• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    2017-06-01 11:35:04DilipMiynjiAustinLssellThomsStrrBrentStuker
    Defence Technology 2017年2期

    J.J.S.Dilip*,H.MiynjiAustin LssellThoms L.Strr,Brent Stuker

    aRapid Prototyping Center,Department of Industrial Engineering,University of Louisville,Louisville,KY 40292,USA

    bDepartment of Chemical Engineering,University of Louisville,Louisville,KY 40292,USA

    c3DSIM,1794 Olympic Parkway,Suite 110,Park City,UT 84098,USA

    A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    J.J.S.Dilipa,*,H.Miyanajia,Austin Lassella,Thomas L.Starrb,Brent Stuckerc

    aRapid Prototyping Center,Department of Industrial Engineering,University of Louisville,Louisville,KY 40292,USA

    bDepartment of Chemical Engineering,University of Louisville,Louisville,KY 40292,USA

    c3DSIM,1794 Olympic Parkway,Suite 110,Park City,UT 84098,USA

    A R T I C L E I N F O

    Article history:

    Received 24 May 2016

    Accepted 23 August 2016

    Available online 3 September 2016

    Additive manufacturing

    Binder jetting

    Intermetallic

    Titanium aluminide

    Reactive sintering

    The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti-6Al-4V and Al powders.This approach uses a binder jetting additive manufacturing process followed by reactive sintering.The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Titanium-aluminides(TiAl)have low density(3.9 g/cm3),good high temperature strength and superior resistance to oxidation (above 750°C)giving them the potential to be used as light weight and high-temperature structural materials[1,2].As such,these properties make the material quite attractive for aerospace and automobile applications.Recently,porous TiAl alloys are also being considered for high temperature liquid and gas separation filters [3].TiAl alloys of technical signi ficance have the general composition of Ti-Al(42-49)-X(0.1-1.0),where X represents alloying elements such as Cr,Nb,W,V,Ta,Si,B,and C[2,4].Currently,large scale processing methods such as ingot casting,powder processing and ingot forging,sheet production by hot-rolling,powder metallurgy processing,investment casting and permanent mold casting are used to fabricate TiAl.However,these conventional methods pose signi ficant challenges in processing of the alloy leading to higher production costs[1,2].Given the ordered tetragonal structure and strong bonding between Ti and Al,the alloy is inherently brittle,making machining and shaping dif ficult[1].To overcome such problems net-shape fabrication technologies such as powder metallurgy have been considered[2].

    Additive manufacturing(AM)is advantageous for a number of reasons,including extensive design freedom in terms of geometry. Recent work have focused on the use of selective laser melting and electron beam melting AM processes to fabricate TiAl parts[5,6]. However,these processes encounter problems because they inherently involve melting and solidification stages.Also these processes suffer a variety of metallurgical problems such as solid state cracking due to thermal stresses from the inherent brittleness of as-cast TiAl microstructures[5-7].In contrast,binder jetting avoids these problems as it is a low temperature process.In binder jetting powder is deposited layer by layer and binder is applied in the regions of interest,creating a green part directly from a CAD model.Subsequently,the green part from the printer is oven cured and sintered[7,8].

    This study evaluates the feasibility of fabricating titanium aluminide(TiAl)parts by using Ti-6Al-4V and Al powders via binder jetting followed by a reactive sintering treatment.This route to produce TiAl intermetallic alloy parts can be economical when compared to the use of TiAl powders since TiAl powder is very expensive.

