• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Welding of nickel free high nitrogen stainless steel:Microstructure and mechanical properties

    2017-06-01 11:35:04RffiMohmmedMdhusudhnReddySrinivsRo
    Defence Technology 2017年2期

    Rf fiMohmmed,G.Mdhusudhn Reddy,K.Srinivs Ro,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    Welding of nickel free high nitrogen stainless steel:Microstructure and mechanical properties

    Raf fiMohammeda,G.Madhusudhan Reddyb,K.Srinivasa Raoa,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    A R T I C L E I N F O

    Article history:

    Received 29 April 2016

    Received in revised form

    6 June 2016

    Accepted 7 June 2016

    Available online 20 July 2016

    High nitrogen austenitic stainless steel

    (HNS)

    Shielded metal arc welding(SMAW)

    Gas tungsten arc welding(GTAW)

    Electron beam welding(EBW)

    Friction stir welding(FSW)

    High nitrogen stainless steel(HNS)is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost,excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption,solidification cracking in weld zone,liquation cracking in heat affected zone,nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process.In the present work,an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel.Shielded metal arc welding(SMAW),gas tungsten arc welding(GTAW),electron beam welding(EBW)and friction stir welding(FSW)processes were used in the present work.Optical microscopy,scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes.Hardness,tensile and bend tests were performed to evaluate the mechanical properties of welds.The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW.Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds.Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds.This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

    ?2016 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    High nitrogen austenitic stainless steel is a nickel free high Cr-Mn-N steel having a wide scope in defence sector for manufacturing battle tanks by replacing the existing armour steel. Austenitic stainless steel(>0.4%N)are becoming an important engineering material with combination of strength,toughness and wear resistance[1].Nitrogen has the following advantages:it is an effective solid solution strengthener than carbon and also enhances strengthening of grain size[2,3].Austenitic steels can bene fit from high nitrogen on several aspects:Nitrogen in a solid solution is a bene ficial alloying element to increase the strength without signi ficant loss of ductility and toughness.Nitrogen is a strong austenite stabilizer,thereby reducing the amount of nickel required for austenite stabilization.Nitrogen remarkably improves resistance to intergranular,pitting,crevice and stress corrosion cracking [4].As these steels are used for structural purposes,welding is an important consideration to join the structural components.During welding,it is very essential to avoid nitrogen losses,which result in poor mechanical properties and corrosion resistance.In conventional fusion welding process,it leads to several problems like formation of nitrogen pores,solidification cracking in the weld zone,lowering the dissolved nitrogen for solute strengthening and precipitation of Cr-nitrides in the heat affected zone[5].The nitride precipitation reduces seriously the mechanical and corrosion resistance.To alleviate the above problems,careful control of shielding gas,filler metal composition with low impurity levels (e.g.,S,P)in addition to control on segregation of major alloying elements and minimizing the level of intermetallic precipitates in the weld metal[6].Defects like porosity and solidification cracking may be overcome by using a suitable filler wire,which produces therequired amount of delta ferrite in fusion welds.Based on service conditions,delta ferrite requirement in austenitic stainless steel welds is often speci fied to ensure that weld contains a desired ferrite level[7].No commercial matching filler wires are available for welding high nitrogen austenitic stainless steel[3].Electrode with near matching composition similar to base metal resulted in improving the corrosion resistance but decreases the mechanical properties[8].Studies on microstructure and mechanical property correlations of nickel free high nitrogen steel welds are really scarce.In view of the above problems,the present work is aimed at studying the microstructural changes in high nitrogen steel welds made using shielded metal arc welding(SMAW),gas tungsten arcwelding(GTAW),electron beam welding(EBW)and friction stir welding(FSW)processes,and to correlate microstructure with observed mechanical properties of the welds.

    Fig.2.Macroscopic appearance of the high nitrogen stainless steel welds(a)SMAW;(b)GTAW;(c)EBW and(d)FSW.

    Table 1Composition of the base metal(HNS),electrode(Cr-Mn-N)and filler(MDN 250).

    Table 2Welding parameters using shielded metal arc welding.

    Table 3Welding parameters using gas tungsten arc welding.

    Table 4Welding parameters using electron beam welding.

    Table 5Welding parameters using friction stir welding.

