• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    2017-06-01 11:35:04SndeepRtheeSchinMheshwriArshdNoorSiddiqueeMnuSrivstv
    Defence Technology 2017年2期

    Sndeep Rthee,Schin Mheshwri,Arshd Noor Siddiquee,Mnu Srivstv

    aDivision of Manufacturing Processes and Automation Engineering(MPAE),Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing

    Sandeep Ratheea,*,Sachin Maheshwaria,Arshad Noor Siddiqueeb,Manu Srivastavaa

    aDivision of Manufacturing Processes and Automation Engineering(MPAE),Netaji Subhas Institute of Technology,New Delhi,India

    bDepartment of Mechanical Engineering,Jamia Millia Islamia,A Central University,New Delhi,India

    A R T I C L E I N F O

    Article history:

    Received 31 August 2016

    Received in revised form

    20 October 2016

    Accepted 15 November 2016

    Available online 24 December 2016

    Metal matrix composites

    Aluminium matrix surface composites are gaining alluring role especially in aerospace,defence,and marine industries.Friction stir processing(FSP)is a promising novel solid state technique for surface composites fabrication.In this study,AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated.Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation.Process parameters chosen for the experimentation are speed of rotation,travel speed and tool tilt angle which were taken as 1400 rpm,40 mm/min,and 2.5°respectively.Macro and the microstructural study were performed using stereo zoom and optical microscope respectively.Results re flected that lower plunge depth levels lead to insuf ficient heat generation and cavity formation towards the stir zone center.On the other hand,higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder.Thus,an optimal plunge depth is needed in developing defect free surface composites.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    It is common knowledge that aluminium alloys are materials of choice for various structural applications in aerospace,defence, automobile,and marine industries owing to their lower weight density,higher strength to weight ratio and higher corrosion resistance[1].However,stiffness and strength of some of these alloys is not adequate for some structural purposes thereby necessitating requirement of suitable reinforcement.Aluminium metal matrix composites(AMMCs)exhibit improved metallurgical, mechanical,and tribological characteristics[1-3].Metal matrix composites(MMCs)can be synthesized using various techniques like laser technique[4],electron beam irradiation[5],plasma spraying[6],casting[7],mechanical alloying[8],etc.Most of these techniques are based on the principle of liquid phase processing which leads to formation of intermetallic reactions and undesirable phases between base metal(BM)and reinforcement[9,10].In view of the these shortcomings,employment of a process for composite fabrication which can be conducted below melting points of the matrix material can go a long way to improve and consequently optimize the MMCs design and fabrication issue.Friction stir processing(FSP)offers an excellent choice for development of surface composites(SCs)of metal alloys[11].

    FSP is a newly developed solid state processing technique which is a variant of friction stir welding(FSW)process initiated at The Welding Institute(TWI)in 1991[12].In its simple operation,a nonconsumable rotating tool with an exclusively designed pin and shoulder plummets into a BM plate and is made to traverse in prede fined direction to cover up the desired realm.Softening and plasticization of BM occurs owing to frictional heat generation between rotating tool and the workpiece[10,13].As the tool traverses,the material is forged beneath the shoulder resulting in the processed region.The work on composite fabrication using FSP,was started with the maiden work done by Mishra et al.[11].In this work,composites with Al 5083 alloy as BM and SiC as reinforcement were fabricated.A maximum microhardness of 173 Hv was achieved using 27 vol%of SiC particles which is almost double of the microhardness of BM(85 Hv).Numerous research studies on composite fabrication are reported since the initial work by Mishra et al.and a number of research projects are still in progress.Initially, FSP was used to modify aluminium alloys but with the passage of time FSP has gained a shining role in developing composites ofother alloys like magnesium[14],copper[15],titanium[16]and even steel[17].