    2.Materials and methods

    In the present study two metal powders were used;atomized Al (Pyrochem,USA)and Ti-6Al-4V(Raymor-Grade 23)powders withaverage particle size near 30μm and 45μm respectively.The powders were mixed in equi-atomic proportion(by Wt%)Al to achieve TiAl after sintering.The ExOne binder jetting printer was used to build 3D parts of 10×10×3 mm in size.The parameters used during binder jetting are as follows:100μm layer thickness, 60%binder drying power,45 s dry time,jet feed rate 2 mm/min and 60%binder saturation level.The binder used for the experiment was“ExOne PM-B-SR1-04”,an ether solvent based binder.The green parts from the printer were carefully loaded into an oven to cure the binder at 200°C for 2 h.The cured parts were then subjected to reactive sintering at temperatures of 600°C and 800°C for 6 h,as well as 1000°C for 6 h and 24 h in nitrogen atmosphere. Microstructural characterization of the powders and sintered parts was carried out using SEM equipped with EDS.Phase analysis of the steel powder and as-built samples were characterized using X-Ray Diffraction with Cu-Kαradiation(λ=1.54 A°).The phases formed were identi fied by comparison of the recorded diffraction peaks with the ICDD database.Density of the sintered parts was measured using the Archimedes method according to ASTM B962-08.

    Fig.1.SEM micrographs showing morphology of(a)Al powder and(b)Ti-6Al-4V powder used.

    3.Results and discussion

    The size and morphology of the powders can be observed from the SEM micrographs presented in Fig.1.The Al powder particles (Fig.1(a))are irregular in shape,whereas the Ti-6Al-4V alloy powder particles(Fig.1(b))are spherical in shape in a bimodal distribution.

    Fig.2(a)shows the samples sintered at different temperatures. The samples sintered at 600°C appear bright(gray),whereas the samples sintered at higher temperatures appear black.This change in luster is attributed to the reaction products formed during sintering.The surface morphology of the sample sintered at 600°C is presented in Fig.2(b).The micrograph shows predominantly unreacted Al(irregular)and Ti-6Al-4V(spherical)particles.On any given Ti-6Al-4V particle,conical structures can be seen growing on the surface and interconnecting neighboring Ti-6Al-4V particles together.EDS analysis indicates these interconnecting channels have the composition of TiAl3.Fig.2(c)shows the surface morphology of a sample sintered at 800°C for 6 h.Clearly,the surfaces of the particles appear different(grainier)than those sintered at 600°C.The in-set in Fig.2(c)shows a high magni fication micrograph revealing the surface texture.Given the sinteringtemperature was above the melting temperature of Al,liquid phase sintering occurs.The Ti-6Al-4V particles retain the original spherical morphology and the surface contains reaction product. EDS analysis on the surface con firms the presence of TiAl3.Initially, Ti atoms on the surface will dissolve in liquid Al and the Ti enriched solution will recast onto the sintered particles,resulting in TiAl3. The appearance of small globular features(due to surface tension) on the sintered particle surfaces indicate recasting has occurred.

    Fig.2.(a)Photograph of sintered samples.SEM micrographs showing surface morphology of samples sintered for 6 h at 600°C(b),800°C(c)and 1000°C(d).High magni fication micrographs are shown in the in-sets.

    At the melting temperature of Al,the diffusion of Al in Ti is 75×10-3mm/s while the diffusion of Ti in the Al is 66×10-3mm/s [3].Given the higher diffusion of Al atoms into Ti particles the result is the enrichment of Al,which aids in forming TiAl3on/below the surface of the sintered particle[2,3,6,9,10].As time progresses all the liquid Al will be consumed and an Al rich intermetallic layer grows and thickens on the sintered particle.Subsequently,Al diffuses inwards and Ti-Al intermetallics evolve in different layers.The samples sintered at 1000°C for 6 h and 24 h also showed similar grainy/globular morphology and the presence of TiAl3on the particle surfaces.Since the samples sintered at 600°C and 800°C were fragile,further microstructural characterization was carried out only on samples sintered at 1000°C.

    Fig.3.An SEM(BSE)micrograph of the polished cross-section of a sample sintered at 1000°C for 6 h.(a)Low magni fication micrograph showing overall microstructural features. (b)Individual particle cross-section showing different layers of reaction products.(c)High magni fication micrograph showing finer features at the first and second layer interface.

