• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground State Properties of Z=126 Isotopes within the Relativistic Mean Field Model?

    2017-05-18 05:56:52QiXinYu余圻昕JunQingLi李君清andHongFeiZhang張鴻飛SchoolofNuclearScienceandTechnologyLanzhouUniversityLanzhou730000China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:性別比喉罩插管

    Qi-Xin Yu(余圻昕),Jun-Qing Li(李君清),and Hong-Fei Zhang(張鴻飛)School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China

    2College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    3Institute of Modern Physics,Chinese Academy of Science,Lanzhou 730000,China

    4Department of Physics,Tianshui Normal University,Tianshui 741001,China

    1 Introduction

    Highlights from superheavy element research in the past 10 years include the synthesis of new elements up to Z=118,and there is an indication that a gradual onset of increasing stability for isotopes with Z>111.[1]Back in the 1960s,various theoretical calculations have predicated the next doubly shell closures beyond208Pb at proton number Z=114 or 126,and at neutron numberN=184.[2?4]Up to now,superheavy elements(SHEs)with charge number Z 6 118 have been produced via coldfusion reactions with Pb or Bi as targets[5?7]or hot-fusion reactions with48Ca as projectiles.[8?9]Furthermore,there are also some attempts to synthesize superheavy nuclei(SHN)with Z>118 to determine whether the magic proton number exist at Z=114 or at higher proton numbers Z=120–126.[10]So studying the ground state properties of Z=126 in this work shows much more importance for the understanding of nuclear structure.However,it is hard to find any consensus or semblance results among different theories with regard to the ground state properties of SHN,plenty of predictions have been made about the stability of nuclei and the possible magic numbers of proton and neutron in superheavy nuclear region.In the last few decades,the relativistic mean field theory(RMF)has been developed and applied by quantity of authors.Serot and Walecka etal.gave the detailed reviews for RMF theory,[11?12]and the great progress was maken for RMF recently.[13?16]It is noteworthy that predictions have been made about Z=126 in Refs.[17–21].Skyrme–Hartree–Fock method and a macroscopic-microscopic model have been applied for the study of SHN,and they predicted Z=114,120 or 126 as the proton magic number andN=172 or 184 as the neutron magic number.Thus,it is essential to have a fully understanding of the properties of nuclei in this region.

    It is noteworthy that the“island of stability of superheavy nuclei”is rather sensitive to the models and parameters of the theories.The RMF theory has already been used to calculate the properties for SHN[19,22?23]successfully,especially in Refs.[24–27],the experimental data of SHN have been reproduced by RMF with the parameters NL-Z2 and some valuable predictions are provided.

    The aim of this work is to investigate the ground state properties of Z=126 isotopic chain and check whether Z=126 is the proton magic number.The framework of RMF will be outlined in Sec.2,and the calculations of the ground state properties of Z=126,including binding energies,isotopic shifts,two-nucleon separation energies,α decay energies,pairing energies and quadrupole deformations will be discussed in Sec.3.Section 4 summarizes the main conclusions.

    2 Theoretical Framework

    We start the RMF theory from the Lagrangian density,whereby nucleons are described as Dirac spinors interacting by the exchange of mesons:isoscalar mesons(σ),isoscalar vector mesons(ω),isovector vector mesons(p).Because of the particular details of RMF can be found in Refs.[28–29],we will present the essential formalism and equations for fi nite nuclei,

    where isovector quantities are indicated by letters with arrow bars.The field for the σ-meson is denoted by σ,that of the ω-meson by ω and of the isovectorp-meson by.M,mσ,mωandpare the nucleon,the σ-,the ωand thep-meson masses respectively,while gσ,gω,gpand e2/4π=1/137 are the coupling constants for the mesons and photon.On the other hand,the lagrangian contains a nonlinear potential proposed by Boguta and Bodmer,[30]which is essential for appropriate description of surface properties,

    The field tensors for the vector mesons and the electromagnetic field take the following forms:

    The equations of motion for these fields are derived with the classical variational method,and the Dirac equation for the nucleons and the Klein–Gordan equations can be written as[28]

    whereps(r)is the scalar density for σ- field:

    the vector densitypν,which is identical to the baryon density:p3indicates the di ff erence between the neutron and proton densities.

    In the present calculations,the contribution of the antiparticles is neglected,i.e.the no sea approximation is proposed.The Dirac equation is taken as:

    where the εiindicates the single particle energies.The e ff ective mass M?(r)for fi nite nuclei dependent on the σ- field is given by:

    Symmetries can simplify the calculations considerably.[28]Because of the time reversal and charge conservation are considered,the spacial components ω,and A vanish,the components of time-like ω0,,and A0left only.Thus,the vector potential V(r)takes the form:

    2.1 一般資料 兩組患者在性別比、年齡、體重等方面比較統(tǒng)計(jì)均無(wú)顯著性差異(P>0.05),見(jiàn)表1。兩組患者喉罩置入與氣管插管均為1次性成功。

    and the proton densitypPfor the photon field:

    The equations of Klein–Gordan with the nucleon densities as sources in Eqs.(5)–(8)for these meson fields can be written as:

    It is noteworthy that the solutions of Dirac equation and Klein–Gordan equations are obtained by expansion in the axially symmetric harmonic oscillator basis with 20 major shells for fermions and bosons respectively.[31,33]It is well known the pairing correlations are crucial for open shell nuclei,which is treated by the BCS theory in this work.The pairing strength for the neutrons and protons are taken as the following forms:[31?32]

    the strength of pairing force is chosen here to reproduce the pairing energy gaps δn,δpin fi nite range droplet model(FRDM),[33]which reproduces all known experimental data of ground state properties and gives good predictions for nuclei far from the β-stable line and the SHN.

