于 涵,丁 蘭,劉淑文,丁家旺,秦 偉*
(1.中國科學(xué)院 海岸帶環(huán)境過程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室 山東省海岸帶環(huán)境過程重點(diǎn)實(shí)驗(yàn)室 中國科學(xué)院煙臺海岸帶研究所,山東 煙臺 264003;2.中國科學(xué)院大學(xué),北京 100049;3.大連理工大學(xué),遼寧 大連 116024)
?
海水氨氮檢測技術(shù)研究進(jìn)展
于 涵1,2,丁 蘭3,劉淑文1,2,丁家旺1,秦 偉1*
(1.中國科學(xué)院 海岸帶環(huán)境過程與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室 山東省海岸帶環(huán)境過程重點(diǎn)實(shí)驗(yàn)室 中國科學(xué)院煙臺海岸帶研究所,山東 煙臺 264003;2.中國科學(xué)院大學(xué),北京 100049;3.大連理工大學(xué),遼寧 大連 116024)
氨氮(NH3-N)是溶解無機(jī)氮的重要組成之一,其含量是重要的營養(yǎng)鹽指標(biāo)。海水氨氮是上層海洋氮循環(huán)的重要組成部分,也是海洋浮游植物所必需的營養(yǎng)物質(zhì)之一。氨氮濃度與海洋生物生命活動(dòng)密切相關(guān),可直接影響海洋生物的正常生命活動(dòng),因此快速準(zhǔn)確地檢測海水氨氮濃度及其變化對研究海洋氮循環(huán)及開展海洋生態(tài)環(huán)境監(jiān)測至關(guān)重要。介紹了近年來海水氨氮的檢測方法,如靛酚藍(lán)分光光度法、熒光光譜法、化學(xué)發(fā)光法、色譜法、表面等離子共振法及電化學(xué)分析法,分析了不同方法的靈敏度、準(zhǔn)確性等特性,并對各類方法進(jìn)行了比較與展望。
氨氮;海水分析;檢測方法
近年來,國內(nèi)外許多研究者一直致力于探索更靈敏、快速的測定方法,這些方法包括靛酚藍(lán)分光光度法、熒光光譜法、化學(xué)發(fā)光法、色譜法、表面等離子共振法、電化學(xué)分析法等。作者針對這些方法進(jìn)行探討。
1.1 靛酚藍(lán)分光光度法
靛酚藍(lán)分光光度法是海水氨氮測定的經(jīng)典方法[3],其原理為:在次氯酸作用下氨氧化生成氯胺,氯胺與苯酚反應(yīng)生成靛酚藍(lán)絡(luò)合物,利用分光光度計(jì)檢測該絡(luò)合物在640 nm處的吸光度。該方法已成為我國海洋檢測規(guī)范中使用的標(biāo)準(zhǔn)方法,但不足之處是顯色反應(yīng)時(shí)間長,不便于海上調(diào)查分析。近年來,不少研究者對反應(yīng)試劑、反應(yīng)條件、分離富集及分析自動(dòng)化等方面進(jìn)行了改進(jìn)。表1列舉了靛酚藍(lán)分光光度法檢測海水氨氮的改進(jìn)技術(shù)。
表1 靛酚藍(lán)分光光度法檢測海水氨氮的改進(jìn)技術(shù)
Tab.1 Improved technologies of indophenol blue spectrophotometry for determination of ammonia nitrogen in seawater
反應(yīng)物分離富集/自動(dòng)化技術(shù)檢出限/(nmol·L-1)參考文獻(xiàn)鄰苯基苯酚、次氯酸鹽、氨氣體分段/流動(dòng)注射4.0[2]水楊酸、次氯酸鹽、氨氣體擴(kuò)散離子交換/流動(dòng)注射14.3[4]萘酚、二氯異氰尿酸鹽、氨PTFE濾膜138.9[5]苯酚、次氯酸鹽、氨固相萃取/流動(dòng)分析3.5[6]
1.1.1 反應(yīng)試劑的選擇