    Fig.3 shows the cross-section SEM back scattered electron(BSE) micrograph of the sample sintered at 1000°C for 6 h.Fig.3(a) shows a low magni fication micrograph indicating particles being fused together by a mixture of TiAl3+TiAl(Fig.3(c)).Multiple layers, five in total,within the Ti-6Al-4V particle can be clearly observed from Fig.3(b).The micrograph shows the variation in contrast caused by the composition changes from layer to layer.At least ten EDS spot analyses were performed on each of these layers.The outer periphery consists of a higher percentage of Al with a dark gray background against a white network(Fig.3(c)),which corresponds to the mixture of TiAl3(73%-75%Al,25%-27%Ti by Wt%) and TiAl respectively.The second layer appears as a lighter gray ring,which has the composition of TiAl+Ti3Al(34%-38%Al,62%-65%Ti by Wt%).The third layer corresponds to the composition of TiAl3,which is the predominant phase.The fourth layer corresponds to TiAl(48%-50%Al,48%-52%Ti by Wt%).The inner core has an irregular shape and was identi fied as Ti3Al.

    Earlier studies on reaction synthesis of TiAl[9-11]from elemental Ti and Al powders were based on the Ti-Al phase diagram,and the sequence of formation of the intermetallics is as follows

    Ti+Al→TiAl3→TiAl2→TiAl→Ti3Al

    Lee et al.synthesized TiAl from elemental powders and also observed multiple layers of intermediate phases in the reacting constituents[10].However,in the present study,the presence of TiAl3in the third layer was unexpected according to the Ti-Al phase diagram.This can be explained by the variation in interdiffusion rates of Ti in Al through the second layer(TiAl+Ti3Al), and also the sintering time was not suf ficient for homogenization of the composition throughout the particle.Mishin and Hertzig reported the inter-diffusion of these elements in TiAl,and concluded that Al diffuses faster than Ti through TiAl[10].Therefore,enrichment of Al%in the close proximity of TiAl,and simultaneous diffusion of Ti toward the outer surface,results in the formation of TiAl3.Hence,to homogenize the composition and to form TiAl throughout,the samples were sintered for 24 h at 1000°C.SEMBSE micrographs of the cross-section of a sample sintered for 24 h are presented in Fig.4.

    Fig.4(a)shows a typical inter-particle neck region.It can be clearly seen that the bonding region was the result of the overlap of the TiAl+Ti3Al layers of the individual particles.The original outer periphery,seen in Fig.3(a),composed of TiAl3,was consumed resulting in the formation of TiAl+Ti3Al.Fig.4(b)shows three layers in the particle cross-section micrograph.The outer layer still consists of a very thin layer of TiAl3+TiAl,however,the thickness of the outer layer was lower when compared to the 6 h sintered sample (Fig.3(c)).The second layer in Fig.4(b)has a composition of 34%-40%Al and 60%-66%Ti making up TiAl+Ti3Al.The inner core region corresponds to the composition of intermetallic TiAl(42%-44%Al, 56%-54%Ti).Fig.4(c)shows a high magni fication micrograph of the cross-section of a sintered particle revealing bright isolated, irregular shaped regions.These regions were observed to be enriched with vanadium as indicated by EDS analysis.Duringreactive sintering and thermal treatment,vanadium present as solid solution in the alloy Ti-6Al-4V was observed to segregate to certain random areas within the sintered particles.This is a consequence of lower solubility of vanadium in the intermetallic phases relative to the high solubility in beta titanium at the sintering temperature.XRD analysis on these samples also reveals the presence of V-Al intermetallic(Fig.5).

    Fig.4.SEM(BSE)micrograph of the as-polished cross-section of a sample sintered at 1000°C for 24 h.(a)Region showing the inter-particle bonding region.(b)An individual particle cross-section showing multiple layers.