    3 Numerical Results and Discussions

    The ground state properties of nucleus,such as the quadrupole deformation β2,the isotopic shift,two-nucleon separation energy S2n,S2p,one-neutron separation energy S1nand α decay energy Qαfor Z=126 isotope with neutron numbersN=174?244 are calculated by RMF with the e ff ective interaction NL-Z2 parameter sets.Also,the radii distributions are obtained,including rnfor neutrons,rpfor protons,and rc=for charge distribution.

    3.1 The Ground State Properties of Isotopes for Z=126 Isotopes

    First of all,the binding energy per nucleon has been shown in Fig.1.A relatively good agreement between the present calculations and the results by the FRDM[33]can be oberved.If we check the two curves more carefully,one can find the deviation of the average energy from the two models is evident from neutron numberN=182 to 192.In order to explore this point in the view of systematics,the quadrupole deformation β2of Z=126 isotopes is plotted in Fig.2.It is very clear that the quadrupole deformations by RMF theory are located at about?0.2 from neutron numberN=182 to 192,but the FRDM predicted spherical deformation values for these nuclei.So one can conclude that the ground-state average energy together the deformation are model dependent.It is notable from Fig.1 that the RMF gives the biggest average binding energy at neutron numberN=184,in contrast,which does not emerge on the curve of FRDM calculations.It indicates the proton number Z=126 withN=184 exhibiting an enhanced stability as compared to the neighbors,[23]i.e.,adding more neutrons will not enhance the stability of nuclei with Z=126.On the other hand,in contrast with FRDM,odd-even e ff ect is clearly observed with RMF theory.

    Fig.1 (Color online)The binding energy per nucleon BE/A of Z=126 isotopes,using the NL-Z2 interaction in RMF(black square)compared with the FRDM calculations.(red circle).

    The isotopic shifts of Z=126 is exhibited in Fig.3.We choose the predicted nucleus310126 with neutron numberN=184 as a reference.However,no obvious kink is observed atN=184.In contrast,a clear kink is obtained atN=208,which is marked with blue dash line as plotted in Fig.3.Interestingly,adding one more neutron atN=208 decrease the size of the nucleus suddenly,implying the large shell e ff ect may exists atN=208 i.e.and the additional neutrons change the distribution of the protons.

    Fig.2 (Color online)Quadrupole deformation β2of Z=126 isotopes by using RMF theory(black square)and from the FRDM predictions(red circle).

    Fig.3 (Color online)The isotopic shifts of Z=126 with respect to a reference nucleus of310126(N=184),which is marked with red lines.

    It is clear that both the S1nand S2nobtained from the RMF show a decreasing trend with an increase of the neutron number.The description of the one-neutron separation energy is clearly seen in a good agreement with the calculations from FRDM except atN=182,193,and 201.Comparatively,the kinks atN=182 and 193 calculated by FRDM as we plotted in Fig.4 show an anomalous behaviour according to the odd-even e ff ects,the RMF gives a more eligibility pattern on the contrary.In Fig.4,the calculation obtained from RMF is exhibited as a function of neutron number fromN=175 toN=244,no obvious kink is observed in the region ofN=181?213 from RMF as compared with FRDM,however,a relatively strong kink of S1nexists at neutron numberN=228,which is indicated as a magic neutron number according to Ref.[22],the calculations in the deformation-constrained RMF demonstrate there also exists a large shell gap atN=228 for nuclei with proton number Z=126 in a deformed con fi guration,this kink is reduced as one proceeds to neutron number atN=229.Also,a kink can be seen atN=232,and it vanishes atN=234.The anomalous behaviors indicate the shell e ff ects may exist in this region.

    Fig.4 (Color online)One-neutron separation energy S1nfor Z=126 isotopes,the black square denote the calculation obtained from RMF and the red circle denote the FRDM calculation,the data from N=181 to N=213 are compared with FRDM.

    Fig.5 The same as Fig.3,but for two-neutron separation energies of Z=126 isotopes.

    Due to the absence of odd-even e ff ects,the S2nvalues obtained by RMF as shown in Fig.5 is better to observe the anomalous behaviour for Z=126 isotopes with neutron numberN=176?244.In general,the RMF and FRDM calculations are consistent with each other.There is no obvious kink in the region ofN=182?220 obtained from RMF,multi-kinks exist atN=220?235 instead.As a whole,if there were attempts for the synthesis of SHN with Z=126,the nuclei with an extremely excess neutrons forN=221,224,229,and 234 are considerable.