    2.Experimental details

    Nickel free high nitrogen austenitic stainless steel(HNS)plates of size(500 mm×150 mm×5 mm)in wrought form were used in the present study.Weld joint design for SMAW and GTAW processes is shown in Fig.1 and the welds made with various processes were shown in Fig.2.Electrode of near matching composition of Cr-Mn-N type is used for the shielded metal arc welding process. Gas tungsten arc welding was made with standard high strength nickel based(18Ni)MDN 250 filler as no suitable fillers are available.Autogenous welds were made using electron beam welding and friction stir welding was carried out using tungsten-molybdenum(W-Mo)tool.The composition of the base metal and filler wires are given in Table 1.After having several experiments,welding parameters were optimized and we have obtained a sound weld free from defects.Optimized welding parameters of all the welding processes are given in Tables 2-5. Microstructural studies were conducted at various zones of the welds using optical microscopy and scanning electron microscopy. Orientation image mapping studies were performed with electron backscatter diffraction(EBSD)method to observe the orientation of the grains and phase analysis maps in various zones of the welds. Tensile testing is carried out using a universal testing machine at room temperature and specimens were prepared as per ASTM-E8 standard.Microhardness values were recorded towards the longitudinal directions of the weld with a load of 0.5 kgf for 20 seconds as per ASTM E384-09 standards using Vickers hardness tester.Face bend testing of the material was conducted to observe the crack development to know the ductile nature of the weld as per ASTM E190-92 standards.

    3.Results and discussion

    3.1.Microstructure

    3.1.1.Base metal

    Nickel free high nitrogen steel plates in cold worked condition is observed to have equiaxed fine grains of austenite and annealing twins at the grain boundaries as shown in Fig.3.In the cold worked condition,high nitrogen steel has a concurrent twinning and slip in austenite.High nitrogen steel,in general,shows a planar slip and pronounced twinning.The twin deformation in austenite is related to the stacking fault energy of the material.In nickel containing Cr-Ni steels,the stacking fault energy does not decrease with increasing nitrogen content.However,in Ni free high nitrogen steels there is a decrease in stacking fault energy with increasing N content.In high nitrogen steel,a decrease in stacking fault energy with N enhances the formation of deformed band structure.These bands have high dislocation density and do not undergo dynamic recovery.Hence,nitrogen gives more strengthening to Ni free Cr-Mn steel than Ni containing steels[9].Grain orientation mapping and phase analysis maps of the nickel free high nitrogen steel is observed to have fine grain morphology and single phase austenite was observed and is shown in Fig.4.

    3.1.2.Weld microstructure

    Microstructural changes and solidification mode of high nitrogen austenitic stainless steel welds are determined on various factors like chemical composition of the electrode/filler and welding process.Heat input and cooling rates of the welding process may in fluence the dilution of the weld.Based on cooling rates,the extent of dilution also varies in the welds.Filler wire,which differs from base metal composition,also alters the solidification mode and extent of dilution[10].Welds made with shielded metal arc welding using Cr-Mn-N type electrode have high heat input and slow cooling rate,resulting in weld metal microstructure as fully austenitic and coarse dendritic grains,as shown in Fig.5.

    Fig.3.Microstructure of base metal high nitrogen steel:(a)optical microscopy;(b)scanning electron microscopy.

    Fig.4.Grain orientation,OIM maps and phase analysis of high nitrogen steel(base metal).

    Solidi fication mode as fully austenite structure in the weld metal of shielded metal arc welds is attributed to the high amount of chromium and manganese,which helps improve the solubility of nitrogen,enhancing the austenite phase stability.At the weld interface,along the fusion boundary towards the base metal, transition of coarse grains to fine grains was observed and is shown in Figs.5-7.

    Fig.5.Optical micrographs of high nitrogen steel SMA welds made with Cr-Mn-N electrode:(a)weld interface,(b)heat affected zone,(c)fusion zone.

    The weld microstructure has a maximum austenite structure due to the dilution of adjacent base metal that has nitrogen,which is completely soluble in the solid solution.Scanning electron micrographs shown in Fig.6 clearly revealed the evidence for coarsening of austenite.In Fig.7,the grain orientation and phase analysis maps in the weld metal and weld interface of SMA weld clearly revealed coarse grain orientation at the weld zone and coarsegrains to fine grain transition at the weld interface.Even though the SMAW process can be used in welding most of the structural components,problems like increased width of weld zone and excess deposition rate of electrode and spattering lead to nonuniform and poor quality of the weld joint.The above problems can be overcome by using gas tungsten arc welds where control of filler metal deposition,brighter arc than SMAW and decreased width of weld zone can be achieved.GTA welds of high nitrogen steel made with high strength nickel based filler(18Ni)MDN 250 filler resulted in a continuous network of island pools of reverted austenite in the martensite matrix and clearly observed to be having elongated and coarse grains,as shown in Figs.8-10.Weld microstructure of GTA weld is attributed to the presence of nickel and cobalt as austenite stabilizers.The rate of heating and cooling during welding affects the microstructure and composition of fusion welds of high nitrogen steel[11].Unmixed zone formation is observed for the welds made with MDN 250 filler.This zone exists along the fusion line and between the partially melted zone and the weld metal.Unmixed zone is a boundary layer near the fusion line in which the base metals melt and re-solidify during welding without mechanically mixing with the filler wire and base metal [12].The width of the unmixed zone depends on the local thermalconditions along the weld fusion line which can be seen in Figs.8(c) and 9(c).In Fig.10,grain orientation maps for the welds made with gas tungsten arc welding are observed to have an elongated coarse grain orientation.Isolated pore in the weld metal near the fusion boundary was observed due to the entrapment of nitrogen gas pores during welding.GTAwelds have achieved decreased width of weld zone due to the square butt joint when compared to SMA welds having single V joint,but due to the variation of the filler wire composition to the base metal resulted in unmixed zone along the fusion boundary adjacent to the base metal,which is not desirable for obtaining the better combination of properties. Electron beam welding is an effective autogenous welding process to produce a high precision weld joint with a narrow width of the weld zone and is attributed to low heat input and faster cooling rates.Weld metal microstructure of the electron beam welds is solidi fied as a mixture of austenite matrix and delta ferrite dendrites and is due to rapid cooling as shown in Figs.11 and 12.At the weld interface of electron beam welds,formation of elongated coarse grains of austenite is observed in Figs.11 and 12.