    The addition of hard phase reinforcement particles make MMCs brittle[18].In many engineering applications,the service life of materials mainly depends on the surface properties of materials. Therefore,SCs are mostly prepared by combining a ductile metallic matrix with hard ceramic reinforcement up to a desired depth.The soundness of SCs apart from other aspects mainly depends on optimal selection of process parameters.Several authors[19-22] investigated the effect of various process parameters in developing SCs.Dolatkhah et al.[19]evaluated the effects of rotational and travel speeds,FSP pass count and size of reinforcement particles in fabrication of Al 5052/SiC composites.They reported that speed of rotation and FSP pass counts have major effect on uniform dispersion of reinforcement particles.Similarly,Zohoor et al.[21] investigated the effects of speed of rotation,FSP pass count and size of reinforcement particles in the fabrication of AA5083/Cu composites.They reported that best powder dispersion was achieved with four FSP pass count.Devaraju et al.[20]reported that speed of rotation and type of reinforcement particles have a strong impact on wear,microhardness and tensile strength of fabricated AA 6061/SiC+Al2O3hybrid SCs.Reddy et al.[23]investigated the effect of reinforcement particles(B4C and SiC)on the wear and mechanical properties of fabricated SCs.

    Majority of published research mainly focuses on the evaluation of effects of process parameters,namely tool rotation speed,travel speed,FSP pass count and tool dimensions on the surface and mechanical properties of fabricated SCs.Also,reinforcement particle type and its size remains center of research focus.Literature also report that the SCs imperfections can be reduced by accurate prediction of these process parameters.In addition to these process parameters,correct decision on suitable tool plunge depth(TPD)is also essential to achieve defect free and uniformly distributed SCs. Interestingly,TPD is not changed in-situ after the process has started and investigations on effect of TPD over distribution of reinforcement particles in SCs fabrication are very few.Present work investigates the effect of varying TPD on SCs fabrication by keeping all other parameters constant at optimized level.Six levels of TPD from 0.10 mm to 0.35 mm in steps of 0.05 mm were used to investigate and determine the role of plunge depth on material flow,uniformity of powder dispersion and tendency of defect formation.Additionally,proper care has also been taken to minimize the adverse effects originating from factors like machine vibrations, non-uniformity of BM and backing plate thickness which is normally not paid enough attention.

    Fig.1.Showing images of SiC powder and tools used;(a)SEM image of SiC powder;(b)Tools used during FSP.

    Fig.2.Steps in SCs fabrication using groove technique.

    2.Materials and methods

    In this study,AA 6061-T6 alloy sheet of 5 mm thickness was used as base material.AA 6061-T6 is commonly used in aerospace, defence and marine sectors due to its light weight,good strength to weight ratio and good corrosion resistance[24,25].The composition(weight%)of BM is 0.85%Mg,0.68%Si,0.22%Cu,0.07%Zn, 0.05%Ti,0.032%Mn,0.06%Cr and remaining aluminium.FSP samples of size 60 mmwide and 200 mm long were machined from the sheet.SiC powder having average particle size of~10μm was used as reinforcement(SEM image is shown in Fig.1(a).Six such FSP samples were prepared by cleaning them with acetone and machining square grooves of 2 mm width and 2 mm depth along the length.Subsequently,SiC powder was filled and compressed in the groove and upper surface(open)of the groove was closed by means of a tool(15 mm shoulder diameter,see Fig.1(b)without a pin in order to prevent the sputtering of powder during FSP.Finally, FSP was performed on a retro fitted vertical milling machine as shown in Fig.3 using a tool with a threaded cylindrical pin.The tools utilized for FSP were made of H-13 tool steel(see Fig.1(b)). Steps involved in SCs formation using groove technique are schematically illustrated in Fig.2.The values of process parameters such as speed of rotation,traverse speed and tilt angle of tool(see Table 1)were chosen by trial experiments performed on AA6061with TPD of 0.20 mm.Six experiments were performed by varying TPD from 0.10 mm to 0.35 mm in steps of 0.05 mm and keeping all other parameters(as shown in Table 1)as constant.

    After single pass FSP on all six samples,coupons for macro and microstructural study were machined using wire-EDM from the middle of each SC sample in a direction perpendicular to the processing route.These samples were polished following standard metallographic procedures and then etched with Keller's reagent (175 ml water,20 ml HNO3,3 ml HCL and 2 ml HF)for 30 s.Macrographic images were taken by stereo zoom microscope while micrographic images were taken by metallurgical optical microscope and scanning electron microscope.

    Fig.3.FSP setup.

    Table 1Showing constant process parameters used in SCs fabrication.

    3.Results

    3.1.Macroscopic observations

    Table 2 shows macroscopic images of SCs(S1-S6)along with their visual description.It is evident from the macrographic images that the pattern of reinforcement particles distribution in of all SCs is different.The width of processed region was found to be approximately same as diameter of tool shoulder.However,width/ area of stir zone and SC layer depth varies in all SCs.