    It is well known that α decay is the dominant decay mode for heavy and superheavy nuclei.The α decay energies from the RMF calculations for Z=126 isotopes with even neutron numberN=160?212 are plotted in Fig.6,the predictions by FRDM fromN=180 toN=212 are also shown for comparison.The Qαvalues obtained from RMF are by and large gradually reduced with an increase in neutron number,respectively.We choose the even neutron number to neglect the odd-even e ff ect.Thus,a minimum value is clearly seen atN=162,which indicates an enhanced stability as compared to neighbors.A peak emerges atN=164,it diminishes gradually fromN=164 to 188,and the Qαvalues reach the second minimal point atN=188.Such a decrease in Qαvalues leads to an increase of α-decay half-lives by orders of magnitude.It is expected to exhibit an extra stability and long half-lives for Z=126 withN=188.

    Fig.6 The α decay energies of Z=126 isotopes with even neutron number ranging from 160 to 212,obtained from RMF and FRDM.

    3.2 Comparison of the Nuclear Properties between Z=126 and the Neighborly Isotopes

    Pairing energy can provide a useful information on the stability of a nucleus.For magic nuclei,single-particle levels up to Fermi energy are fully occupied and hence there is no smearing of the Fermi surface.This implicates that pairing energy should vanish in such cases.Thus the peaks at certain location suggest a magicity of nuclei with speci fic proton or neutron numbers.In Fig.7,we have plotted the proton-pairing energies for even-even nuclei with Z=114?130 as a function of Z obtained from the RMF calculations.An evident peak is observed at Z=120 with the bundles of all the curves except the isotones ofN=162.The value of the pairing energies for protons is very small,which indicates the proton pairing at Z=120 is minimal and it provides a signal for a possible magicity of Z=120.However,as compared to the peak at Z=120,a relatively weak peak is barely seen at Z=126 with all the bundles of curves.Furthermore,according to the trend of these curves as shown in Fig.7,all the curves exceptN=172 isotones start going up at Z=128,we thus surmise an enhanced stability maybe exist at Z>128.

    Fig.7 (Color online)The proton pairing energies for the isotones of N=162,164,166,172 and 184 as a function of even proton number ranging from 114 to 130.

    Fig.8 (Color online)The neutron pairing energies for the isotopes of Z=120,122,124,and 126 as a function of even neutron number ranging from 158 to 210.

    The neutron-pairing energies are shown in Fig.8.The values of pairing energies for neutron as a function ofNreduce rapidly atN=184,and the pairing energies exhibit extra large values than we expected due to the relative large deformations as shown in Fig.2.In addition to the kink as we can see atN=184,a prominent peak is observed atN=162 for all the isotopes of Z=120,122,124,and 126,which provides an indication for neutron number atN=162 exhibiting a relatively strong magicity.On the other hand,it is noteworthy that a peak can be clearly seen atN=172 only for Z=120 isotopes.Moreover,the peak is also observed from the corresponding pairing energies for proton as we plotted in Fig.7,and it is the highest peak among all the curves.Furthermore,according to the work in Ref.[17],doubly magic spherical nucleus is demonstrated at Z=120,N=172.Now whereby the results as shown in Figs.7 and 8,which provide more evidence for doubly magic nucleus(Z=120,N=172).However,the strong peak is not observed atN=172 for higher proton numbers above Z=120,this implicatesN=172 turns out not to be a strong magic character beyond Z=120.

    As shown in Fig.9,the binding energy per nucleon for the isotonic chains ofN=162,164,166,172,and 184 obtained from the RMF calculations decrease gradually with an increase in proton number,generally.Since they start to decrease at Z=114 for neutron numberN=162,164,166,and 172,and it should be noticed that all the curves decrease faster in going down to higher atomic number with increasing neutron number,this emphasizes the predominance of the nuclei with higher neutron numbers,which provides a more enhanced stability with an increase of proton number.Moreover,it is noteworthy that the curves forN=172 andN=184 intersect between Z=120 and Z=122,this indicates the prominent stability forN=184 exhibit above Z=122.On the other hand,in this case,it is noted that all the isotonic chains obtain the highest average binding energies at Z=114,a lot of theoretical predictions and experiments have been made about Z=114,a strong magicity is observed for nuclei with Z=114,and it is clear from Fig.9 that the indication is e ff ective for all the neutron numbers in this case.

    Fig.9 (Color online)The binding energy per nucleon for the isotonic chains of N=162,164,166,172,and 184 as a function of even proton number ranging from 114 to 130.

    Based on two-nucleon separation energies S2pand S2n,signi ficant information of nuclear structure can also be obtained in the vicinity of Z=126 isotopes.In Fig.10 the S2pvalues show a monotonous decrease with an increase in proton number for all the isotones expect for a kink ofN=162 that can be seen at Z=128.In addition to the kink forN=166,no clear kink is observed at Z=126 for other isotonic curves.On the contrary,a relatively clear kink is obtained at Z=120 forN=172.It is noted that the zero value of S2pis marked with red dashed line in Fig.10,this suggests it is in the vicinity of proton drip line,where the nuclei with(Z=116N=162),(Z=116N=164),(Z=118N=166),(Z=120N=172),(Z=126N=184)are found.On the other hand,a drastic jump of 5.7 MeV is observed forN=162 from 116 to 118,implying Z=116,N=162 is the proton-drip nucleus forN=162 isotones.

