• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sliding Mode Control of Fractional-Order Delayed Memristive Chaotic System with Uncertainty and Disturbance?

    2017-05-09 11:46:24DaWeiDing丁大為FangFangLiu劉芳芳HuiChen陳輝NianWang王年andDongLiang梁棟
    Communications in Theoretical Physics 2017年12期
    關(guān)鍵詞:陳輝

    Da-Wei Ding(丁大為)Fang-Fang Liu(劉芳芳)Hui Chen(陳輝)Nian Wang(王年)? and Dong Liang(梁棟)

    1Key Laboratory of Intelligent Computing and Signal Processing,Ministry of Education,Anhui University,Hefei 230601,China

    2School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    1 Introduction

    Leon Chua predicted that there should be a fourth type of electronic components,the memristor,based on the physics symmetry.[1]The memristor was not developed or researched within circuit theory until 2008,when HP’s Stan Williamset al.created a solid-state implementation of the memristor.[2]Many studies on the memristor for application development have been published now,such as the memristor-based circuits[3?4]and memristor oscillators.[5?6]

    In recent years,more and more scholars are interested in the fractional-order system.In Ref.[7],for the purpose of investigating the nonlinear dynamics of the system,a fractional-order Chua’s circuit based on the memristor,which derives from the integer-order counterparts was provided.The fractional-order system is widely applied in many aspects,such as the oscillator theory,[8]the control field,[9?11]and the energy field.[12]Some of the classic systems have been extended to their fractionalorder counterparts,for example,the Liu system,[13?14]the Chen system,[15]the Duffing system,[16]and the viscoelastic system.[17]

    Time delay exists in many engineering systems,causing system instability and bad performance.And it is unavoidable in many dynamical systems,such as biological systems,[18]neural networks,[19]system control,[20]and so on.Therefore,it is signi ficant to investigate the timedelayed effect on dynamical behaviors of complex systems theoretically and practically.

    Furthermore,the fractional-order delayed system involves non-integer order derivatives as well as time delay.These have been proved useful in financial system,[21]signal processing,[22]biology,[23]and so on.Many researchers have studied the fractional-order delayed system.[24?29]In Ref.[28],the bifurcation in Duffing-van der Pol oscillators with time delay was analyzed.In Ref.[29],the bifurcation and stability in three neurons fractional-order neural network were investigated by applying the sum of time delay as the bifurcation parameter.Additionally,chaos behaviors in the fractional-order delayed system have become the key focus.[30?31]In Ref.[30],the chaos in a delayed Bloch model was discussed and found that time delay can affect the system stability in this system.In Ref.[31],the discrete chaotic dynamics in fractional delayed logistic maps was studied,and the discrete chaotic attractor was discovered.In Ref.[32],we have analyzed the stability and Hopf bifurcation of fractional-order delayed memristor-based chaotic system by choosing the time delay and fractional-order as the bifurcation parameter.

    Chaotic control is to make the trajectories of initial chaotic system approach a steady state.Many control schemes for fractional-order chaotic systems have been proposed,including active control,[33]impulsive control,[34]adaptive control,[35]passive control[36]and generalized projective control.[37]Sliding mode control has received much attention due to its major advantages such as robustness against parameter variations,guaranteed stability,simplicity in implementation and fast dynamic response.Therefore,in recent years,sliding mode control has been investigated for linear and nonlinear systems.[38?41]Many vital results have been reported for the synchronization and control of fractional-order chaotic systems by using the sliding mode control strategy.In Ref.[42],to realize complete synchronization of a class of three-dimensional fractional-order chaotic systems,the author modi fied sliding mode control scheme,and designed a single-state sliding mode controller.In Ref.[43],Tanmoy Dasguptaet al.proposed a novel fractional-order sliding mode controller for synchronization of fractional order chaotic systems,and achieved its application in secure communication.The scholars studied the adaptive sliding mode synchronization control for a class of fractional-order chaotic systems with unknown bounded disturbances in Ref.[44].In order to achieve finite time convergence of the system states,a terminal sliding mode control method was firstly proposed by Zak in Ref.[45].In Ref.[46],the terminal sliding mode control technique that offers some superior properties such as fast response and finite time convergence was proposed,which is particularly suitable for high-precision control as it speeds up the rate of convergence near the origin.In Ref.[47],they investigated the chaotic control of a class of fractional-order chaotic systems via sliding mode control.In Ref.[48],the authors derived new results based on the sliding mode control for the anti-synchronization of four-wing chaotic systems.

    Motivated by aforementioned analysis,the main purpose of this paper is to design a fractional-order sliding mode controller,which is the combination of fractional calculus theory and the sliding mode control technique in order to control the fractional-order delayed memristive chaotic system.For this purpose,sliding mode control scheme is utilized along with Lyapunov stability theory to design the suitable control structure.Recall that slide mode controllers,which applied to the fractionalorder chaotic system may be numerous,while applied to fractional-order delayed memristor system are few.The proposed controller makes the system states asymptotically stable and robust against the system’s uncertainty in the presence of an external disturbance.Simulation results illustrate that the proposed method can eliminate chaos and stabilize the system in a finite time.

    The rest of this paper is organized as follows.In Sec.2,we discuss a fractional-order delayed memristive chaotic system.According to the sliding mode control theory,a controller is proposed to control the commensurate and non-commensurate fractional-order delayed chaotic system in Sec.3,the design procedure of fractional-order sliding mode approach is described in this section.Numerical simulations results are shown in Sec.4.Finally,some conclusions are drawn in Sec.5.