    Table 2Macroscopic images of all samples(S1-S6)along with their description.

    Fig.4.Showing microstructural images of SCs taken at 100 magnifications,(a)corresponds to S1;(b)S2;(c)S3;(d)S4;(e)S5;(f)S6.

    3.2.Microstructural characterization

    Fig.4(a)-(f)reveals the microstructural images of SCs(S1-S6respectively).A large cavity is present in centre of the SZ(see Fig.4(a)),which is also visible in macrograph corresponds to S1. Fig.4(b)shows that SiC particles dispersion slightly increases and cavity size decreases(with increase in TPD from 0.10 to 0.15 mm) which indicate the improvement in material flow and particles dispersion.With further increase in TPD from 0.15 to 0.20 mm,the improvement in material flow can be further seen in Fig.4(c)in which more particles were distributed in the aluminium matrix as compared to S1and S2.Finally,uniform dispersion of SiC particles was achieved(at TPD of 0.25 mm)without any defect formation as shown in Fig.4(d)whose SEM images are shown in Fig.5.Fig.4(e) and(f)shows that the uniformity of powder dispersion decreases (at TPD of 0.30 and 0.35 respectively).Also,the tendency of defect formation increases.

    4.Discussion

    Image corresponds to S1(Table 2)is the macroscopic image of SC fabricated at plunge depth of 0.10 mm.A large cavity defect appears at the center of SZ and powder distribution is very less.Shoulder driven flow causes the powder distribution.SC layer depth is quite less.This may be attributed to less material flow due to low heat generation at lower plunge depth of 0.10 mm.At low plunge depth, the contact area between tool shoulder and base metal is less.With the increase of plunge depth from 0.10 mm to 0.15 mm,the contact area between shoulder and workpiece increases which results in more heat generation.Also,the vertical pressure on the base metal increases resulting in better forging and improved material flow and particles dispersion[26]as shown in S2(Table 2).Depth of SC layer also increases.However,a cavity remains un filled in this sample that implies that heat generation was still not adequate.As plunge depth further increases from 0.15 to 0.20 mm,cavity sizedecreases to its minimum and uniformity in powder dispersion increases as shown in S3(Table 2)and Fig.4(c).Also,the SC layer achieves a depth which is approximately equal to tool pin height in bulk matrix.

    Fig.5.shows the SEM images of SCs fabricated at 0.25 mm plunge depth,(a)distribution of SiC particles;(b)Maximum size of SiC particle after FSP.

    The cavity finally disappears in S4(Table 2)fabricated at plunge depth of 0.25 mm owing to suf ficient heat generation due to the adequate contact area of tool shoulder and workpiece.Distribution of reinforcement particles also becomes visibly uniform(see Fig.4(d)).And SC layer depth becomes equal to tool pin height.

    Any further increase of TPD from 0.25 to 0.30 and 0.35 mm results in a reduction of powder dispersion and decrease of SC depth as shown in S5and S6(Table 2)and Fig.4(e)and(f)respectively.It may be assumed that after an optimumvalue of TPD,the increase of plunge depth causes excess heat generation which results in more softening of material near tool matrix interface.This excess softening of material leads to more flash generation.The high tool pressure(at higher TPD),the shoulder expels the reinforcement particles with or in form of flash resulting in less dispersion of SiC in the metal matrix.Same results can be seen from S6,in which SiC distribution further decreases and defect appears in the SZ.Also, the frictional mode between shoulder and material(to be stirred) changes from sliding to sticking due to high pressure exerted by tool shoulder.This high pressure can results in thinning and may even damage of specimen.Thus,low penetration depths causes less material flow while high penetration depths results in excessive flash and damage of the specimen.

    Fig.5(a)-(b)shows SEM images of SC fabricated at 0.25 mm plunge depth.It is evident from the figure that SiC particles are well distributed in aluminium matrix and their particle size viz-a-viz original size has reduced drastically.This reduction may occur due to the fragmentation of SiC particles owing to high strain induced by FSP and vigorous stirring action of tool.The vigorous stirring of tool might also have ground the sharp edges of SiC particles(see Fig.5(b)).

    Thus,reduction in the size of SiC particles can be attributed to severe stresses and shear effects caused by the tool rotation.Similar results were reported by other researchers[27,28].Moreover,the distributed particles have large size variations and maximium size of SiC particles after FSP was found as 7.28 μm(see Fig.5(b)).The average SiC particle size was found as~2.1μm which is a huge reduction as compared to as-received 10μm average particle size.