    Fig.10 (Color online)The two-proton separation energies for the isotonic chains of N=162,164,166,172,and 184 as a function of Z,ranging from 116 to 130.

    In general,S2nvalues show a usual decrease with an increase in neutron number as plotted in Fig.11.However,we do observe some primary kinks in the region ofN=160?174.First of all,a strong peak is shown atN=162 for Z=120?124,which indicates a strong magicity forN=162 as we mentioned before.However,the S2nvalues are observed decreasing fast and drastically fromN=162 to 164,and start going up atN=164,a small peak but not to be neglected emerges atN=166.Another notable kink is observed atN=172,the S2nvalues start going down rapidly atN=172,especially for Z=122 instead of Z=120.In contrast with the kink observed atN=172,the kinks can be seen atN=184 only for Z=122,124,and 126.

    To be explicit,we choose310126,304120,292120 as considerable doubly magic nuclei.Instead ofN=162,we chooseN=184 andN=172 as the possible magic neutron number for the reason thatN=162 with Z>118 is in the vicinity of proton-drip line,it is clearly shown in Fig.10.Since all the results indicate there exists strong shell e ff ect at Z=120 and a relatively weak shell e ff ect at Z=126,it is necessary to explore the microscopic structure and the proton single particle energy levels of these possible doubly magic nuclei are plotted in Fig.12.It is noteworthy that a larger shell gap at Z=126 is observed only in the spectrum of nucleus310126,the values that we marked in Fig.12 are 1.271 MeV for310126,0.361 MeV for304120 and 0.014 MeV for292120.In contrast with the gaps appear at Z=126,the larger gaps at Z=120 are obtained in the nuclei304120,292120 for 2.619 MeV,3.144 MeV,respectively.A large shell gap implicates the shell closure may exist at Z=120.Interestingly,in addition to the large gaps appear at Z=114,120,a clear gap is visible at Z=140,moreover,the value of this gap is even larger than the major shell gap at Z=120 in nucleus304120.

    Fig.11 (Color online)The two-neutron separation energies for the isotopic chains of Z=120,122,124,and 126 as a function of N,ranging from 160 to 212.

    Fig.12 (Color online)Single particle energy levels of 310126,304120,292120 near the Fermi surface(red dashed lines)for proton,obtained from the RMF calculations within the set of NL-Z2,and the values of notable gap are marked in the interspace between the involved two levels.

    Fig.13 (Color online)Single particle energy levels of 310126,304120,292120 near the Fermi surface(red dashed lines)for neutron,obtained from the RMF calculations within the set of NL-Z2,and the values of notable gap are marked in the interspace between the involved two levels.

    The corresponding energy levels for neutrons are shown in Fig.13.It is surprising that there is no clear gap atN=172 or 184 in nucleus310126,since plenty of predictions have been made about the magicity of Z=126(N=184).And a major shell gap is observed atN=178,instead.On the other hand,an evident gap is clearly seen atN=172 and 184 in nucleus304120 as well as292120.Moreover,it is evident that for nucleus with Z=120,the neutron number 172 shows a more reliable shell closure than 184.And in this case,as we plot in Fig.13,the nucleus304120 has the larger shell gaps than that of the nucleus310126.As regards to the Z=120(N=184)and Z=120(N=172),the results indicate that the shell closure has a greater chance to be existing atN=172 rather thanN=184.The other two notable gaps are observed atN=182 in nuclei304120 and292120,these two gaps have almost the same values as we obtained atN=184.Thus we can deduce from the results thatN=184 may be the sub-shell associated with the present RMF calculations.

    4 Summary

    We have studied the ground state properties of superheavy nuclei of Z=126 isotopes,and for the purpose of comparison,we have also investigated Z=114–130 isotopes with even neutron numbersN=162,164,166,172,and 184 by the RMF theory.The present results from RMF for Z=126 isotopes are reasonably consistent with the FRDM’s predictions generally.The pairing energies provide a good indication of doubly magic nuclei with Z=120,N=172.The neutron-pairing energies and two-neutron separation energies indicate a possible shell closure atN=162.However Z=126 does not show a strong magicity as we expected,but still exhibits additional stability.As a whole,there is not enough evidence to support the magicity of Z=126 as compared to the neighbors in this work,thus the possible magic proton number has a great chance existing at Z=120 rather than Z=126.

    References

    [1]Ch.E.D¨ullmann,etal.,Nucl.Phys.A 944(2015)1.

    [2]W.D.Myers and W.J.Swiatecki,Nucl.Phys.81(1966)1.

    [3]H.Meldner,Ark.Fys.36(1966)593.

    [4]U.Mosel and W.Greiner,Z.Phys.A 222(1969)261.

    [5]D.Ackermann,etal.,Nucl.Phys.A 787(2007)353.

    [6]S.Hofmann and G.M¨unzenberg,Rev.Mod.Phys.72(2000)733.

    [7]K.Morita,etal.,J.Phys.Soc.Jpn.73(2004)2593.

    [8]Yu.Ts.Oganessian,J.Phys.G:Nucl.Part.Phys.34(2007)165R.