苯酚具有腐蝕性氣味和毒性,室溫下固液態(tài)之間可相互轉(zhuǎn)化,為了消除苯酚在使用過程中的不便,可使用鄰苯基苯酚、水楊酸、萘酚等代替苯酚。由表1可知,用鄰苯基苯酚代替苯酚對其檢測靈敏度沒有大的影響,而使用萘酚大大降低了檢測靈敏度。此外,為了防止堿性條件下海水中Ca2+、Mg2+等離子形成沉淀[5,7],常采用檸檬酸三鈉、EDTA等作為掩蔽劑;亞硝基鐵氰化鈉、Mn2+則作為反應(yīng)催化劑,加快反應(yīng)速率[8-9]。需要注意的是,試劑的加入順序?qū)︼@色反應(yīng)至關(guān)重要。次氯酸鹽應(yīng)在苯酚和樣品溶液未堿化前加入,以消除加熱堿性溶液時(shí)氨氣的損失。
1.1.2 預(yù)分離或富集技術(shù)
與傳統(tǒng)的分光光度法相比,氣體擴(kuò)散分離、液液萃取、固相萃取等預(yù)分離富集技術(shù)的使用大大提高了檢測靈敏度。氣體擴(kuò)散分離易于實(shí)現(xiàn)自動(dòng)化、可消除基體干擾,但質(zhì)量轉(zhuǎn)化效率受溫度和鹽度的影響,氣體滲透膜也需定期清洗或更換。液液萃取需要大量有機(jī)試劑甚至有毒有機(jī)試劑,至今未被廣泛采用。固相萃取技術(shù)具有富集倍數(shù)高、溶劑消耗少及方便在線萃取等優(yōu)點(diǎn),因而受到廣泛關(guān)注[6,10]。Chen等[6]采用HLB固相萃取柱分離富集生成的靛酚藍(lán)染料,用乙醇水溶液洗脫后測其在640 nm處的吸光度,檢出限為3.5 nmol·L-1,線性范圍為0~428 nmol·L-1。該方法不需要復(fù)雜的樣品處理操作,可用于野外分析。
1.1.3 檢測方法的改進(jìn)
由朗伯-比爾定律可知,吸光度與吸光物質(zhì)濃度及比色池厚度成正比,基于此,人們通過增加光程來提高檢測靈敏度。Li等[11]利用2 m的長光程測定海水樣品中痕量銨離子,檢出限為5 nmol·L-1,精密度為5%(10~100 nmol·L-1);Zhu等[12]進(jìn)一步增加光程,采用2.5 m長的波導(dǎo)纖維為樣品流通池,檢出限為3.6 nmol·L-1,線性范圍為10~500 nmol·L-1,相對標(biāo)準(zhǔn)偏差為4.4%(n=7)。該方法靈敏度高、檢測范圍寬、分析速度快,且試劑消耗量少,適用于河灣及表層海水中氨氮的野外在線檢測,但毛細(xì)管內(nèi)徑小,容易發(fā)生堵塞。Hashihama等[2]進(jìn)一步改進(jìn)實(shí)驗(yàn)方案增大毛細(xì)管內(nèi)徑,采用2 m長的多路徑毛細(xì)管(UltraPath,內(nèi)徑2 mm)代替長通路液芯波導(dǎo)毛細(xì)管(LWCC,內(nèi)徑0.5 mm),檢出限為4 nmol·L-1。光程的增加在一定程度上增強(qiáng)了分析物的檢測信號,但空白響應(yīng)也隨之同比例增強(qiáng),因此增加光程理論上并不能提高信噪比,只能在試劑空白極低的前提下有限地改善靈敏度。Li等[11]通過優(yōu)化實(shí)驗(yàn)條件,發(fā)現(xiàn)當(dāng)加入54 mmol·L-1檸檬酸鹽(5.4 mmol·L-1EDTA)、8.0~9.0 mmol·L-1苯酚、1.0~2.0 mmol·L-1NaDTT,且pH值為11~12時(shí),空白響應(yīng)最小。
1.1.4 分析的自動(dòng)化