    This investigation has demonstrated that the size of SiC particles was subdivided during FSP causing an increase in particle density and reduction in grain size and interparticle spacing.Moreover,the scope of FSP for SCs fabrication may be further investigated by using smaller particles size of order of nanometer which may results in further improvement in properties of nano SCs as compared to micro SCs.

    5.Conclusions

    The practical bene fit of this work is to provide adequate TPD to fabricate sound AA 6061/SiC surface composites.Following conclusions are drawn from the present study:

    1)Low plunge depth results in less material flow and cavity formation at centre of SZ owing to less heat generation at low contact area between tool shoulder and base metal.

    2)The optimum plunge depth obtained from current work is 0.25 mm with 20 mm shoulder diameter and 2.5°tilt angle.The particles were found well distributed in the aluminium matrix.

    3)During FSP,fragmentation of SiC particles takes place owing to high plastic strains and stirring action of FSP tool.

    4)The penetration depths above the optimum value may results in sticking of workpiece to the shoulder,flashing out of reinforcement particles,thinning of processed specimen and even damage of the specimens.

    Acknowledgments

    The authors thank the University Grants Commission(UGC)for its financial assistance(vide sanction order No.F.3-40/2012(SAP-II) under its SAP(DRS-I)sanctioned to the Department of Mechanical Engineering for the project entitled Friction Stir Welding,Ultrasonic Machining.

    [1]Miracle DB.Metal matrix composites-from science to technological significance.Compos Sci and Technol 2005;65(15-16):2526-40.

    [2]Cavaliere P.Mechanical properties of Friction Stir Processed 2618/Al2O3/20p metal matrix composite.Compos Part A Appl Sci Manuf 2005;36(12): 1657-65.

    [3]Joseph,S.,High temperature metal matrix composites for future aerospace systems,in 24th Joint Propulsion Conference 1988,American Institsute of Aeronautics and Astronautics.

    [4]Ghosh SK,Saha P.Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process.Mater Des 2011;32(1):139-45.

    [5]Choo S-H,Lee S,Kwon S-J.Surface hardening of a gray cast iron used for a diesel engine cylinder block using high-energy electron beam irradiation. Metall Mater Trans A 1999;30(5):1211-21.

    [6]Xu J,et al.Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders.J Alloys Compd 2016;672:251-9.

    [7]Hashim J,Looney L,Hashmi MSJ.Metal matrix composites:production by the stir casting method.J Mater Process Technol 1999;92-93(0):1-7.

    [8]Banhart J.Manufacture,characterisation and application of cellular metals and metal foams.Prog Mater Sci 2001;46(6):559-632.

    [9]Mishra R.S,Mahoney M.W,Friction stir welding and processing 2007:ASM International.

    [10]Mishra RS,Ma ZY.Friction stir welding and processing.Mater Sci Eng R Rep 2005;50(1-2):1-78.

    [11]Mishra RS,Ma ZY,Charit I.Friction stir processing:a novel technique for fabrication of surface composite.Mater Sci Eng A 2003;341(1-2):307-10.

    [12]Thomas,W.M.,TWI,Editor 1991:U.S.

    [13]Berbon PB,et al.Friction stir processing:a tool to homogenize nanocomposite aluminum alloys.Scr Mater 2001;44(1):61-6.

    [14]Azizieh M,Kokabi AH,Abachi P.Effect of rotational speed and probe pro file on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing.Mater Des 2011;32(4):2034-41.

    [15]Barmouz M,Besharati Givi MK,Sey fiJ.On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure,microhardness,wear and tensile behavior. Mater Charact 2011;62(1):108-17.

    [16]Shamsipur A,Kashani-Bozorg SF,Zarei-Hanzaki A.The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer.Surf Coatings Technol 2011;206(6):1372-81.

    [17]Ghasemi-Kahrizsangi A,Kashani-Bozorg SF.Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing.Surf Coatings Technol 2012;209(0):15-22.

    [18]Arora HS,Singh H,Dhindaw BK.Composite fabrication using friction stir processing-a review.Int J Adv Manuf Technol 2012;61(9-12):1043-55.

    [19]Dolatkhah A,et al.Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing.Mater Des 2012;37(0):458-64.