    Fig.6.SEM images of high nitrogen steel welds made with Cr-Mn-N electrode:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.7.Grain orientation,OIM maps and phase analysis of high nitrogen steel SMA weld.

    Fig.8.Optical micrographs of high nitrogen steel GTA welds made with MDN 250 filler:(a)weld interface,(b)fusion zone,(c)heat affected zone.

    Fig.9.SEM images of high nitrogen steel welds made with MDN 250 filler:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    In Fig.13 grain orientation maps and phase analysis maps of the high nitrogen stainless steel made with electron beam welding process have a fine grain orientation at the weld zone,and at theweld interface,formation of coarse grain heat affected zone is observed.Different phases were analysed using phase maps and recorded the percentage of delta ferrite and austenite,and also determined the distribution of the ferrite in the matrix.It can be seen in Fig.13 that the delta ferrite is distributed as a discontinuous network of fine dispersed delta ferrite in the austenite matrix. Electron beam welds are observed as high quality weld joints with narrow width of weld joint and better compared to SMA and GTA welds,but the presence of delta ferrite prompt to affect the performance of the weld joint signi ficantly.As discussed above, problems during fusion welding process such as nitrogen desorption,solidification cracking,liquation cracking and porosity can be avoided by the solid state joining,i.e.,friction stir welding where no melting takes place and sound welds with high quality weld joint can be achieved.

    Fig.10.Grain orientation,OIM maps and phase analysis of high nitrogen steel GTA weld.

    Fig.11.Optical micrographs of high nitrogen steel EB welds:(a)macrograph,(b)fusion zone,(c)weld interface.

    Friction stir welds of high nitrogen steel made with tungsten-molybdenum(W-Mo)tool has resulted in fine recrystallized grains of austenite due to severe plastic deformation.Weld nuggetmicrostructure of the friction stir welds has an equiaxed and homogenous austenite grain structure,as shown in Figs.14-16.At the weld interface,relatively coarse grains were observed when compared to weld nugget,as shown in Fig.14.In Fig.16 grain orientation and phase analysis maps clearly revealed the formation of fine recrystallized grains and phase maps also gave evidence for single phase austenite microstructure in the weld nugget.

    Fig.12.SEM images of high nitrogen steel welds made with EBW:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.13.Grain orientation,OIM maps and phase analysis of high nitrogen steel EB weld.

    3.2.Mechanical properties

    Strengthening has been generally observed by addition of nitrogen in steels.Nitrogen is a strong austenite stabilizer and reduces the requirement of nickel and improves microstructural stability and resistance to deformation induced martensite.

    Improvement in the strength of high nitrogen stainless steel is

    influenced by solid solution hardening and decrease in stacking fault energy[13].In nickel free high Cr-Mn-N steels,the decrease in stacking fault energy enhances the formation of mechanical twins that enhances strength.Nitrogen containing austenitic stainless steels show high impact toughness and this is attributed to the fact that nitrogen does not induce void nucleation sites in the steel[2].However,increasing nitrogen content enhances strength and retains impact toughness.Hence,nickel free high nitrogen austenitic stainless steels have the optimum combination of strength,ductility and toughness.Welding process may in fluence the mechanical properties of high nitrogen steel signi ficantly.Factors like heat input,cooling rate,electrode/filler wire composition lead to microstructuralchanges due to varying thermal cycles in the weld joints.In Fig.17,face bend ductility tests were performed on welds and ductile joints were observed,and welds did not fail even for bending at 180°at a bend radius of 16 mm.Hardness survey is shown in Fig.18 and it is clearly evident that friction stir welds have high strength when compared to fusion welds.Tensile tests were performed and failed specimens are shown in Fig.19 and all the welds failed at the centre of the weld joint.Tensile properties were given in Table 6.From the observed tensile data,it is observed that shielded metal arc welds exhibited poor strength and it is attributed to high input during welding and coarse dendritic structure in the weld metal.Gas tungsten arc welds have recorded moderate strength but there is presence of elongated island pools,and formation of unmixed zone at the fusion boundary is having more coarse grains even though contains the chemical composition similar to base metal and not favourable for overall performance of the weld joint.Although electron beam welds have obtained maximum strength compared to other welds,ductility has been observed to be low when compared to base metal and it may be due to the presence of delta ferrite in the austenite matrix.In friction stir welds,the high strength and ductility were obtained and they are attributed to fine recrystallized austenite grains.Among all the