    Phase analysis was performed on the as-mixed powders and the sintered sample using X-ray diffraction.An XRD pattern of the powder mixture of Ti-6Al-4V and Al is presented in Fig.5(a).It can be observed that only elemental Ti and Al peaks were present in the XRD pattern.Fig.5(b)shows the XRD pattern of the sample sintered at 1000°C for 24 h.XRDshows the presence of various intermetallic phases formed during reactive sintering.The final microstructure consists of TiAl along with other intermetallic phases such as Al2Ti, Al3Ti,All1V,Al8V5,and Ti3Al.The vanadium rich regions correspond to Al11V and/or Al8V5phase in the microstructure shown in Fig.4(c).The XRD results agree with the SEM analysis of the sintered samples.The density of the part sintered at 1000°C for 6 h and 24 h was 3.34 g/cm3 and 3.45 g/cm3 respectively.Further detailed investigation into the phase evolution,reaction kinetics, and evaluation of mechanical properties is necessary to establish and scale up the process for mass production.

    Fig.5.X-ray diffraction patterns(a)as mixed Ti-6Al-4V powder and Al powder and (b)sample sintered at 1000°C for 24 h.

    4.Conclusions

    This study focused on the fabrication of porous,additive manufactured parts in the TiAl intermetallic alloy.The work reports initial results and evaluates the feasibility of the new approach through the use of a binder jetting process followed by reactive sintering.During high temperature liquid phase sintering Al initially reacts with Ti-6Al-4V particle surfaces and forms Al3Ti. As the sintering time progresses Al diffuses into the Ti-6Al-4V particle and forms TiAl.Microstructural investigation and phase analysis revealed the evolution of a TiAl intermetallic phase along with various other intermediate phases.The present investigation demonstrates that the proposed new approach is capable of producing TiAl intermetallic alloy parts directly from separate Ti-6Al-4V and Al powders using a versatile additive manufacturing method.

    [1]Welsch G,Boyer R,Collings EW.Materials properties handbook:titanium alloys.Materials Park(OH):ASM International;1993.

    [2]Appel F,Paul JDH,Oehring M.Gamma titanium aluminide alloys:science and technology.John Wiley&Sons;2011.

    [3]Tan P,Tang HP,Kang XT,Wang QB,Zhu JL,Li C,et al.Research on TiAl alloy porous metal flow restrictors.Mater Trans 2009;50(10):2484-7.

    [4]Fu-Sheng S,Cao C,Yan M,Kim S,Yong T.Alloying mechanism of beta stabilizers in a TiAl alloy.Metall Mater Trans A 2001;32(7):1573-89.

    [5]Loeber L,Biamino S,Ackelid U,Sabbadini S,Epicoco P,Fino P,et al.Comparison of selective laser and electron beam melted titanium aluminides in solid freeform fabrication proceedings.Austin:University of Texas;2011.

    [6]Murr LE,Gaytan SM,Ceylan A,Martinez E,Martinez JL,Hernandez DH,et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting.Acta Mater 2010;58: 1887-94.

    [7]Gibson I,Rosen DW,Stucker B.Additive manufacturing technologies:rapid prototyping to direct digital manufacturing.New York:Springer;2010.

    [8]Miyanaji H,Zhang S,Lassell A,Zandinejad A,Yang L.Process development of porcelain ceramic material with binder jetting process for dental applications. J Miner Met Mater Soc 2016;11:1543-851.

    [9]Lee TW,Lee CH.The effect of heating rate on the reactive sintering of Ti-48%Al elemental powder mixture.J Mater Sci Lett 1998;17:1367-70.

    [10]Mishin Y,Herzig C.Diffusion in the Ti-Al system.Acta Mater 2000;48: 589-623.

    [11]Novoselova T,Celotto S,Morgan R,Fox P,O’Neill W.Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits.J Alloys Compd 2007;436:69-77.

    *Corresponding author.

    E-mail address:samueldilip@gmail.com(J.J.S.Dilip).

    Peer review under responsibility of China Ordnance Society.