流動(dòng)注射分析(FIA)具有高精密度、高樣品處理量、低樣品與試劑消耗量等特點(diǎn),可實(shí)現(xiàn)樣品在線處理與檢測,已越來越多地應(yīng)用于海洋檢測領(lǐng)域[13-17]。一些學(xué)者將其用于改進(jìn)靛酚藍(lán)分光光度法,實(shí)現(xiàn)了海水氨氮的快速、可靠、實(shí)時(shí)監(jiān)測。Azzaro等[18]改進(jìn)循環(huán)流動(dòng)分析反應(yīng)器(LFA),設(shè)計(jì)了一種多參數(shù)分析儀(MicroMAC FAST MP3)自動(dòng)檢測海水中銨離子、硝態(tài)氮和正磷酸鹽,檢出限分別為2.5μg·L-1、2.5μg·L-1、5μg·L-1,相對標(biāo)準(zhǔn)偏差≤4%。該方法船上在線檢測時(shí),不需要人工操作。 Shoji等[19]將流動(dòng)注射分析技術(shù)和改進(jìn)的靛酚藍(lán)分光光度法相結(jié)合測定環(huán)境水樣中銨離子濃度,檢出限為0.013μg·mL-1,線性范圍為0~4.0μg·mL-1,測定海水中的銨離子回收率在92.5%~99.0%。此外,流動(dòng)注射分析技術(shù)已實(shí)現(xiàn)與多種檢測方法的聯(lián)用。
1.2 熒光光譜法
Tab.2 OPA--determination of ammonia nitrogen in seawater
1.3 化學(xué)發(fā)光法
Meseguer-Lloret等[30]基于次氯酸鹽氧化魯米諾化學(xué)發(fā)光反應(yīng),間接測定銨離子含量。堿性條件下氨和次氯酸鹽反應(yīng)生成氯胺,加入魯米諾后,魯米諾能與溶液中的次氯酸鹽反應(yīng)產(chǎn)生化學(xué)發(fā)光信號,發(fā)射波長為425 nm,強(qiáng)度隨氨濃度的增大而減弱,檢出限為0.07 mg·L-1。由于次氯酸鹽是不穩(wěn)定試劑,可以通過電化學(xué)反應(yīng)在線生成[31]。該方法發(fā)光體系靈敏度不高,達(dá)不到痕量分析的要求,因而需尋找很好的增敏劑來輔助增加靈敏度。
色譜分析法是基于被分析樣品物理或物理化學(xué)性質(zhì)不同而進(jìn)行的分離分析法,組分分子在流動(dòng)相和固定相間進(jìn)行多次“分配”,從而使各組分得到分離。色譜法具有分離效率高、分析速度快、樣品用量少及分離與測定可一次完成等優(yōu)點(diǎn),目前已廣泛應(yīng)用于海水樣品的檢測[32-34]。
表面等離子共振(SPR)是一種非常靈敏的表面光譜技術(shù),通過測定金屬表面附近折射率或介電常數(shù)的變化來研究物質(zhì)的性質(zhì)。自Liedberg等將SPR技術(shù)用于化學(xué)傳感器研究領(lǐng)域以來[38-39],SPR傳感器逐漸成為國際傳感器領(lǐng)域的研究熱點(diǎn)。Fujii等[40]設(shè)計(jì)了一種SPR銨離子傳感器,用以檢測海水中銨離子濃度。他們在離子光極膜中加入銨離子選擇性離子載體TD19C6和親脂性陽離子染料KD-M11,TD19C6選擇性地使銨離子進(jìn)入光極膜,為了保持膜的電中性,KD-M11染料發(fā)生去質(zhì)子化。該陽離子交換過程使敏感膜吸收光譜強(qiáng)度發(fā)生改變,通過檢測信號的變化實(shí)現(xiàn)銨離子的定量分析。但該方法線性范圍小、靈敏度低,并且對測試環(huán)境要求高,不利于海水氨氮的在線分析。
海洋環(huán)境研究的發(fā)展趨勢是現(xiàn)場獲取數(shù)據(jù),電化學(xué)分析法具有操作簡單、攜帶方便、易于微型化等特點(diǎn),因此特別適于水質(zhì)連續(xù)自動(dòng)監(jiān)測和現(xiàn)場快速分析?;陔娢环?、電導(dǎo)法、電流法、伏安法等電化學(xué)分析法檢測海水氨氮的技術(shù)得到快速發(fā)展。表3列舉了檢測海水氨氮的電化學(xué)分析法。
表3 檢測海水氨氮的電化學(xué)分析法
Tab.3Electrochemical analysis method for determination of ammonia nitrogen in seawater
4.1 電位法