    [9]Yu.Ts.Oganessian,etal.,Phys.Rev.Lett.104(2010)142502.

    [10]Yu.Ts.Oganessian,V.K.Utyonkov,and Yu.V.Lobanov,Phys.Rev.C 79(2009)024603.

    [11]B.D.Serort and J.D.Walecka,Adv.Nucl.Phys.16(1986)1.

    [12]P.G.Reinhard,Rep.Prog.Phys.52(1989)439.

    [13]P.Ring,Prog.Part.Nucl.Phys.37(1996)193.

    [14]D.Vretenar,A.V.Afanasjev,G.A.Lalazissis,and P.Ring,Phys.Rep.409(2005)101.

    [15]J.Meng,etal.,Prog.Part.Nucl.Phys.57(2006)470.

    [16]J.Meng and S.G.Zhou,J.Phys.G:Nucl.Part.Phys.42(2015)093101.

    [17]K.Rutz,etal.,Phys.Rev.C 56(1997)238.

    [18]A.T.Kruppa,etal.,Phys.Rev.C 61(2000)034313.

    [19]G.A.Lalazissis,etal.,Nucl.Phys.A 608(1996)202.

    [20]S.Cwiok,J.Dobaczewski,P.H.Heenen,P.Magierski,and W.Nazarewicz,Nucl.Phys.A 611(1996)211.

    [21]P.M¨oller and J.R.Nix,J.Phys.G:Nucl.Part.Phys.25(1994)119.

    [22]W.Zhang,etal.,Nucl.Phys.A 753(2005)106.

    [23]K.Rutz,M.Bender,T.B¨urvenich,T.Schilling,P.G.Reinhard,J.A.Maruhn,and W.Greiner,Phys.Rev.C 56(1997)238.

    [24]Zhongzhou Ren,Phys.Rev.C 65(2002)051304(R).

    [25]Zhongzhou Ren,Fei Tai,and Ding-Han Chen,Phys.Rev.C 66(2002)064306.

    [26]Zhongzhou Ren,Ding-Han Chen,Fei Tai,H.Y.Zhang,and W.Q.Shen,Phys.Rev.C 67(2003)064302.

    [27]Hongfei Zhang,etal.,Phys.Rev.C 71(2005)054312.

    [28]Y.K.Gambhir,P.Ring,and A.Thimet,Ann.Phys.198(1990)132.

    [29]B.D.Serot and J.D.Walecka,Adv.Nucl.Phys.16(1986)1.

    [30]J.Boguta and A.R.Bodmer,Nucl.Phys.A 292(1977)413.

    [31]Hai-Fei Zhang,etal.,Commun.Theor.Phys.58(2012)544.

    [32]Junqing Li,Zhongyu Ma,Baoqiu Chen,and Yong Zhou,Phys.Rev.C 65(2002)064305.

    [33]P.M¨oller,J.R.Nix,W.D.Myers,and W.J.Swiatecki,At.Data and Nucl.Data Tables 59(1995)185.