    免费观看精品视频网站| x7x7x7水蜜桃| 国产精品 国内视频| 国产精品 国内视频| 非洲黑人性xxxx精品又粗又长| www国产在线视频色| 亚洲色图 男人天堂 中文字幕| 亚洲精华国产精华精| 给我免费播放毛片高清在线观看| 黄色a级毛片大全视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩一卡2卡3卡4卡2021年| 黄片播放在线免费| 麻豆久久精品国产亚洲av| 一区二区日韩欧美中文字幕| 少妇裸体淫交视频免费看高清 | 99久久综合精品五月天人人| 国产成+人综合+亚洲专区| 97碰自拍视频| av在线天堂中文字幕| 中文字幕人妻熟女乱码| 啦啦啦韩国在线观看视频| 熟女电影av网| 久久天堂一区二区三区四区| 19禁男女啪啪无遮挡网站| 中文字幕人成人乱码亚洲影| 国产黄片美女视频| 50天的宝宝边吃奶边哭怎么回事| www.精华液| 欧美黄色淫秽网站| 欧美另类亚洲清纯唯美| 欧美久久黑人一区二区| 午夜日韩欧美国产| 国产一区二区三区视频了| 黄色女人牲交| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 久久精品亚洲精品国产色婷小说| 美女免费视频网站| 夜夜爽天天搞| 最近最新中文字幕大全电影3 | 日韩欧美免费精品| 精品久久蜜臀av无| 亚洲国产日韩欧美精品在线观看 | 99热这里只有精品一区 | 女警被强在线播放| 脱女人内裤的视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美激情综合另类| 欧美黑人巨大hd| 1024视频免费在线观看| 两性夫妻黄色片| 欧美丝袜亚洲另类 | 国产精品一区二区三区四区久久 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 精品卡一卡二卡四卡免费| 欧美+亚洲+日韩+国产| 哪里可以看免费的av片| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看 | 午夜久久久久精精品| 久久国产精品影院| 亚洲av美国av| bbb黄色大片| 免费观看精品视频网站| 久久久久免费精品人妻一区二区 | 亚洲av成人不卡在线观看播放网| 美女高潮喷水抽搐中文字幕| 黄色视频,在线免费观看| 日本免费a在线| 亚洲av电影在线进入| 免费电影在线观看免费观看| 亚洲激情在线av| 嫩草影视91久久| 久久久久久人人人人人| 亚洲精品中文字幕在线视频| 国产高清视频在线播放一区| 不卡一级毛片| 岛国在线观看网站| 怎么达到女性高潮| 91老司机精品| 黄色片一级片一级黄色片| 99久久国产精品久久久| 一进一出抽搐动态| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美免费精品| 久久久久久久久久黄片| 18禁黄网站禁片免费观看直播| 国产高清激情床上av| 国产高清视频在线播放一区| 亚洲久久久国产精品| 琪琪午夜伦伦电影理论片6080| 国产av不卡久久| 亚洲第一av免费看| 一级a爱片免费观看的视频| 两个人免费观看高清视频| 哪里可以看免费的av片| 成人免费观看视频高清| 亚洲av熟女| 午夜福利视频1000在线观看| 欧美中文日本在线观看视频| 久久 成人 亚洲| 美国免费a级毛片| 免费看a级黄色片| 午夜福利一区二区在线看| 欧美激情高清一区二区三区| 桃色一区二区三区在线观看| 真人做人爱边吃奶动态| 日韩中文字幕欧美一区二区| 亚洲第一av免费看| 午夜亚洲福利在线播放| 桃色一区二区三区在线观看| 亚洲av片天天在线观看| 亚洲av成人一区二区三| 亚洲国产欧美日韩在线播放| 亚洲成人国产一区在线观看| 黄色女人牲交| www.999成人在线观看| 露出奶头的视频| 在线观看免费日韩欧美大片| 精品久久久久久成人av| 国产精品亚洲美女久久久| 老熟妇仑乱视频hdxx| 亚洲第一青青草原| 久久亚洲真实| 国产成人欧美在线观看| 波多野结衣巨乳人妻| 欧美三级亚洲精品| 久久99热这里只有精品18| 日本免费a在线| av片东京热男人的天堂| 亚洲av中文字字幕乱码综合 | 国产亚洲av嫩草精品影院| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人中文| 无遮挡黄片免费观看| 国产精品日韩av在线免费观看| tocl精华| 久久国产精品人妻蜜桃| 亚洲专区国产一区二区| 国产精品香港三级国产av潘金莲| 极品教师在线免费播放| 老司机午夜十八禁免费视频| 精品高清国产在线一区| 日本免费一区二区三区高清不卡| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| 级片在线观看| 