離子選擇性電極是一類利用相界面電位變化來指示待測離子活度的電化學(xué)傳感器,廣泛應(yīng)用于環(huán)境監(jiān)測、食品安全和工業(yè)分析等領(lǐng)域。氨氣敏電極是一種基于pH玻璃電極的海水氨氮檢測離子選擇性電極,由疏水性氣體滲透膜、pH玻璃電極和AgCl/Ag參比電極組成[45]。氨的水解平衡方程為:
[OH-]/[NH3]=K′
氨氣敏電極法操作簡單、耗費(fèi)低、空白響應(yīng)小、試劑消耗量少,受樣品顏色、濁度及其它含氮化合物的干擾小[46],但使用氨氣敏電極檢測氨氮時(shí),需要向水樣中添加氫氧化鈉溶液來調(diào)節(jié)水樣的pH值。由于氫氧化鈉溶液具有很強(qiáng)的腐蝕性,操作時(shí)有一定危險(xiǎn)性,而且排放到環(huán)境中會造成環(huán)境污染。陳曉東[46]設(shè)計(jì)了一種基于電滲析離子轉(zhuǎn)型的氨氮在線自動(dòng)監(jiān)測技術(shù),通過電滲析電解去離子水產(chǎn)生的強(qiáng)堿性溶液來取代傳統(tǒng)氨氣敏電極法中的氫氧化鈉溶液,線性范圍為0.1~10 mg·L-1,相關(guān)系數(shù)R2=0.997。該方法無需添加任何化學(xué)試劑,只需要消耗去離子水和電能,綠色環(huán)保,與國標(biāo)法測定結(jié)果相比,相對誤差在5%以內(nèi),達(dá)到了氨氮在線檢測的要求。
4.2 電導(dǎo)法
劉增東等[42]設(shè)計(jì)了一種新型的海水氨氮連續(xù)監(jiān)測儀,該儀器利用氨反應(yīng)器將銨鹽轉(zhuǎn)化為氨,氨在載氣的帶動(dòng)下進(jìn)入冷凝氣液分離器,脫水后與酸試劑反應(yīng)轉(zhuǎn)化為銨鹽,再注入電導(dǎo)檢測器測定,以吸收氣態(tài)氨前后溶液電導(dǎo)率的變化來計(jì)算待測水樣中氨氮濃度。實(shí)際海水樣品檢測結(jié)果與分光光度法檢測結(jié)果相比,線性相關(guān)系數(shù)R2高達(dá)0.994。該方法采用冷凝氣液分離器代替氣體滲透膜實(shí)現(xiàn)氣液分析,從而避免了生物淤積或膜堵塞,且該方法能夠克服海水中金屬離子、氯離子、顏色等的干擾,可長時(shí)間可靠地測定海水氨氮濃度。
4.3 電流法
Takahashi等[43]基于HBrO和銨離子發(fā)生氧化還原反應(yīng),采用Pt微電極和碳膜旋轉(zhuǎn)環(huán)-盤電極雙電極體系,提出了一種間接電化學(xué)氨氮檢測法。在pH值為7的磷酸緩沖液中,陽極電解產(chǎn)生的Br2水解后生成HBrO,與水樣中銨離子相互反應(yīng),使得陰極還原電流減小,陰極還原電流的減小與銨離子濃度存在定量關(guān)系,檢出限為3.0 μmol·L-1。實(shí)驗(yàn)所需Br2可通過陽極電解實(shí)時(shí)產(chǎn)生,避免了試劑穩(wěn)定性對實(shí)驗(yàn)的影響,適用于各種環(huán)境水體的檢測。
4.4 伏安法
Bianchi等[44]在金電極表面修飾上4-巰基吡啶(MCP),通過自組裝修飾微/納米結(jié)構(gòu)的L,L-苯丙氨酸二肽(FF-MNSs),電極表面的苯環(huán)和酰胺基與銨離子形成陽離子-π鍵和氫鍵,采用循環(huán)伏安法可得到作用前后的CV曲線,從而實(shí)現(xiàn)氨和尿素氧化的檢測。氨的線性范圍為0.1~1.0 mmol·L-1,靈敏度為2.83 μA·mmol·L-1·cm-2。
海洋環(huán)境研究的發(fā)展趨勢是現(xiàn)場實(shí)時(shí)監(jiān)測,以避免樣品在運(yùn)輸和儲存時(shí)污染或形態(tài)改變。電化學(xué)方法易于與流動(dòng)注射分析技術(shù)聯(lián)用,可更好地用于連續(xù)自動(dòng)檢測系統(tǒng),適于在線、實(shí)時(shí)環(huán)境檢測,最大限度地避免了樣品采集和運(yùn)輸過程中造成的污染或變質(zhì)等問題。