    猜你喜歡
    性別比喉罩插管
    Beagle犬頸外靜脈解剖特點(diǎn)及插管可行性
    中國(guó)出生人口性別比“七連降”
    Supreme喉罩全身麻醉在甲狀腺手術(shù)中的應(yīng)用
    深昏迷患者應(yīng)用氣管插管的急診急救應(yīng)用研究
    喉罩在小兒拇再造手術(shù)復(fù)合麻醉中的應(yīng)用
    腸系膜插管外固定術(shù)治療粘連性小腸梗阻44例
    Narcotrend監(jiān)測(cè)復(fù)合Supreme喉罩通氣在全身麻醉中的應(yīng)用
    韓國(guó)女性公民社會(huì)組織參與出生性別比治理的經(jīng)驗(yàn)與啟示
    SLIPA喉罩在急診心肺復(fù)蘇困難插管中的應(yīng)用
    輸液器用于新生兒臍靜脈插管常見(jiàn)的并發(fā)癥及處理
    亚洲狠狠婷婷综合久久图片| 最近最新免费中文字幕在线| 成人无遮挡网站| 国产美女午夜福利| 黑人欧美特级aaaaaa片| 女同久久另类99精品国产91| www日本黄色视频网| 久久久精品欧美日韩精品| 国产成人影院久久av| 成年免费大片在线观看| 亚洲无线观看免费| 一区二区三区高清视频在线| 国产免费av片在线观看野外av| 最近视频中文字幕2019在线8| www.色视频.com| 国产精品三级大全| 午夜福利视频1000在线观看| 国产精品久久电影中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区激情视频| 国产精品av视频在线免费观看| 亚洲美女视频黄频| 岛国在线免费视频观看| 狂野欧美白嫩少妇大欣赏| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 久久精品91蜜桃| 久久精品国产自在天天线| 成年女人永久免费观看视频| 床上黄色一级片| 五月玫瑰六月丁香| 国产成人系列免费观看| 国产伦精品一区二区三区四那| 啦啦啦韩国在线观看视频| 99久久成人亚洲精品观看| 国产精品嫩草影院av在线观看 | 久久婷婷人人爽人人干人人爱| 美女大奶头视频| 麻豆久久精品国产亚洲av| 手机成人av网站| 国产精品亚洲美女久久久| 国产激情偷乱视频一区二区| 免费在线观看日本一区| 人妻丰满熟妇av一区二区三区| 欧美大码av| 老司机午夜福利在线观看视频| 波多野结衣巨乳人妻| 国产免费男女视频| h日本视频在线播放| 亚洲av二区三区四区| 日韩人妻高清精品专区| 国产真实伦视频高清在线观看 | 九九热线精品视视频播放| 俄罗斯特黄特色一大片| 精品久久久久久久末码| а√天堂www在线а√下载| a在线观看视频网站| 18禁裸乳无遮挡免费网站照片| 亚洲av免费高清在线观看| 1024手机看黄色片| 嫁个100分男人电影在线观看| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看| 一个人看视频在线观看www免费 | 一级毛片高清免费大全| 亚洲人成伊人成综合网2020| 国产激情欧美一区二区| 国产爱豆传媒在线观看| 国产av不卡久久| 国产精品久久久久久人妻精品电影| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 身体一侧抽搐| 高清日韩中文字幕在线| 久久香蕉国产精品| 国产伦精品一区二区三区四那| 亚洲男人的天堂狠狠| 成熟少妇高潮喷水视频| 国产高清videossex| 国产在视频线在精品| 国产麻豆成人av免费视频| 亚洲成av人片免费观看| 国产aⅴ精品一区二区三区波| 99国产精品一区二区三区| 嫩草影视91久久| 波多野结衣高清作品| 久久亚洲真实| 日韩欧美在线二视频| 成人永久免费在线观看视频| 午夜福利18| 亚洲熟妇熟女久久| av女优亚洲男人天堂| 国产综合懂色| 亚洲人成网站在线播放欧美日韩| 欧美一区二区精品小视频在线| 色吧在线观看| 免费观看人在逋| x7x7x7水蜜桃| 在线观看舔阴道视频| 国内少妇人妻偷人精品xxx网站| 宅男免费午夜| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 91久久精品电影网| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产 | 丰满乱子伦码专区| 99精品久久久久人妻精品| 国产高清三级在线| 不卡一级毛片| 亚洲av美国av| 国产69精品久久久久777片| 老司机深夜福利视频在线观看| 欧美在线黄色| 成年人黄色毛片网站| 国产伦精品一区二区三区四那| 亚洲av成人不卡在线观看播放网| 久久久久久久精品吃奶| 久久伊人香网站| 岛国在线观看网站| 久久精品国产自在天天线| 天美传媒精品一区二区| 欧美黄色淫秽网站| 久久精品国产亚洲av涩爱 | 久久香蕉精品热| 婷婷精品国产亚洲av在线| 19禁男女啪啪无遮挡网站| 好男人在线观看高清免费视频| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看| 一a级毛片在线观看| 国产伦人伦偷精品视频| 特大巨黑吊av在线直播| 免费av不卡在线播放| 精品国产三级普通话版| 国产成人影院久久av| 国产综合懂色| 好男人电影高清在线观看| 日韩欧美三级三区| 操出白浆在线播放| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 搡老妇女老女人老熟妇| 少妇人妻精品综合一区二区 | 午夜免费激情av| 尤物成人国产欧美一区二区三区| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 国产av一区在线观看免费| 国产老妇女一区| 九九久久精品国产亚洲av麻豆| 精品久久久久久久毛片微露脸| 免费在线观看成人毛片| 窝窝影院91人妻| 国产高潮美女av| 久久精品综合一区二区三区| 国内精品久久久久久久电影| 少妇的逼水好多| 人妻夜夜爽99麻豆av| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 在线国产一区二区在线| 少妇丰满av| 欧美激情在线99| 国产成人啪精品午夜网站| 亚洲专区国产一区二区| 国产免费av片在线观看野外av| 日本一二三区视频观看| 亚洲精品乱码久久久v下载方式 | 18禁美女被吸乳视频| 日本黄色片子视频| 99久久九九国产精品国产免费| 草草在线视频免费看| 国产精品久久视频播放| 中文字幕久久专区| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 美女高潮的动态| 岛国在线观看网站| 88av欧美| 操出白浆在线播放| 亚洲成av人片在线播放无| 国产午夜精品久久久久久一区二区三区 | 亚洲精品日韩av片在线观看 | 久久久久久久亚洲中文字幕 | 18禁黄网站禁片免费观看直播| 亚洲av一区综合| 操出白浆在线播放| 日韩欧美在线乱码| 草草在线视频免费看| 桃红色精品国产亚洲av| 色综合婷婷激情| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| 亚洲精品乱码久久久v下载方式 | 51午夜福利影视在线观看| tocl精华| 国产免费男女视频| 国内揄拍国产精品人妻在线| 亚洲成av人片免费观看| a级一级毛片免费在线观看| 午夜福利在线在线| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 88av欧美| 成人av在线播放网站| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9 | 啦啦啦韩国在线观看视频| av中文乱码字幕在线| 两个人视频免费观看高清| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 超碰av人人做人人爽久久 | 非洲黑人性xxxx精品又粗又长| 亚洲无线观看免费| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 久久中文看片网| 热99re8久久精品国产| 岛国在线观看网站| 99精品欧美一区二区三区四区| 免费在线观看成人毛片| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 精品一区二区三区视频在线 | 观看美女的网站| 亚洲人成网站在线播| 一区二区三区激情视频| 一个人免费在线观看的高清视频| 99精品久久久久人妻精品| 国产免费男女视频| 午夜免费观看网址| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 午夜福利18| 十八禁人妻一区二区| 亚洲专区国产一区二区| 国产精品,欧美在线| 在线看三级毛片| 免费无遮挡裸体视频| 久久久久久久午夜电影| 亚洲人成网站高清观看| 久久99热这里只有精品18| 亚洲欧美激情综合另类| 国产乱人视频| 久久久国产成人免费| 网址你懂的国产日韩在线| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 久久人人精品亚洲av| 亚洲成av人片免费观看| 99视频精品全部免费 在线| 一夜夜www| 欧美最黄视频在线播放免费| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 欧美在线黄色| 亚洲精品456在线播放app | 内射极品少妇av片p| 天堂√8在线中文| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 国产成人aa在线观看| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 9191精品国产免费久久| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩高清在线视频| 美女高潮喷水抽搐中文字幕| 制服人妻中文乱码| 久久久久久久久大av| 又爽又黄无遮挡网站| 午夜福利高清视频| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 欧美丝袜亚洲另类 | 欧美最新免费一区二区三区 | 亚洲最大成人手机在线| 日韩中文字幕欧美一区二区| 中国美女看黄片| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 老司机深夜福利视频在线观看| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 少妇的逼好多水| 久久国产精品人妻蜜桃| 久久中文看片网| 国产久久久一区二区三区| 在线视频色国产色| 久久久国产成人精品二区| 中文字幕av成人在线电影| 一本一本综合久久| 亚洲精品在线美女| 午夜精品在线福利| 国产午夜福利久久久久久| 在线观看午夜福利视频| 国产视频一区二区在线看| 久久久久久久精品吃奶| 特级一级黄色大片| 免费大片18禁| 无限看片的www在线观看| 淫秽高清视频在线观看| 欧美高清成人免费视频www| 亚洲内射少妇av| 久久国产精品人妻蜜桃| 亚洲av免费在线观看| 国产中年淑女户外野战色| 999久久久精品免费观看国产| 国产精品 国内视频| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 好看av亚洲va欧美ⅴa在| 国产一区二区在线av高清观看| 日本一本二区三区精品| 日韩欧美三级三区| 两个人看的免费小视频| 97超视频在线观看视频| 亚洲在线观看片| 97超视频在线观看视频| 亚洲在线自拍视频| 国产av不卡久久| 天堂网av新在线| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 91字幕亚洲| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费| 国产成人aa在线观看| 国产高清视频在线播放一区| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 久久久久九九精品影院| 亚洲av二区三区四区| 免费大片18禁| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 小说图片视频综合网站| 久久久久九九精品影院| 波野结衣二区三区在线 | 国产欧美日韩精品一区二区| 久久久国产精品麻豆| 一级毛片高清免费大全| av在线天堂中文字幕| 亚洲国产欧美网| 成人特级av手机在线观看| 99热精品在线国产| 亚洲国产欧美人成| 在线观看舔阴道视频| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看 | 欧美不卡视频在线免费观看| 嫩草影院入口| 久久香蕉精品热| 俺也久久电影网| 在线观看免费视频日本深夜| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 九九在线视频观看精品| tocl精华| 日韩精品青青久久久久久| 国产成人av教育| 神马国产精品三级电影在线观看| 99久久精品国产亚洲精品| av天堂在线播放| 日本黄色片子视频| 国产不卡一卡二| 色综合欧美亚洲国产小说| 一a级毛片在线观看| 99热这里只有精品一区| 91麻豆精品激情在线观看国产| 国产高清videossex| 免费电影在线观看免费观看| 亚洲欧美日韩高清在线视频| 成人特级av手机在线观看| 欧美高清成人免费视频www| 