老熟妇乱子伦视频在线观看| 中文字幕人成人乱码亚洲影| 一夜夜www| 欧美黄色淫秽网站| 国产伦在线观看视频一区| 91字幕亚洲| 亚洲精品美女久久av网站| 男人操女人黄网站| 91老司机精品| 国产一区二区三区视频了| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 欧美中文综合在线视频| 757午夜福利合集在线观看| 亚洲成人精品中文字幕电影| 露出奶头的视频| 亚洲人成伊人成综合网2020| 人人妻人人看人人澡| 日韩免费av在线播放| 国产黄a三级三级三级人| 久9热在线精品视频| 精品久久久久久久久久免费视频| 一边摸一边做爽爽视频免费| 国产免费av片在线观看野外av| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 超碰成人久久| 国产在线观看jvid| 日日干狠狠操夜夜爽| 老司机福利观看| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| 久久久久久久精品吃奶| 成人亚洲精品av一区二区| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 女同久久另类99精品国产91| 不卡一级毛片| 88av欧美| 午夜精品久久久久久毛片777| 看免费av毛片| 身体一侧抽搐| 日本精品一区二区三区蜜桃| 午夜精品在线福利| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久| 制服诱惑二区| 国产99久久九九免费精品| 国产成人欧美| 久久久久久久午夜电影| 黄色片一级片一级黄色片| 亚洲av成人一区二区三| 国产亚洲精品第一综合不卡| 免费高清在线观看日韩| 首页视频小说图片口味搜索| 不卡av一区二区三区| 在线观看一区二区三区| 亚洲黑人精品在线| 伦理电影免费视频| 亚洲 欧美 日韩 在线 免费| 88av欧美| 操出白浆在线播放| 9191精品国产免费久久| 久久久国产欧美日韩av| 免费看美女性在线毛片视频| 性欧美人与动物交配| 日韩国内少妇激情av| 美女免费视频网站| 免费搜索国产男女视频| 久久久久国产一级毛片高清牌| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 丝袜人妻中文字幕| 久久伊人香网站| 一区二区三区激情视频| 日韩三级视频一区二区三区| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品久久成人aⅴ小说| 99riav亚洲国产免费| 91老司机精品| 嫩草影视91久久| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 长腿黑丝高跟| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 亚洲精品粉嫩美女一区| 国内精品久久久久久久电影| 天天一区二区日本电影三级| 国产欧美日韩一区二区三| 麻豆成人午夜福利视频| 国产亚洲精品av在线| 啦啦啦免费观看视频1| 又大又爽又粗| 日日夜夜操网爽| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 99热这里只有精品一区 | 午夜精品在线福利| 精品卡一卡二卡四卡免费| 美女午夜性视频免费| 久久久久九九精品影院| 黄色毛片三级朝国网站| 国产野战对白在线观看| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 满18在线观看网站| 欧美久久黑人一区二区| 此物有八面人人有两片| 成人午夜高清在线视频 | www.999成人在线观看| 亚洲欧美激情综合另类| 老司机在亚洲福利影院| 久久久久久久久久黄片| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| 国产精品二区激情视频| 精品无人区乱码1区二区| 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 国内精品久久久久久久电影| 亚洲av片天天在线观看| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 国内精品久久久久精免费| 亚洲自拍偷在线| 中亚洲国语对白在线视频| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 欧美日本视频| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 又黄又爽又免费观看的视频| www.999成人在线观看| 国产单亲对白刺激| 精品国产亚洲在线| 