電化學(xué)分析法不受水體濁度和色度影響,具有靈敏度高、選擇性好、易于微型化等優(yōu)點(diǎn)。近年來,固體接觸式離子選擇性電極檢測技術(shù)得到快速發(fā)展[47-48],并已成功應(yīng)用于水樣中氨氮的檢測[49]。固體接觸式電極不含內(nèi)充液,可有效避免從電極膜相流向樣品溶液相的穩(wěn)態(tài)主離子通量帶來的影響,且不需特別維護(hù)保養(yǎng)、易于小型化、便于儀器集成。為了降低成本、簡化裝置,紙質(zhì)材料已經(jīng)成為一種簡單、靈活、可靠的分析裝置[50]。Ding等[51]已成功地設(shè)計(jì)了一種三維折紙電位型生物傳感裝置用于檢測酶的活性,因此基于紙芯片的電位檢測裝置將被廣泛地應(yīng)用于環(huán)境分析的現(xiàn)場原位檢測,也為海水氨氮原位分析提供了一種新的檢測方法。
隨著新傳感原理的發(fā)現(xiàn)和新材料的使用,電極性能將不斷改善。我們相信固體接觸式離子選擇性電極有望成為海水氨氮原位檢測的重要工具。此外,近年來可穿戴式傳感器已成為一個(gè)新的研究領(lǐng)域[52]。Malzahn等[53]設(shè)計(jì)了一種用于潛水時(shí)穿戴的電化學(xué)傳感器用于海水中離子的實(shí)時(shí)監(jiān)測,為可穿戴潛水式海水氨氮檢測技術(shù)提供了可能。潛水測量裝置可測定不同深度海水氨氮的含量,這對研究海洋氨氮分布、氮循環(huán)具有重大的意義。
[1] MOLINS-LEGUA C,MESEGUER-LIORET S,MOLINERMA-RTINEZ Y,et al.A guide for selecting the most appropriate method for ammonium determination in water analysis[J].Trac Trends in Analytical Chemistry,2006,25(3):282-290.
[2] HASHIHAMA F,KANDA J,TAUCHI A,et al.Liquid waveg-uide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction witho-phenylphenol (OPP)[J].Talanta,2015,143:374-380.
[3] AMINOT A,KIRKWOOD D S,KEROUEL R.Determination of ammonia in seawater by the indophenol-blue method:evaluation of the ICES NUTS I/C 5 questionnaire[J].Marine Chemistry,1997,56(1/2):59-75.
[4] KEISUKE F,SHINSUKE O,KEIRO H,et al.Spectrophotometric flow injection analysis for the determination of trace amount of ammonium ion in seawater coupled with on-line gas diffusion/ion exchange concentration technique[J].Bunseki Kagaku,2007,56(9):757-763.
[5] SHOJI T,NAKAMURA E.Collection of indonaphthol blue on a membrane filter for the spectrophotometric determination of ammonia with 1-naphthol and dichloroisocyanurate[J].Analytical Sciences,2010,26(7):779-783.