    welds investigated,high nitrogen steel welds made with friction stir welding exhibited high hardness,tensile strength and improvement in ductility as shown in Table 6.From Figs.19-23,it is evident that all the fractographs of the welds were observed as ductile failure.Hence,improved mechanical properties are obtained in friction stir welds when compared to fusion welds.This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

    Fig.14.Optical micrographs of high nitrogen steel FS welds made with W-Mo tool:(a)macrograph,(b)nugget zone,(c)heat affected zone.

    Fig.15.SEM images of high nitrogen steel FS welds made with W-Mo tool:(a)base metal,(b)fusion zone,(c)weld interface,(d)heat affected zone.

    Fig.16.Grain orientation,OIM maps and phase analysis of high nitrogen steel friction stir weld.

    Fig.17.Face bend specimens of nickel free high nitrogen steel welds.

    Fig.18.Vickers hardness values of nickel free high nitrogen steel welds.

    Fig.19.Fracture features of tensile specimens of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Table 6Tensile properties and hardness values of nickel free high nitrogen steel welds.

    Fig.20.Fracture features of tensile specimens of SMA welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Fig.21.Fracture features of tensile specimens of GTA welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Fig.22.Fracture features of tensile specimens of EB welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    4.Conclusions

    1)SMA welds made using Cr-Mn-N electrode have a fully coarse austenite dendritic structure and are due to the presence of chromium and manganese,which help in complete solubility of nitrogen in the weld metal.SMA welds resulted in reduction in strength and ductility and it is attributed to coarse dendritic structure.

    2)GTA welds made using MDN 250 filler has resulted in reverted austenite island pools in the martensite matrix.Unmixed zone is formed adjacent to the weld metal due the variation in base metal and filler wire composition.GTA welds have moderate strength and ductility.

    3)Autogenous EB welds were observed to have narrow width of weld zone and discontinuous network of delta ferrite in the austenite matrix.It has high strength and improvement in ductility.

    4)Friction stir welds made with tungsten-molybdenum(W-Mo) tool resulted in high strength and ductility and it is due to recrystallized fine grain austenite structure in the weld nugget.

    5)Improved mechanical properties are obtained in friction stir welding when compared to fusion welds.This is attributed tothe refined microstructure consisting of equiaxed and homogenous austenite grains.Hence,friction stir welding is recommended as best welding process when compared to all fusion welding processes to achieve improved mechanical properties.

    Fig.23.Fracture features of tensile specimens of FS welds of nickel free high nitrogen steel:(a)tensile failed specimen;(b)SEM fractograph and(c)stress-strain curve.

    Acknowledgment

    The authors would like to thank the Director of Defence Metallurgical Research Laboratory Hyderabad,India,for his continued encouragement and permission to publish this work.

    [1]Reed RP.Nitrogen in austenitic stainless steels.J Met 1989;41(3):16.

    [2]Speidel MO.Properties and applications of high-nitrogen steels.In:Foct J, Hendry A,editors.Proc.Int.Conf.High-Nitrogen Steels,HNS 88,held in Lille, France,May 1988.London,England:The Institute of Metals;1989.p.92.

    [3]Byrnes ML,Grujicic M,Owen WS.Nitrogen strengthening of stable austenitic stainless steel.Acta Metall 1987;35(7):1853.

    [4]Menzel J,Stein G,Dahlmann P.Massively nitrogen-alloyed austenitic bolt materials for high-strength and high-temperature applications.In:Foct J, Hendry A,editors.Proc.Int.Conf.High-Nitrogen Steels,HNS 88,held in Lille, France,May 1988.London,England:The Institute of Metals;1989.p.147.

    [5]Rawers JC,Dunning JS,Asai G,Reed RP.Characterization of stainless steels melted under high nitrogen pressure.Metall Trans A 1992;23A:2061.

    [6]Rawers JC,Asai G,Doan R,Dunning JS.Mechanical and microstructural properties of nitrogen-high pressure melted Fe-Cr-Ni alloys.J Mater Res 1992;7(5):1083.