国产精品av久久久久免费| 国产高清videossex| 国内少妇人妻偷人精品xxx网站 | 国产成人系列免费观看| 禁无遮挡网站| 一本大道久久a久久精品| 精品乱码久久久久久99久播| x7x7x7水蜜桃| 久久国产精品影院| 亚洲人成77777在线视频| 成人18禁在线播放| 男人舔奶头视频| 最近最新免费中文字幕在线| 亚洲中文日韩欧美视频| 国产蜜桃级精品一区二区三区| 国产成人av教育| 亚洲欧美精品综合一区二区三区| 特大巨黑吊av在线直播 | 黄色视频,在线免费观看| 黄色丝袜av网址大全| 好男人电影高清在线观看| 夜夜爽天天搞| 久久久久久久久中文| 男女下面进入的视频免费午夜 | 男男h啪啪无遮挡| 2021天堂中文幕一二区在线观 | 身体一侧抽搐| 两个人视频免费观看高清| 亚洲第一电影网av| 自线自在国产av| 老鸭窝网址在线观看| 嫁个100分男人电影在线观看| 99久久99久久久精品蜜桃| 久久精品国产亚洲av香蕉五月| 国产极品粉嫩免费观看在线| 国产精品国产高清国产av| 久久精品影院6| 99热这里只有精品一区 | 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| 亚洲狠狠婷婷综合久久图片| 伦理电影免费视频| 久久人人精品亚洲av| 十八禁人妻一区二区| 欧美日本视频| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 香蕉av资源在线| 性欧美人与动物交配| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 国产又爽黄色视频| 日本一区二区免费在线视频| 国产精品98久久久久久宅男小说| 国产一区二区三区在线臀色熟女| 九色国产91popny在线| 巨乳人妻的诱惑在线观看| 可以在线观看的亚洲视频| 777久久人妻少妇嫩草av网站| videosex国产| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 日韩欧美国产在线观看| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看 | 无人区码免费观看不卡| 黄网站色视频无遮挡免费观看| 国产高清有码在线观看视频 | xxx96com| 美女免费视频网站| 非洲黑人性xxxx精品又粗又长| 亚洲 欧美 日韩 在线 免费| 欧美zozozo另类| 精品国产国语对白av| 国产精品一区二区三区四区久久 | 国产99白浆流出| 亚洲国产欧美一区二区综合| 国产亚洲精品一区二区www| 在线天堂中文资源库| 日韩欧美在线二视频| 久久人人精品亚洲av| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 香蕉丝袜av| 久久 成人 亚洲| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 午夜激情av网站| 亚洲性夜色夜夜综合| 国产99久久九九免费精品| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 国产高清有码在线观看视频 | 50天的宝宝边吃奶边哭怎么回事| 男女下面进入的视频免费午夜 | 亚洲色图av天堂| 久久中文字幕人妻熟女| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 侵犯人妻中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 亚洲av成人一区二区三| 久久香蕉国产精品| 最近最新中文字幕大全电影3 | 制服诱惑二区| 国产视频一区二区在线看| 欧美黑人巨大hd| 色婷婷久久久亚洲欧美| 黄色视频,在线免费观看| 麻豆一二三区av精品| 久久久久久大精品| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 很黄的视频免费| 国产一区二区三区视频了| 99riav亚洲国产免费| 国产极品粉嫩免费观看在线| 欧美成人午夜精品| 国产精品 国内视频| 久久久久国产精品人妻aⅴ院| 日韩欧美免费精品| 国产亚洲精品av在线| 久久久久久久午夜电影| 国产99久久九九免费精品| 亚洲精品色激情综合| 一本精品99久久精品77| 午夜福利一区二区在线看| 亚洲精品国产一区二区精华液| 97人妻精品一区二区三区麻豆 | 欧美精品亚洲一区二区| av视频在线观看入口| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 亚洲精品av麻豆狂野| 一二三四社区在线视频社区8| 精品第一国产精品| 宅男免费午夜| 在线播放国产精品三级| 