妇熟女久久| 22中文网久久字幕| 综合色av麻豆| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 国产精品久久久久久久电影| 国产精品免费一区二区三区在线| 亚洲五月天丁香| 级片在线观看| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 久久婷婷人人爽人人干人人爱| 国产成人影院久久av| 大又大粗又爽又黄少妇毛片口| 久久久久久九九精品二区国产| 天堂√8在线中文| 国产精品美女特级片免费视频播放器| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| 三级毛片av免费| 淫妇啪啪啪对白视频| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 在线免费十八禁| 精品久久久噜噜| 男人舔奶头视频| 一夜夜www| 老司机福利观看| 国产成人一区二区在线| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 亚洲成a人片在线一区二区| 特级一级黄色大片| 日本 av在线| 最后的刺客免费高清国语| 男女那种视频在线观看| 国产精品亚洲一级av第二区| avwww免费| 日韩高清综合在线| 伊人久久精品亚洲午夜| 狂野欧美激情性xxxx在线观看| 日韩大尺度精品在线看网址| 97超视频在线观看视频| 看片在线看免费视频| 美女黄网站色视频| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 国产91av在线免费观看| 五月伊人婷婷丁香| 色av中文字幕| 精品一区二区免费观看| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 美女 人体艺术 gogo| 精品熟女少妇av免费看| 99久久精品国产国产毛片| 国产精品综合久久久久久久免费| 午夜爱爱视频在线播放| 免费看a级黄色片| 久久午夜亚洲精品久久| 国产精品一区二区性色av| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 人妻少妇偷人精品九色| 国产三级在线视频| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 最新中文字幕久久久久| 日本在线视频免费播放| 国产男人的电影天堂91| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 啦啦啦啦在线视频资源| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 国产三级在线视频| a级毛色黄片| 男女下面进入的视频免费午夜| 99久国产av精品| 日韩中字成人| 国产成人a区在线观看| 国产成年人精品一区二区| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件 | 久久久a久久爽久久v久久| 日日撸夜夜添| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 色综合亚洲欧美另类图片| aaaaa片日本免费| 91午夜精品亚洲一区二区三区| 成人鲁丝片一二三区免费| 美女大奶头视频| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 久久草成人影院| 日本色播在线视频| 日本在线视频免费播放| 国产av不卡久久| 联通29元200g的流量卡| 女生性感内裤真人,穿戴方法视频| 黄色欧美视频在线观看| 少妇裸体淫交视频免费看高清| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 免费观看在线日韩| 给我免费播放毛片高清在线观看| 日韩欧美 国产精品| 又爽又黄无遮挡网站| 一区二区三区高清视频在线| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 成人性生交大片免费视频hd| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| 黄色配什么色好看| 国内久久婷婷六月综合欲色啪| 人人妻人人澡人人爽人人夜夜 | 尤物成人国产欧美一区二区三区| 男女啪啪激烈高潮av片| 免费搜索国产男女视频| 美女被艹到高潮喷水动态| 国产 一区精品| 禁无遮挡网站| 搞女人的毛片| 91麻豆精品激情在线观看国产| 欧美色欧美亚洲另类二区| 插逼视频在线观看| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| 国产精品无大码| 男人狂女人下面高潮的视频| 亚洲精品日韩在线中文字幕 | 国产人妻一区二区三区在| 男女那种视频在线观看| 国产精品久久久久久亚洲av鲁大| 嫩草影院入口| 午夜日韩欧美国产| 少妇被粗大猛烈的视频| 国产真实乱freesex| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 久久精品夜色国产| 国产极品精品免费视频能看的| 亚洲最大成人av| 级片在线观看| www日本黄色视频网| 国产成人aa在线观看| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| a级毛色黄片| 国产女主播在线喷水免费视频网站 | 国产成人a区在线观看| 你懂的网址亚洲精品在线观看 | 在线播放无遮挡| 亚洲自偷自拍三级| 国产91av在线免费观看| 三级国产精品欧美在线观看| 欧美日韩乱码在线| 久久精品国产鲁丝片午夜精品| 老熟妇仑乱视频hdxx| 久久精品影院6| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 18禁在线播放成人免费| 国产色爽女视频免费观看| 色在线成人网| 欧美成人一区二区免费高清观看| 午夜日韩欧美国产| 久久久久久久久久黄片| 在线看三级毛片| 欧美三级亚洲精品| 日本爱情动作片www.在线观看 | 国产高清不卡午夜福利| 深夜精品福利| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 深爱激情五月婷婷| 久久久精品大字幕| 成人毛片a级毛片在线播放| 有码 亚洲区| 国产真实乱freesex| 99久久成人亚洲精品观看| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| 在线看三级毛片| 中文亚洲av片在线观看爽| 中国国产av一级| 啦啦啦韩国在线观看视频| 国产三级中文精品| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 欧美极品一区二区三区四区| 精品熟女少妇av免费看| 69av精品久久久久久| 亚洲丝袜综合中文字幕| 免费av毛片视频| 老司机午夜福利在线观看视频| 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 日日摸夜夜添夜夜添小说| 日韩中字成人| 在线看三级毛片| 免费在线观看影片大全网站| 久久6这里有精品| 欧美高清成人免费视频www| 久久中文看片网| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 毛片女人毛片| 特级一级黄色大片| 亚洲综合色惰| 晚上一个人看的免费电影| 男人舔奶头视频| 观看美女的网站| 国产单亲对白刺激| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 特级一级黄色大片| 精品一区二区三区人妻视频| 亚洲七黄色美女视频| 91在线观看av| 久久人人爽人人爽人人片va| 国产又黄又爽又无遮挡在线| 五月玫瑰六月丁香| 亚洲在线自拍视频| 十八禁网站免费在线| 精品久久久噜噜| 99在线人妻在线中文字幕| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频|