    [7]Speidel MO,Uggowitzer PJ.Stickstof flegierte Stahle,Ergebnisse der Werkstoff Forschung Band 4.Zurich:Thubal-Kain;1991.

    [8]Werner E.Solid solution and grain size hardening of nitrogen alloyed austenitic steels.Mater Sci Eng A 1988;101:93.

    [9]Gavriljuk VG,Berns H.High nitrogen steels.Springer;1999.p.82.

    [10]Davis JR.Corrosion of weldments.ASM International;2006.p.1.

    [11]Ghali E,Sastri VS,Elboujdaini M.Corrosion prevention and protection:practical solutions.Wiley;2009.p.380.

    [12]Namjou A,Dehmoloei R,Ashra fiA.Int J Nat Eng Sci 2014:22-8.

    [13]Mathew MD,Srinivasan VS.Mechanical properties of nitrogen bearing steels. 2006.p.182.

    *Corresponding author.

    E-mail address:arunaraok@gmail.com(K.Srinivasa Rao).

    Peer review under responsibility of China Ordnance Society.

    三上悠亚av全集在线观看| 久久精品国产亚洲av天美| 久久99热这里只频精品6学生| 国产精品偷伦视频观看了| 在线看a的网站| 人成视频在线观看免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 王馨瑶露胸无遮挡在线观看| 精品久久久精品久久久| 国产一区二区在线观看日韩| 国产白丝娇喘喷水9色精品| 91成人精品电影| 简卡轻食公司| 高清av免费在线| www.色视频.com| 久久精品国产自在天天线| 欧美亚洲 丝袜 人妻 在线| 伊人亚洲综合成人网| 欧美xxⅹ黑人| 欧美日韩综合久久久久久| 国产精品99久久久久久久久| av视频免费观看在线观看| 午夜影院在线不卡| 涩涩av久久男人的天堂| 国产成人一区二区在线| 国产极品天堂在线| 亚洲欧洲日产国产| 夜夜骑夜夜射夜夜干| 99热全是精品| 国产色婷婷99| 国产有黄有色有爽视频| 久久国产精品男人的天堂亚洲 | 飞空精品影院首页| 成年女人在线观看亚洲视频| 一级毛片黄色毛片免费观看视频| 如日韩欧美国产精品一区二区三区 | 母亲3免费完整高清在线观看 | 久久精品国产鲁丝片午夜精品| 在线观看人妻少妇| www.av在线官网国产| 亚洲第一区二区三区不卡| 国产精品无大码| av又黄又爽大尺度在线免费看| 人人妻人人添人人爽欧美一区卜| 人妻少妇偷人精品九色| 亚洲国产精品国产精品| 一区二区日韩欧美中文字幕 | 精品一品国产午夜福利视频| 欧美三级亚洲精品| 国产一区二区在线观看av| 成人影院久久| 人妻少妇偷人精品九色| 老女人水多毛片| 亚洲性久久影院| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 综合色丁香网| 曰老女人黄片| 日本91视频免费播放| 亚洲在久久综合| 满18在线观看网站| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 国产精品久久久久久精品电影小说| 中文字幕制服av| av专区在线播放| 国产午夜精品一二区理论片| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 亚洲国产欧美在线一区| 免费观看的影片在线观看| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 国产成人精品在线电影| 狠狠婷婷综合久久久久久88av| 国产精品国产三级专区第一集| 国产av码专区亚洲av| 久久精品国产亚洲网站| 人妻人人澡人人爽人人| 亚洲精品色激情综合| 黑人欧美特级aaaaaa片| 一区二区三区精品91| 男女免费视频国产| 亚洲经典国产精华液单| 欧美激情 高清一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 性色av一级| 欧美日韩av久久| 麻豆精品久久久久久蜜桃| 三级国产精品片| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 国产成人freesex在线| 黄色欧美视频在线观看| 成年av动漫网址| 亚洲国产成人一精品久久久| 国产69精品久久久久777片| 欧美日韩av久久| 亚洲精品第二区| 亚洲五月色婷婷综合| 97精品久久久久久久久久精品| 一区二区三区乱码不卡18| 美女福利国产在线| 精品少妇久久久久久888优播| 日本免费在线观看一区| 99视频精品全部免费 在线| 