午夜a级毛片| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆 | 午夜激情av网站| 一个人观看的视频www高清免费观看 | 久久久国产欧美日韩av| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 午夜精品在线福利| 午夜两性在线视频| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 中文字幕最新亚洲高清| 午夜a级毛片| 少妇的丰满在线观看| av天堂在线播放| 真人一进一出gif抽搐免费| 婷婷精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 国产激情欧美一区二区| 国产一卡二卡三卡精品| 欧美中文综合在线视频| 美女免费视频网站| 成年免费大片在线观看| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 亚洲电影在线观看av| 久久精品成人免费网站| 免费无遮挡裸体视频| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 国产三级黄色录像| 亚洲在线自拍视频| 久久中文看片网| 国产精品自产拍在线观看55亚洲| av视频在线观看入口| 亚洲专区字幕在线| 男人的好看免费观看在线视频 | 亚洲色图 男人天堂 中文字幕| 日韩大尺度精品在线看网址| 欧美黑人精品巨大| 亚洲免费av在线视频| av天堂在线播放| 国产成人一区二区三区免费视频网站| 国产亚洲精品久久久久久毛片| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 一夜夜www| 在线观看舔阴道视频| 国产精品爽爽va在线观看网站 | 日本成人三级电影网站| 欧美日韩乱码在线| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 亚洲av电影在线进入| 色综合婷婷激情| 露出奶头的视频| 色播在线永久视频| or卡值多少钱| 精品国产国语对白av| 久久久精品欧美日韩精品| 亚洲午夜理论影院| 国产精品自产拍在线观看55亚洲| 亚洲av成人一区二区三| 免费高清在线观看日韩| 亚洲午夜理论影院| videosex国产| 久久久久久久久中文| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 波多野结衣巨乳人妻| 香蕉丝袜av| 午夜激情av网站| 青草久久国产| 亚洲全国av大片| 在线看三级毛片| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 亚洲第一青青草原| 一级毛片精品| 亚洲人成77777在线视频| 一本综合久久免费| 亚洲国产精品成人综合色| 亚洲专区国产一区二区| 1024手机看黄色片| 韩国精品一区二区三区| 亚洲成国产人片在线观看| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看| 一本综合久久免费| 日本 欧美在线| 色哟哟哟哟哟哟| 国产视频内射| 久久精品aⅴ一区二区三区四区| 黑人欧美特级aaaaaa片| 久久久久久久午夜电影| 不卡av一区二区三区| www.www免费av| 欧美亚洲日本最大视频资源| 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 两个人看的免费小视频| 露出奶头的视频| 岛国在线观看网站| 禁无遮挡网站| 国产99白浆流出| xxxwww97欧美| 国产精品香港三级国产av潘金莲| 精品第一国产精品| 90打野战视频偷拍视频| 亚洲国产精品合色在线| 午夜福利视频1000在线观看| 成人国产一区最新在线观看| 少妇的丰满在线观看| 日韩欧美一区视频在线观看| 欧美久久黑人一区二区| 露出奶头的视频| 免费无遮挡裸体视频| 国产av又大| 99国产极品粉嫩在线观看| 人妻久久中文字幕网| 国产精品二区激情视频| 国产亚洲精品一区二区www| 午夜福利在线观看吧| 国内少妇人妻偷人精品xxx网站 | 精品国产乱码久久久久久男人| 少妇熟女aⅴ在线视频| 男人的好看免费观看在线视频 | 最好的美女福利视频网| 91麻豆av在线| 中文字幕人妻丝袜一区二区| 欧美乱码精品一区二区三区| 免费人成视频x8x8入口观看| 国产成人欧美| 国产v大片淫在线免费观看| 国产精品,欧美在线| 中文字幕av电影在线播放| 国产黄色小视频在线观看| 午夜两性在线视频| 国产日本99.免费观看| av在线播放免费不卡| 免费在线观看日本一区| 一夜夜www| 亚洲精品中文字幕在线视频| 久久久国产成人精品二区| 国产精品,欧美在线| 午夜福利视频1000在线观看|