[6] CHEN G,ZHANG M,ZHANG Z,et al.On-line solid phase extraction and spectrophotometric detection with flow technique for the determination of nanomolar level ammonium in seawater samples[J].Analytical Letters,2011,44(1/2/3):310-326.
[7] PAI C S,TSAU J Y,YANG T I.pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method[J].Analytica Chimica Acta,2001,434(2):209-216.
[8] MOLINER Y M,FALCO P C,HERNANDEZ R H.Influence of the presence of surfactants and humic acid in waters on the indophenol-type reaction method for ammonium determination[J].Talanta,2006,69(4):1038-1045.
[9] 魏海峰,劉長發(fā),張俊新.靛酚藍(lán)法測定水中氨氮方法的改進(jìn)[J].實(shí)驗(yàn)室研究與探索,2013,32(7):17-19.
[10] HATA N,KASAHARA I,TAGUCHI S.Micro-phase sorbent extraction for trace analysisviainsitusorbent formation:application to the preconcentration and the spectrophotometric determination of trace ammonia[J].Analytical Sciences,2002,18(6):697-699.
[11] LI Q P,ZHANG J Z,MILLERO F J,et al.Continuous colorimetric determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell[J].Marine Chemistry,2005,96(1/2):73-85.
[12] ZHU Y,YUAN D X,HUANG Y M,et al.A modified method for on-line determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell and spectrophotometric detection[J].Marine Chemistry,2014,162(2):114-121.
[13] SRAJ L O,ALMEIDA M I G S,SWEARER S E,et al.Analytical challenges and advantages of using flow-based methodologies for ammonia determination in estuarine and marine waters[J].Trac Trends in Analytical Chemistry,2014,59:83-92.
[14] WORSFOLD P J,CLOUGH R,LOHAN M C,et al.Flow injection analysis as a tool for enhancing oceanographic nutrient measurements—a review[J].Analytica Chimica Acta,2013,803(19):15-40.
[15] FENG S C,ZHANG M,HUANG Y M,et al.Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell[J].Talanta,2013,117(22):456-462.
[16] MA J,BYRNE R H.Flow injection analysis of nanomolar silicate using long pathlength absorbance spectroscopy[J].Talanta,2013,88:484-489.
[17] KOLEV S D,FERNANDES P R L V,SATINSKY D,et al.Highly sensitive gas-diffusion sequential injection analysis based on flow manipulation[J].Talanta,2009,79(4):1021-1025.
[18] AZZARO F,GALLETTA M.Automatic colorimetric analyzer prototype for high frequency measurement of nutrients in seawater[J].Marine Chemistry,2006,99:191-198.
[19] SHOJI T,NAKAMURA E.Flow injection analysis with spectrophotometry for ammonium ion with 1-naphthol and dichloroisocyanurate[J].Journal of Flow Injection Analysis,2009,26(1):37-41.
[20] WATSON R J,BUTLER E C V,CLEMENTSON L A,et al.Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater[J].Journal of Environmental Monitoring,2005,7(1):37-42.
[21] POULIN P,PELLETIER E.Determination of ammonium using a microplate-based fluorometric technique[J].Talanta,2007,71(4):1500-1506.
[22] BEY S K A K,CONNELLY D P,LEGIRET F E,et al.A high-resolution analyser for the measurement of ammonium in oligotrophic seawater[J].Ocean Dynamics,2011,61(10):1555-1565.
[23] HORSTKOTTE B,DUARTE C M,CERDA V.A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection[J].Talanta,2011,85(1):380-385.
[24] AMORNTHAMMARONG N,ZHANG J Z,ORTNER P B.An autonomous batch analyzer for the determination of trace ammonium in natural waters using fluorometric detection[J].Analytical Methods,2011,3(7):1501-1506.
[25] AMORNTHAMMARONG N,ZHANG J Z.Shipboard fluorometric flow analyzer for high-resolution underway measurement of ammonium in seawater[J].Analytical Chemistry,2008,80(4):1019-1026.
[26] ZHU Y,YUAN D X,HUANG Y M,et al.A sensitive flow-batch system for on board determination of ultra-trace ammonium in seawater:method development and shipboard application[J].Analytica Chimica Acta,2013,794(17):47-54.