人体艺术视频欧美日本| 久久女婷五月综合色啪小说| 伊人久久国产一区二区| 一区二区三区乱码不卡18| 91在线精品国自产拍蜜月| 丰满乱子伦码专区| 青春草亚洲视频在线观看| 色视频在线一区二区三区| 五月玫瑰六月丁香| 亚洲精品自拍成人| a级毛片在线看网站| 日韩制服骚丝袜av| 久久午夜福利片| 免费黄频网站在线观看国产| 最新的欧美精品一区二区| 日本av手机在线免费观看| 在线亚洲精品国产二区图片欧美 | 草草在线视频免费看| 啦啦啦视频在线资源免费观看| 成年av动漫网址| 亚洲精品一二三| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 天堂8中文在线网| 狂野欧美白嫩少妇大欣赏| 亚洲第一av免费看| 中文字幕人妻丝袜制服| 国产成人91sexporn| 亚洲精品av麻豆狂野| 国产69精品久久久久777片| 国产精品国产av在线观看| 国产免费福利视频在线观看| www.色视频.com| 亚洲一级一片aⅴ在线观看| 日日爽夜夜爽网站| 国产爽快片一区二区三区| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 精品久久国产蜜桃| 日本欧美国产在线视频| 国产亚洲av片在线观看秒播厂| 国产在线视频一区二区| 日本色播在线视频| 少妇的逼好多水| 日韩免费高清中文字幕av| 亚洲精品乱码久久久v下载方式| 伊人久久精品亚洲午夜| 视频在线观看一区二区三区| 中国三级夫妇交换| 国产亚洲精品久久久com| 乱人伦中国视频| 午夜视频国产福利| freevideosex欧美| 黄片播放在线免费| 高清毛片免费看| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 婷婷色综合www| 国产亚洲精品第一综合不卡 | 国产精品不卡视频一区二区| 伊人亚洲综合成人网| 国产国拍精品亚洲av在线观看| 一二三四中文在线观看免费高清| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 人人妻人人澡人人看| 视频中文字幕在线观看| 亚洲av不卡在线观看| 99re6热这里在线精品视频| 欧美精品一区二区免费开放| 综合色丁香网| 麻豆精品久久久久久蜜桃| 久久久欧美国产精品| 伊人亚洲综合成人网| 精品久久国产蜜桃| 久久精品国产亚洲网站| 欧美激情极品国产一区二区三区 | 色婷婷av一区二区三区视频| 国模一区二区三区四区视频| 中文字幕人妻熟人妻熟丝袜美| 99国产综合亚洲精品| 国产伦精品一区二区三区视频9| 精品国产国语对白av| 日本91视频免费播放| 国产成人精品久久久久久| 国产精品人妻久久久影院| 国产精品欧美亚洲77777| 国产精品免费大片| 国产精品国产三级国产av玫瑰| 久久午夜综合久久蜜桃| 亚洲精品av麻豆狂野| 91精品国产国语对白视频| 一级毛片我不卡| 男人爽女人下面视频在线观看| 欧美xxxx性猛交bbbb| 18禁观看日本| 在线观看一区二区三区激情| 另类亚洲欧美激情| 丁香六月天网| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av天美| 人人妻人人爽人人添夜夜欢视频| 日韩制服骚丝袜av| 高清欧美精品videossex| 一级爰片在线观看| 国产成人精品一,二区| 国产精品久久久久成人av| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 九色成人免费人妻av| 能在线免费看毛片的网站| 老熟女久久久| 国产免费现黄频在线看| 亚洲精品日韩av片在线观看| 人人妻人人添人人爽欧美一区卜| 国产视频内射| 免费人成在线观看视频色| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 美女内射精品一级片tv| 国产69精品久久久久777片| 日韩欧美一区视频在线观看| 人人妻人人澡人人看| 最近的中文字幕免费完整| 亚洲成色77777| 国产片内射在线| videos熟女内射| 久久99蜜桃精品久久| 高清欧美精品videossex| 一个人看视频在线观看www免费| 亚州av有码| 亚洲国产精品成人久久小说| 老女人水多毛片| 精品人妻在线不人妻| 日韩,欧美,国产一区二区三区| 在线天堂最新版资源| 免费av中文字幕在线| 久久久久久久大尺度免费视频| 亚洲av欧美aⅴ国产| av卡一久久| 少妇的逼水好多| 女人精品久久久久毛片| 国模一区二区三区四区视频| a 毛片基地| 免费黄网站久久成人精品| 国产av一区二区精品久久| 日本色播在线视频| 丰满饥渴人妻一区二区三| 精品午夜福利在线看| 性色av一级| 永久网站在线| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 亚洲精华国产精华液的使用体验| xxx大片免费视频| 熟妇人妻不卡中文字幕| 美女主播在线视频| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 午夜免费鲁丝| 欧美日韩亚洲高清精品| 三上悠亚av全集在线观看| 伊人久久国产一区二区| 日日啪夜夜爽| 一区二区日韩欧美中文字幕 | 免费黄网站久久成人精品| 国产欧美亚洲国产| 成人黄色视频免费在线看| 男女国产视频网站| 国产亚洲一区二区精品| 