    [20]Devaraju A,et al.In fluence of reinforcements(SiC and Al2O3)and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing.Mater Des 2013;51(0):331-41.

    [21]Zohoor M,Besharati Givi MK,Salami P.Effect of processing parameters on fabrication of Al-Mg/Cu composites via friction stir processing.Mater Des 2012;39:358-65.

    [22]Sudhakar I,et al.Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing.Def Technol 2015;11(1):10-7.

    [23]Madhusudhan Reddy G,Sambasiva Rao A,Srinivasa Rao K.Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy.Trans Indian Inst Metals 2013;66(1):13-24.

    [24]Devaraju A.K.A.,Kotiveerachari B.,In fluence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing.Mater Des 2013;45:576-85.

    [25]Mukhopadhyay P.Alloy designation,processing,and Use of AA6XXX series aluminium alloys.ISRN Metall 2012;2012:15.

    [26]Asadi P,Faraji G,Besharati M.Producing of AZ91/SiC composite by friction stir processing(FSP).Int J Adv Manuf Technol 2010;51(1-4):247-60.

    [27]Salih OS,et al.A review of friction stir welding of aluminium matrix composites.Mater Des 2015;86:61-71.

    [28]Palanivel R,et al.In fluence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing.Mater Des 2016;106:195-204.

    *Corresponding author.TRF,MPAE Division,NSIT,New Delhi,110078,India.

    E-mail address:rathee8@gmail.com(S.Rathee).

    Peer review under responsibility of China Ordnance Society.