[27] XUE S H,UCHIYAMA K,LI H F.Determination of ammonium on an integrated microchip with LED-induced fluorescence detection[J].Journal of Environmental Sciences,2012,24(3):564-570.
[28] AMORNTHAMMARONG N,ZHANG J Z,ORTNER P B,et al.A portable analyser for the measurement of ammonium in marine waters[J].Environmental Science:Processes & Impacts,2013,15(3):579-584.
[29] ZHU Y,YUAN D X,LIN H Y,et al.Determination of ammonium in seawater by purge-and-trap and flow injection with fluorescence detection[J].Analytical Letters,2016,49(5):665-675.
[30] MESEGUER-LLORET S,MOLINS-LEGUA C,VERDUANA-RES J,et al.Chemiluminescent method for detection of eutrophication sources by estimation of organic amino nitrogen and ammonium in water[J].Analytical Chemitry,2006,78(21):7504-7510.
[31] QIN W,ZHANG Z J,LI B X,et al.Chemiluminescence flow system for the determination of ammonium ion[J].Talanta,1999,48(1):225-229.
[32] SI Q Q,LI F M,GAO C C,et al.Detection of phthalate esters in seawater by stir bar sorptive extraction and gas chromatography-mass spectrometry[J].Marine Pollution Bulletin,2016,108(1/2):163-170.
[33] LIAN Z R,WANG J T.Determination of ciprofloxacin in Jiao-zhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection[J].Marine Pollution Bulletin,2016,111(1/2):411-417.
[34] KUO C T,WANG P Y,WU C H.Fluorometric determination of ammonium ion by ion chromatography using postcolumn derivatization witho-phthaldialdehyde[J].Journal of Chromatography A,2005,1085(1):91-97.
[35] MICHALSKI R,KURZVCA I.Determination of nitrogen species (nitrate,nitrite and ammonia ions) in environmental samples by ion chromatography[J].Polish Journal of Environmental Studies,2006,15(1):5-18.
[36] NIEDZIELSKI P,KURZYCA I,SIEPAK J.A new tool for inorganic nitrogen speciation study:simultaneous determination of ammonium ion,nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples[J].Analytical Chemica Acta,2006,577(2):220-224.
[37] KURZYCA I,NIEDZIELSKI P,FRANKOWSKI M.Simultaneous speciation analysis of inorganic nitrogen with the use of ion chromatography in highly salinated environmental samples[J].Journal of Separation Science,2016,39(18):3482-3487.
[38] NYLANDER C,LIEDBERG B,LIND T.Gas detection by means of surface plasmon[J].Sensors and Actuators,1982,3(82):79-88.
[39] LIEDBERG B,NYLANDER C,LUNDSTROM I.Surface-plasmon resonance for gsa-detection and biosensing[J].Sensors and Actuators,1983,4(2):299-304.
[40] FUJII E,KOIKE T,NAKAMURA K,et al.Application of an absorption-based surface plasmon resonance principle to the development of SPR ammonium ion and enzyme sensors[J].Analytical Chemistry,2002,74(23):6106-6110.
[41] GILBERT T R,CLAY A M.Determination of ammonia in aquaria and in sea-water using ammonia electrode[J].Analytical Chemistry,1973,45(9):1757-1759.
[42] 劉增東,徐滋秋.海水中氨氮連續(xù)檢測的方法研究[J].科技創(chuàng)新與應(yīng)用,2015(16):54.
[43] TAKAHASHI M,NAKAMURA K,JIN J.Study on the indirect electrochemical detection of ammonium ion within-situelectrogenerated hypobromous acid[J].Electroanalysis,2008,20(20):2205-2211.
[44] BIANCHI R C,da SILVA E R,DALL′ANTONIA L H,et al.A nonenzymatic biosensor based on gold electrodes modified with peptide self-assemblies for detecting ammonia and urea oxidation[J].Langmuir,2014,30(38):11464-11473.