国产毛片在线视频| 汤姆久久久久久久影院中文字幕| 欧美少妇被猛烈插入视频| 蜜桃国产av成人99| 免费大片黄手机在线观看| 久久人人爽人人爽人人片va| 欧美精品高潮呻吟av久久| 婷婷色麻豆天堂久久| 性色avwww在线观看| 国产不卡av网站在线观看| 亚洲精品自拍成人| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 人妻一区二区av| 有码 亚洲区| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 人成视频在线观看免费观看| 男人爽女人下面视频在线观看| 欧美日韩综合久久久久久| 国产高清有码在线观看视频| a级片在线免费高清观看视频| 欧美精品国产亚洲| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| av黄色大香蕉| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 3wmmmm亚洲av在线观看| 久久久久久久大尺度免费视频| 大香蕉久久成人网| 麻豆乱淫一区二区| 午夜日本视频在线| 一级黄片播放器| 天天操日日干夜夜撸| 精品久久久精品久久久| 九九在线视频观看精品| 欧美日韩国产mv在线观看视频| 十八禁网站网址无遮挡| 亚洲av电影在线观看一区二区三区| 欧美97在线视频| 久久久久久伊人网av| 久久久久久久国产电影| 最新的欧美精品一区二区| 黄色视频在线播放观看不卡| 免费观看av网站的网址| 婷婷色综合www| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| av线在线观看网站| 天天操日日干夜夜撸| 美女xxoo啪啪120秒动态图| 国产亚洲av片在线观看秒播厂| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 亚洲美女搞黄在线观看| 久久人妻熟女aⅴ| 一级二级三级毛片免费看| 精品亚洲成国产av| 日本-黄色视频高清免费观看| 亚洲av电影在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| 久久久国产一区二区| 亚洲五月色婷婷综合| 亚洲,欧美,日韩| 日韩制服骚丝袜av| 少妇 在线观看| 热99久久久久精品小说推荐| av播播在线观看一区| 午夜福利视频精品| 亚洲av成人精品一区久久| 这个男人来自地球电影免费观看 | 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 各种免费的搞黄视频| 99热全是精品| 色网站视频免费| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 久久ye,这里只有精品| 亚洲人成网站在线观看播放| av一本久久久久| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放| 久久 成人 亚洲| 亚洲中文av在线| 国产av国产精品国产| 不卡视频在线观看欧美| 午夜福利视频精品| .国产精品久久| 欧美日韩国产mv在线观看视频| 老司机影院毛片| 99久久综合免费| 免费高清在线观看日韩| 国产在视频线精品| 国产免费一级a男人的天堂| 五月天丁香电影| 精品熟女少妇av免费看| 亚洲精品日本国产第一区| 成年美女黄网站色视频大全免费 | 亚洲精品乱码久久久久久按摩| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 国产日韩欧美视频二区| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 2022亚洲国产成人精品| 国产69精品久久久久777片| 制服诱惑二区| 三上悠亚av全集在线观看| 最新中文字幕久久久久| 黑人巨大精品欧美一区二区蜜桃 | 男女高潮啪啪啪动态图| a级毛色黄片| 黑丝袜美女国产一区| 亚洲综合色惰| 亚洲国产色片| 欧美+日韩+精品| 9色porny在线观看| 日韩,欧美,国产一区二区三区| 中文字幕av电影在线播放| 五月开心婷婷网| 精品国产国语对白av| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 国产免费福利视频在线观看| 少妇 在线观看| 亚洲精品,欧美精品| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟人妻熟丝袜美| 爱豆传媒免费全集在线观看| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 嫩草影院入口| 成年美女黄网站色视频大全免费 | 国产乱来视频区| 色网站视频免费| 亚洲av免费高清在线观看| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| 成人国产麻豆网| 91成人精品电影| 大片电影免费在线观看免费| 日日摸夜夜添夜夜添av毛片| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 母亲3免费完整高清在线观看 | 看免费成人av毛片| 18禁在线播放成人免费| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 