18禁在线播放成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲真实| 亚洲电影在线观看av| 亚洲最大成人手机在线| 中文字幕av成人在线电影| 国内精品久久久久久久电影| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区| 日本 av在线| 欧美国产日韩亚洲一区| 亚洲18禁久久av| 国产成人a区在线观看| 88av欧美| 小蜜桃在线观看免费完整版高清| or卡值多少钱| 少妇熟女aⅴ在线视频| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 免费看十八禁软件| 国内精品美女久久久久久| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| bbb黄色大片| 国产三级在线视频| 精品日产1卡2卡| 久久亚洲精品不卡| 淫妇啪啪啪对白视频| 国产一区二区在线av高清观看| 日韩欧美在线乱码| 狠狠狠狠99中文字幕| 黄色日韩在线| 男人和女人高潮做爰伦理| 精品电影一区二区在线| e午夜精品久久久久久久| av国产免费在线观看| 日韩欧美在线二视频| 精品乱码久久久久久99久播| 午夜视频国产福利| 亚洲欧美一区二区三区黑人| 在线观看免费视频日本深夜| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 久久草成人影院| 男女下面进入的视频免费午夜| 午夜老司机福利剧场| 看片在线看免费视频| a级毛片a级免费在线| 日韩欧美在线乱码| 变态另类丝袜制服| 天堂网av新在线| 午夜福利免费观看在线| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看| 一进一出抽搐gif免费好疼| 无人区码免费观看不卡| 美女大奶头视频| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 亚洲av五月六月丁香网| 禁无遮挡网站| 精品人妻1区二区| 亚洲avbb在线观看| 亚洲av美国av| 国产熟女xx| 亚洲aⅴ乱码一区二区在线播放| av福利片在线观看| 日韩有码中文字幕| 国产真实伦视频高清在线观看 | 欧美丝袜亚洲另类 | 亚洲国产精品999在线| 成人18禁在线播放| 天堂√8在线中文| 好看av亚洲va欧美ⅴa在| 男女视频在线观看网站免费| 免费在线观看影片大全网站| 97超级碰碰碰精品色视频在线观看| 一a级毛片在线观看| 两个人看的免费小视频| 黄色视频,在线免费观看| 手机成人av网站| 亚洲五月婷婷丁香| 国产av在哪里看| 亚洲久久久久久中文字幕| 亚洲18禁久久av| 韩国av一区二区三区四区| 久久6这里有精品| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 久久人人精品亚洲av| www.熟女人妻精品国产| 天堂动漫精品| 中文资源天堂在线| 嫩草影院入口| 1000部很黄的大片| aaaaa片日本免费| 色噜噜av男人的天堂激情| 亚洲在线观看片| 18禁在线播放成人免费| 欧美区成人在线视频| 国产成人aa在线观看| 国产一区二区在线观看日韩 | 黄色女人牲交| 一区二区三区国产精品乱码| 夜夜爽天天搞| 精品人妻偷拍中文字幕| 欧美一级毛片孕妇| 亚洲精品美女久久久久99蜜臀| 欧美日韩国产亚洲二区| www.www免费av| 欧美又色又爽又黄视频| 在线播放国产精品三级| 淫秽高清视频在线观看| 黄色成人免费大全| 午夜激情福利司机影院| 久久99热这里只有精品18| 99久久精品一区二区三区| 男女之事视频高清在线观看| 不卡一级毛片| 中出人妻视频一区二区| 欧美性感艳星| 全区人妻精品视频| 亚洲成a人片在线一区二区| 九九久久精品国产亚洲av麻豆| 国产精品野战在线观看| 久久亚洲真实| 91字幕亚洲| 亚洲不卡免费看| 九色成人免费人妻av| 国产精品乱码一区二三区的特点| 1024手机看黄色片| 午夜福利欧美成人| 看免费av毛片| 丝袜美腿在线中文| 大型黄色视频在线免费观看| 久久伊人香网站| 亚洲无线在线观看| 日本成人三级电影网站| xxxwww97欧美| 岛国视频午夜一区免费看| 看黄色毛片网站| 女人十人毛片免费观看3o分钟| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 成人特级av手机在线观看| 一个人看的www免费观看视频| 18禁黄网站禁片午夜丰满| 欧美bdsm另类| 一级毛片高清免费大全| 国模一区二区三区四区视频| 免费看a级黄色片| 久久人妻av系列| 叶爱在线成人免费视频播放| 精品国产超薄肉色丝袜足j| 狂野欧美激情性xxxx| 长腿黑丝高跟| 免费无遮挡裸体视频| 三级毛片av免费| 国产伦精品一区二区三区视频9 | 国产成人福利小说| 国产黄片美女视频| 亚洲人与动物交配视频| 免费av毛片视频| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 国产真实伦视频高清在线观看 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜亚洲福利在线播放| 1000部很黄的大片| 法律面前人人平等表现在哪些方面| 亚洲无线在线观看| 全区人妻精品视频| 久久草成人影院| 99在线人妻在线中文字幕| 精品福利观看| 两人在一起打扑克的视频| 亚洲av美国av| 又黄又爽又免费观看的视频| 国产美女午夜福利| 国产私拍福利视频在线观看| 国产探花极品一区二区| 亚洲成人久久爱视频| 国产欧美日韩一区二区三| 欧美+日韩+精品| 久久久色成人| 国产高清激情床上av| 在线播放无遮挡| 亚洲av免费高清在线观看| 男人舔女人下体高潮全视频| 日韩欧美在线乱码| 亚洲成av人片免费观看| avwww免费| 9191精品国产免费久久| 午夜精品在线福利| 国产高清激情床上av| 搡老熟女国产l中国老女人| 好男人在线观看高清免费视频| 精品国产三级普通话版| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区精品| 久久精品国产亚洲av香蕉五月| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区精品| 婷婷六月久久综合丁香| 99久久99久久久精品蜜桃| 国产精品嫩草影院av在线观看 | 全区人妻精品视频| 亚洲av不卡在线观看| 国产精品爽爽va在线观看网站| 国产午夜福利久久久久久| 亚洲国产中文字幕在线视频| 俄罗斯特黄特色一大片| 日韩欧美 国产精品| av黄色大香蕉| 两个人视频免费观看高清| 午夜福利在线在线| 啦啦啦观看免费观看视频高清| 夜夜爽天天搞|