[45] THOMAS R G,ALICE M C.Determination of ammonia in aquaria and in sea water using the ammonia electrode[J].Analytical Chemistry,1973,45(9):1757-1759.
[46] 陳曉東.基于電滲析離子轉(zhuǎn)型的氨氮在線監(jiān)測技術(shù)研究[D].無錫:江南大學(xué),2015.
[47] ZENG X Z,YU S Y,YUAN Q,et al.Solid-contact K+-selective electrode based on three-dimensional molybdenum sulfide nanoflowers as ion-to-electron transducer[J].Sensors and Actuators B:Chemical,2016,234:80-83.
[48] LI J H,YIN T J,QIN W.An effective solid contact for an all-solid-state polymeric membrane Cd2+-selective electrode:three-dimensional porous graphene-mesoporous platinum nanoparticle composite[J].Sensors and Actuators B:Chemical,2016,239:438-446.
[49] ATHAVALE R,KOKORITE I,DINKEL C,et al.Insituammonium profiling using solid-contact ion-selective electrodes in eutrophic lakes[J].Analytical Chemistry,2015,87(24):11990-11997.
[50] MAHADEVA S K,WALUS K,STOEBER B.Paper as a platform for sensing applications and other devices:a review[J].ACS Applied Materials & Interfaces,2015,7(16):8345-8362.
[51] DING J W,LI B W,CHEN L X,et al.A three-dimensional origami paper-based device for potentiometric biosensing[J].Angewandte Chemie International Edition,2016,55(42):13033-13037.
[52] BAKKER E.Wearable sensor—an exciting area of research for sensor scientists[J].ACS Sensors,2016,1(7):834.
[53] MALZAHN K,WINDMILLER J R,VALDéS-RAMREZ G,et al.Wearable electrochemical sensors forinsituanalysis in marine environments[J].Analyst,2011,136(14):2912-2917.
Research Progress on Determination of Ammonia Nitrogen in Seawater
YU Han1,2,DING Lan3,LIU Shu-wen1,2,DING Jia-wang1,QIN Wei1*
(1.KeyLaboratoryofCoastalEnvironmentalProcessesandEcologicalRemediation,YantaiInstituteofCoastalZoneResearch(YIC),ChineseAcademyofSciences(CAS),ShandongProvincialKeyLaboratoryofCoastalEnvironmentalProcesses,YICCAS,Yantai264003,China;2.UniversityofChineseAcademyofSciences,Beijing100049,China;3.DalianUniversityofTechnology,Dalian116024,China)
Ammonia nitrogen(NH3-N) is an important component of dissolved inorganic nitrogen,and its content is an important index of nutrition salt.Ammonia nitrogen in seawater is an important part of the upper ocean nitrogen cycle,and also an essential nutrient for marine phytoplankton.Ammonia nitrogen concentration is closely related to life activities of marine organisms,and ammonia nitrogen can affect the normal life activities of marine organisms.Therefore,it is crucial to rapidly and accurately detect ammonia nitrogen concentration and its change in seawater for studying ocean nitrogen cycle and developing oceanic ecology environmental monitoring.Determination methods of ammonia nitrogen in seawater developed in recent years,including indophenol blue spectrophotometry,fluorescence spectrometry,chemiluminescence,chromatography,surface plasmon resonance and electrochemical analysis,are reviewed.The characteristics of sensitivity and accuracy for different methods are analyzed,and they are also compared and prospected.
ammonia nitrogen;seawater analysis;determination method
中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(A類)項(xiàng)目(XDA11020702),山東省泰山學(xué)者人才計(jì)劃項(xiàng)目(TS20081159)
2016-12-22
于涵(1992-),女,河南駐馬店人,碩士研究生,研究方向:海岸帶環(huán)境分析化學(xué),E-mail:hyu@yic.ac.cn;通訊作者:秦偉,研究員,E-mail:wqin@yic.ac.cn。
10.3969/j.issn.1672-5425.2017.05.001
X830.2 X132
A
1672-5425(2017)05-0001-07
于涵,丁蘭,劉淑文,等.海水氨氮檢測技術(shù)研究進(jìn)展[J].化學(xué)與生物工程,2017,34(5):1-7.