久久久久精品性色| 免费看光身美女| 免费av中文字幕在线| 18禁动态无遮挡网站| 日本av免费视频播放| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站| 性色avwww在线观看| 天堂俺去俺来也www色官网| 丰满饥渴人妻一区二区三| 美女主播在线视频| 午夜福利视频在线观看免费| 精品久久国产蜜桃| 欧美激情国产日韩精品一区| 好男人视频免费观看在线| 寂寞人妻少妇视频99o| 国产 精品1| av播播在线观看一区| 国产爽快片一区二区三区| 国产精品国产三级国产av玫瑰| 秋霞伦理黄片| 91在线精品国自产拍蜜月| 色网站视频免费| 美女国产高潮福利片在线看| 亚洲精品,欧美精品| 蜜桃久久精品国产亚洲av| 黑人高潮一二区| 久久久精品免费免费高清| 天美传媒精品一区二区| 国产有黄有色有爽视频| 51国产日韩欧美| 男人操女人黄网站| 丁香六月天网| 国产视频首页在线观看| 性高湖久久久久久久久免费观看| 国产亚洲精品久久久com| 亚洲精品日韩在线中文字幕| 99热这里只有精品一区| 欧美精品国产亚洲| 99re6热这里在线精品视频| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 久久精品久久久久久久性| 九九久久精品国产亚洲av麻豆| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 色网站视频免费| 国产精品99久久99久久久不卡 | 欧美成人精品欧美一级黄| 一级毛片 在线播放| 考比视频在线观看| 久久国产亚洲av麻豆专区| 国产成人精品久久久久久| 麻豆乱淫一区二区| 国产一区二区在线观看av| 精品一品国产午夜福利视频| 久久97久久精品| 午夜福利在线观看免费完整高清在| 狂野欧美白嫩少妇大欣赏| 少妇被粗大猛烈的视频| 青春草视频在线免费观看| 视频中文字幕在线观看| 免费观看av网站的网址| 久久精品久久久久久久性| 99热网站在线观看| 亚洲人成网站在线观看播放| 免费观看无遮挡的男女| 在线看a的网站| 久久久精品区二区三区| 色吧在线观看| 尾随美女入室| 丰满少妇做爰视频| 亚洲精品自拍成人| 久久久久久久久久久丰满| √禁漫天堂资源中文www| 岛国毛片在线播放| 日韩亚洲欧美综合| 欧美精品一区二区免费开放| 少妇精品久久久久久久| 综合色丁香网| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 在线播放无遮挡| 亚洲国产最新在线播放| 亚洲国产精品一区二区三区在线| 91精品国产九色| 亚洲国产欧美在线一区| 国产毛片在线视频| 免费观看的影片在线观看| 黄片无遮挡物在线观看| 久久久久久久亚洲中文字幕| 午夜免费鲁丝| 我的老师免费观看完整版| 超碰97精品在线观看| 亚洲av.av天堂| 国产成人午夜福利电影在线观看| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡| 精品亚洲乱码少妇综合久久| 中国国产av一级| 99视频精品全部免费 在线| 亚洲欧美中文字幕日韩二区| 国产黄频视频在线观看| 欧美精品高潮呻吟av久久| 黄色怎么调成土黄色| 成年美女黄网站色视频大全免费 | 亚洲综合色惰| 亚洲无线观看免费| 亚洲四区av| 亚洲美女黄色视频免费看| 91成人精品电影| 国产综合精华液| 国产av码专区亚洲av| 人妻系列 视频| 女人精品久久久久毛片| 欧美人与善性xxx| 国内精品宾馆在线| 3wmmmm亚洲av在线观看| 久热这里只有精品99| 少妇猛男粗大的猛烈进出视频| 久久99一区二区三区| 晚上一个人看的免费电影| 一级片'在线观看视频| 九草在线视频观看| 在线 av 中文字幕| 亚洲欧美成人综合另类久久久| 国产av一区二区精品久久| 国产精品久久久久久av不卡| 2022亚洲国产成人精品| 久久久国产欧美日韩av| 亚洲精品久久午夜乱码| 久久久久久久久久久久大奶| 亚洲美女搞黄在线观看| 国产片内射在线| 九九在线视频观看精品| 欧美亚洲日本最大视频资源| 国产成人精品婷婷| 久久精品人人爽人人爽视色| 日韩 亚洲 欧美在线| 极品人妻少妇av视频| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| av播播在线观看一区| 一个人免费看片子| 免费观看性生交大片5| 人成视频在线观看免费观看| 熟妇人妻不卡中文字幕| 国产精品一区二区在线不卡| 欧美日韩一区二区视频在线观看视频在线| 三级国产精品片| 亚洲av福利一区| 九草在线视频观看| 久久精品夜色国产| 一本—道久久a久久精品蜜桃钙片| 伦精品一区二区三区| 五月天丁香电影| 久久精品久久久久久噜噜老黄| 免费看不卡的av| 亚洲av免费高清在线观看| 午夜av观看不卡| 亚洲三级黄色毛片| 一区二区三区免费毛片| 国产精品无大码| 99久久精品一区二区三区| 午夜91福利影院| 国产熟女午夜一区二区三区 | 欧美日本中文国产一区发布| 日韩 亚洲 欧美在线| 亚洲一级一片aⅴ在线观看| 黄色配什么色好看| 少妇人妻精品综合一区二区| 成人国语在线视频| 少妇高潮的动态图| 青春草国产在线视频| 少妇的逼好多水| 美女脱内裤让男人舔精品视频| 国产一级毛片在线| 国国产精品蜜臀av免费|