    Friction stir processing

    Tool plunge depth

    Microstructural characterization

    久久久精品94久久精品| 日日摸夜夜添夜夜添av毛片| 两个人的视频大全免费| 婷婷色综合大香蕉| 色综合站精品国产| 国产黄色视频一区二区在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 观看免费一级毛片| 夜夜看夜夜爽夜夜摸| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 亚洲国产色片| 一级爰片在线观看| 亚洲国产高清在线一区二区三| 亚洲av成人精品一二三区| 天美传媒精品一区二区| 婷婷色av中文字幕| 国内精品一区二区在线观看| 久久久久精品久久久久真实原创| 一夜夜www| 秋霞在线观看毛片| 日韩欧美在线乱码| 午夜福利在线在线| 中国国产av一级| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影 | 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 日本午夜av视频| 观看美女的网站| 99热这里只有是精品在线观看| 欧美变态另类bdsm刘玥| 欧美一区二区精品小视频在线| 亚洲精品色激情综合| 国产精品一区www在线观看| 国产久久久一区二区三区| 伊人久久精品亚洲午夜| 午夜a级毛片| 日本免费a在线| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 麻豆乱淫一区二区| 久久久久久久久久成人| 村上凉子中文字幕在线| av在线播放精品| 91精品国产九色| 欧美人与善性xxx| av在线观看视频网站免费| 色综合站精品国产| 秋霞在线观看毛片| 国产成人一区二区在线| 男人舔奶头视频| 亚洲自偷自拍三级| 综合色丁香网| 欧美丝袜亚洲另类| 精品久久久久久久久久久久久| 尾随美女入室| 国产av在哪里看| 中国国产av一级| 国产视频内射| 伦精品一区二区三区| 只有这里有精品99| 狠狠狠狠99中文字幕| 久热久热在线精品观看| 不卡视频在线观看欧美| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 成年av动漫网址| 亚洲色图av天堂| 午夜a级毛片| 六月丁香七月| 尤物成人国产欧美一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 国产精华一区二区三区| 人人妻人人看人人澡| 久久久午夜欧美精品| 最近视频中文字幕2019在线8| 人妻系列 视频| 亚洲国产日韩欧美精品在线观看| 日本午夜av视频| 日韩av在线大香蕉| 老女人水多毛片| 夜夜看夜夜爽夜夜摸| 国产亚洲91精品色在线| 少妇熟女欧美另类| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄 | 成人高潮视频无遮挡免费网站| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影 | 久久久a久久爽久久v久久| 欧美三级亚洲精品| 亚洲自偷自拍三级| 建设人人有责人人尽责人人享有的 | 黄色一级大片看看| 日韩欧美三级三区| 国产精品美女特级片免费视频播放器| 日韩欧美在线乱码| 亚洲精品aⅴ在线观看| 夜夜看夜夜爽夜夜摸| 蜜桃亚洲精品一区二区三区| 如何舔出高潮| 国产综合懂色| 欧美潮喷喷水| 少妇高潮的动态图| 中文天堂在线官网| 26uuu在线亚洲综合色| 久久精品综合一区二区三区| 91精品伊人久久大香线蕉| 国产中年淑女户外野战色| 老女人水多毛片| 国产成人freesex在线| 日本-黄色视频高清免费观看| 人体艺术视频欧美日本| 日本免费在线观看一区| 亚洲av二区三区四区| 边亲边吃奶的免费视频| 男人舔女人下体高潮全视频| 色综合站精品国产| 久热久热在线精品观看| 精品国产露脸久久av麻豆 | 97超视频在线观看视频| 国产成人aa在线观看| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久 | 18禁在线无遮挡免费观看视频| 亚洲国产精品专区欧美| 男女国产视频网站| 99国产精品一区二区蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡人人爽人人夜夜 | 亚洲18禁久久av| 精品人妻熟女av久视频| 久久鲁丝午夜福利片| 草草在线视频免费看| 国模一区二区三区四区视频| 国产亚洲精品av在线| 日本午夜av视频| 午夜老司机福利剧场| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 男插女下体视频免费在线播放| 99热精品在线国产| 26uuu在线亚洲综合色| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 国产精品乱码一区二三区的特点| 亚洲av成人av| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| 91精品国产九色| 免费av不卡在线播放| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 熟女电影av网| 少妇的逼好多水| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站 | 午夜亚洲福利在线播放| 高清在线视频一区二区三区 | 男人的好看免费观看在线视频| 日韩视频在线欧美| 国产精品国产三级专区第一集| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 日韩人妻高清精品专区| 丰满少妇做爰视频| 黑人高潮一二区| 少妇熟女欧美另类| 在线观看66精品国产| 日本猛色少妇xxxxx猛交久久| 女人被狂操c到高潮| 国产高清不卡午夜福利| 欧美性感艳星| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 丝袜喷水一区| av播播在线观看一区| 18禁裸乳无遮挡免费网站照片| 小蜜桃在线观看免费完整版高清| 国产成人91sexporn| 乱系列少妇在线播放| 成人高潮视频无遮挡免费网站| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版 | 亚洲va在线va天堂va国产| 国产精品电影一区二区三区| 午夜a级毛片| 精品人妻熟女av久视频| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 中文字幕制服av| 网址你懂的国产日韩在线| 久久亚洲国产成人精品v| 国产免费又黄又爽又色| 色综合色国产| 黄片无遮挡物在线观看| 国产精品女同一区二区软件| 国产色婷婷99| 少妇被粗大猛烈的视频| 韩国av在线不卡| 精品国产露脸久久av麻豆 | 国国产精品蜜臀av免费| 高清在线视频一区二区三区 | 精品一区二区三区视频在线| 欧美区成人在线视频| 中国国产av一级| 国产又黄又爽又无遮挡在线| 97人妻精品一区二区三区麻豆| 99久久精品国产国产毛片| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 亚洲美女搞黄在线观看| 日韩欧美精品v在线| 午夜精品在线福利| 成人亚洲欧美一区二区av| 欧美性猛交╳xxx乱大交人| 国产大屁股一区二区在线视频| 亚洲乱码一区二区免费版| 插阴视频在线观看视频| 白带黄色成豆腐渣| 一夜夜www| 国产欧美日韩精品一区二区| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 久久久亚洲精品成人影院| 一边摸一边抽搐一进一小说| 色综合色国产| 欧美性感艳星| 国产日韩欧美在线精品| 精品一区二区免费观看| 晚上一个人看的免费电影| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 亚洲精华国产精华液的使用体验| 一边亲一边摸免费视频| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕| 午夜免费激情av| 国产亚洲精品av在线| 国产 一区精品| 六月丁香七月| 最近最新中文字幕大全电影3| 色网站视频免费| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产乱人偷精品视频| 精品一区二区三区人妻视频| 亚洲av一区综合| 如何舔出高潮| 免费无遮挡裸体视频| 国产成人免费观看mmmm| 18禁动态无遮挡网站| 欧美最新免费一区二区三区| 男女下面进入的视频免费午夜| 免费大片18禁| 久久99热6这里只有精品| 特级一级黄色大片| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 欧美另类亚洲清纯唯美| 国产毛片a区久久久久| 亚洲美女视频黄频| 一个人观看的视频www高清免费观看| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 免费看a级黄色片| 在线免费十八禁| 夫妻性生交免费视频一级片| 丰满乱子伦码专区| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 免费看日本二区| 国产三级中文精品| 欧美xxxx性猛交bbbb| 欧美日韩一区二区视频在线观看视频在线 | 日日摸夜夜添夜夜添av毛片| 日韩强制内射视频| 中文字幕av在线有码专区| 亚洲精品乱久久久久久| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 欧美3d第一页| 午夜福利在线在线| 麻豆乱淫一区二区| 2022亚洲国产成人精品| 中文字幕精品亚洲无线码一区| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 深爱激情五月婷婷| 晚上一个人看的免费电影| 又粗又爽又猛毛片免费看| 亚洲四区av| 精品不卡国产一区二区三区| av国产久精品久网站免费入址| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 亚洲性久久影院| 国产亚洲最大av| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 中文字幕免费在线视频6| 亚洲欧美精品专区久久| 在线免费观看不下载黄p国产| 国产高潮美女av| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 中文字幕熟女人妻在线| 男人狂女人下面高潮的视频| 久久精品国产亚洲av涩爱| 91av网一区二区| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 国产 一区精品| 好男人视频免费观看在线| 青春草视频在线免费观看| eeuss影院久久| 国产精品伦人一区二区| av免费观看日本| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 精品欧美国产一区二区三| 精品国产一区二区三区久久久樱花 | 国产69精品久久久久777片| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 亚洲乱码一区二区免费版| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 午夜老司机福利剧场| 国产成人一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 男女啪啪激烈高潮av片| 九九热线精品视视频播放| 成人二区视频| 天堂中文最新版在线下载 | 久久精品国产亚洲网站| 岛国毛片在线播放| 九色成人免费人妻av| 久热久热在线精品观看| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 午夜久久久久精精品| 2022亚洲国产成人精品| 亚洲精品国产av成人精品| 熟妇人妻久久中文字幕3abv| 国产精品人妻久久久影院| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 免费电影在线观看免费观看| 嘟嘟电影网在线观看| 国产午夜福利久久久久久| 亚洲五月天丁香| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 熟女电影av网| 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 1024手机看黄色片| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 国产亚洲5aaaaa淫片| 韩国高清视频一区二区三区| 欧美日韩精品成人综合77777| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 久久99热这里只频精品6学生 | 精品久久久久久电影网 | 久久这里只有精品中国| 尤物成人国产欧美一区二区三区| 国产成人免费观看mmmm| 啦啦啦观看免费观看视频高清| 国产亚洲91精品色在线| 人人妻人人看人人澡| 中国国产av一级| 欧美+日韩+精品| 一区二区三区四区激情视频| www.av在线官网国产| 久久韩国三级中文字幕| 插逼视频在线观看| 中文乱码字字幕精品一区二区三区 | 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区| 日本五十路高清| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 18禁动态无遮挡网站| 久久亚洲精品不卡| 亚洲人成网站高清观看| 国产亚洲午夜精品一区二区久久 | 亚洲天堂国产精品一区在线| 我的女老师完整版在线观看| 天堂网av新在线| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 亚洲国产精品合色在线| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 3wmmmm亚洲av在线观看| 高清在线视频一区二区三区 | 直男gayav资源| 97超视频在线观看视频| 波多野结衣巨乳人妻| 免费大片18禁| 波野结衣二区三区在线| 1024手机看黄色片| 国产av码专区亚洲av| 麻豆国产97在线/欧美| 国产精品人妻久久久影院| 欧美色视频一区免费| 国产成人午夜福利电影在线观看| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 免费看a级黄色片| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 在线观看一区二区三区| 精品一区二区三区视频在线| 久久热精品热| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看 | 婷婷色av中文字幕| 亚洲伊人久久精品综合 | 亚洲国产精品专区欧美| 99热精品在线国产| 免费观看人在逋| 亚洲成色77777| 国产精品嫩草影院av在线观看| 日韩精品青青久久久久久| 亚洲一区高清亚洲精品| 国产成人91sexporn| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 99久国产av精品国产电影| 日韩精品青青久久久久久| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 亚洲精品一区蜜桃| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| 亚洲va在线va天堂va国产| 午夜福利高清视频| 久久精品夜夜夜夜夜久久蜜豆| 天堂影院成人在线观看| 变态另类丝袜制服| 亚洲,欧美,日韩| 亚洲精品影视一区二区三区av| 亚洲中文字幕一区二区三区有码在线看| 最近的中文字幕免费完整| 亚洲成人中文字幕在线播放| 国产色爽女视频免费观看| 综合色av麻豆| 亚洲av二区三区四区| 久久久久网色| 哪个播放器可以免费观看大片| 午夜久久久久精精品| 久久精品综合一区二区三区| 国产精品国产高清国产av| 99久久精品国产国产毛片| 汤姆久久久久久久影院中文字幕 | 欧美97在线视频| 欧美性感艳星| 精品国产露脸久久av麻豆 | 九九爱精品视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品人妻久久久久久| 久久韩国三级中文字幕| 中文天堂在线官网| 老司机福利观看| 五月玫瑰六月丁香| 欧美人与善性xxx| 久久久久九九精品影院| 亚洲精品久久久久久婷婷小说 | 国产真实伦视频高清在线观看| 99久久人妻综合| 男女边吃奶边做爰视频| 99久久九九国产精品国产免费| 国产精品嫩草影院av在线观看| 村上凉子中文字幕在线| 真实男女啪啪啪动态图| 亚洲av电影在线观看一区二区三区 | 欧美成人免费av一区二区三区| 色吧在线观看| 久久久久免费精品人妻一区二区| 97热精品久久久久久| 日韩av在线免费看完整版不卡| 亚洲人成网站在线播| 国产av不卡久久| 久久精品国产亚洲av涩爱| 禁无遮挡网站| 久久99蜜桃精品久久| 国产大屁股一区二区在线视频| 噜噜噜噜噜久久久久久91| 日本熟妇午夜| 69av精品久久久久久| 亚洲欧美日韩东京热| 97超视频在线观看视频| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 精品久久久久久电影网 | 亚洲欧美精品自产自拍| 亚洲最大成人手机在线| av天堂中文字幕网| 嫩草影院入口| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 黄色配什么色好看| 一二三四中文在线观看免费高清| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 小说图片视频综合网站| 亚洲va在线va天堂va国产| 99视频精品全部免费 在线| 一区二区三区免费毛片| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 久久99蜜桃精品久久| 免费看日本二区| 成人国产麻豆网| 国产又黄又爽又无遮挡在线| 五月玫瑰六月丁香| 国产激情偷乱视频一区二区| or卡值多少钱| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 欧美日韩综合久久久久久| 99热这里只有是精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品国产高清国产av| 能在线免费观看的黄片| 日本wwww免费看| 亚洲成av人片在线播放无| 欧美成人一区二区免费高清观看| 2021天堂中文幕一二区在线观| 老师上课跳d突然被开到最大视频| 一级毛片久久久久久久久女| 麻豆久久精品国产亚洲av| 国产91av在线免费观看| 男女国产视频网站| 人体艺术视频欧美日本| 国产精品伦人一区二区| 国产精品一及| 天堂av国产一区二区熟女人妻| av又黄又爽大尺度在线免费看 | 国产淫片久久久久久久久| 亚洲国产高清在线一区二区三| 能在线免费观看的黄片| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av天美| 美女黄网站色视频| 日韩视频在线欧美| 国产成年人精品一区二区| 美女被艹到高潮喷水动态| 国产亚洲最大av| 久久精品国产亚洲av涩爱| 丝袜美腿在线中文| 国产熟女欧美一区二区| 国产精品嫩草影院av在线观看| 三级国产精品欧美在线观看| 免费黄色在线免费观看| 自拍偷自拍亚洲精品老妇| 久热久热在线精品观看| 99久久精品热视频| 又黄又爽又刺激的免费视频.| 国产精品三级大全| 国产成人一区二区在线| 一个人观看的视频www高清免费观看| 欧美区成人在线视频| 中文乱码字字幕精品一区二区三区 | 亚洲欧美成人精品一区二区| 乱人视频在线观看| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 午夜福利在线在线| 午夜精品国产一区二区电影 | 国产爱豆传媒在线观看| 春色校园在线视频观看| av在线蜜桃| a级毛色黄片| www日本黄色视频网| 老女人水多毛片| 色综合站精品国产| 久久久久国产网址| 免费观看的影片在线观看| 日韩一本色道免费dvd|