    2 System Description

    A memristor is a passive two-terminal circuital element,and it is described by a nonlinear characteristic:iM=W(φ)vM,vM=M(z)iM,whereiM,vM,φ,andzare the current,the voltage,the flux,and the charge in memristor.W(φ)=dz(φ)/dφandM(z)=dφ(z)/dzexpress as inductance and memristance respectively.

    Furthermore,the relationship ofφ(z)andz(φ)can be de fined with the charge-controlled memristor and fluxcontrolled memristor.We choose the flux-controlled memristive system:

    whereiMandvMdescribe the current and the voltage through the memristor,andf(t,x,vM)is the internal state function.

    De finition 1(Ref.[49]):In this paper,a continuous functionf:R+→Rrepresents the Caputo fractional derivative,which has a fractional-orderq:

    where Γ(q)is the gamma function,m?1<q≤m,m∈N.

    The simplest delayed memristive chaotic system includes a resistorR,a voltage followerU2,a capacitorC,a flux-controlled memristorM,a time delay unit,and an integratorU1(Fig.1 in Ref.[50]).The following equations describe the delayed memristive chaotic system in Fig.1.

    whereτis the time delay,yis the state variable of the memristor,andA,B,a,bandlare the constants.

    From the integer-order system,we derive the equations of the fractional-order memristive system,and it can be calculated as:

    whereq1andq2are the fractional-order of the capacitorCand memristorM.

    Fig.1 Model of the delayed memristive chaotic system.

    Then,we get the following equations:

    3 Designing the Sliding Mode Control

    We add the control inputu(t)to the state equations in system(6)to control the chaos behavior:

    where,f(x,y)=nxy,g(x,y)=ax+lxyis assumed.

    Our aim is to design a fractional-order sliding mode controller.The first step is constructing a fractional-order sliding surface that represents a desired system dynamics.Then,a switching control law should be developed,and any states outside the surface are driven to reach the surface in a finite time.[51]Therefore,we choose a sliding surface:

    According to the sliding mode method,the sliding surface and its derivative must satisfy the following conditions:

    The equivalent control law is calculated as:

    The switching control can keep the system within the sliding manifold.To satisfy the sliding condition,the discontinuous reaching law is chosen as follows:

    Therefore,the total control law can be de fined as:

    Theorem 1Considering the fractional-order delayed memristive chaotic system(8),and the control law(16),if the controller gainKr<0,the system is asymptotically stable.

    ProofThe Lyapunov candidate is selected as:

    WhenKr<0,˙V<0 fors(t)/=0.In other words,the controlled system satis fies the reaching condition.Therefore,a Lyapunov function has been found that it satis fies the conditions of the Lyapunov stability theorem(V>0,˙V<0).Thus,the closed-loop system in the presence of the controller(16)is globally asymptotically stable.

    Theorem 2Considering the system(8)being perturbed by uncertainties and an external disturbance,it can be modeled as follows:

    where Δg(x,y)andd(t)are assumed to be bounded,i.e.|Δg(x,y)|≤e1and|d(t)|≤e2.The closed-loop system with the sliding mode control(16)is globally asymptotically stable whenKr<?(e1+e2).

    ProofSelecting the Lyapunov candidate(17),we have

    Therefore,in view of the uncertainty and external disturbance,when the controller gainKr<?(e1+e2),the controller(16)can make the system states asymptotically stable in limited time.

    Thus,the theorem is proofed completely.

    4 Numerical Simulation

    The chaotic states and dynamical behaviors of the uncontrolled system(6)have been discussed in Ref.[50].This section of the paper presents four illustrative examples to verify and demonstrate the effectiveness of the proposed control scheme.In this paper,the modi fied Adams–Bashforth–Moulton predictor-corrector algorithm[52]is used to solve the numerical simulations in the fractionalorder differential equations with time delay.It should be noticed that the controller is applied att=15 s.Here,some parameters are given to calculate in the system:a=2.5b=?0.5,l=?5,c=1.5,m=?2,andn=?2.

    Case 1Non-commensurate order

    When assuming the different orders of derivatives in state equations(6),i.e.q1/=q2,we get a general noncommensurate order system.The fractional-order delayed memristive chaotic system is chaotic whenq1=0.88 andq2=0.98,which are shown in Fig.2.

    Fig.2 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=0.88,q2=0.98,τ=1.5 without controller.

    Fig.3 Time response of controlled non-commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    In order to satisfy the condition in Theorem 1,we select the gain of the controllerKr=?1 in system(8).To stabilize this system,the control law(16)is applied and the simulation results are depicted in Fig.3.It shows the obtained theoretic results are feasible and efficient for the controlling fractional-order delayed memristive system.

    Case 2Non-commensurate order with uncertainty and an external disturbance

    In this case,the fractional-order delayed memristive chaotic system is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are shown in Fig.4 when the gain of the controllerKr=?1,which conforms to the condition of Theorem 2.

    Fig.4 Time response of controlled non-commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    Case 3Commensurate order

    When assuming the same orders of derivatives in the state equations(6),i.e.,q1=q2=q,we get a commensurate order system.The system(6)without the controller exhibits a chaotic behavior as shown in Fig.5 with the commensurate orderq=0.99 of the derivatives.

    Fig.5 Time-domain diagram and phase diagram of the fractional-order system(6)when q1=q2=0.99,τ=1.5 without controller.

    To demonstrate the chaotic behaviors,the Largest Lyapunov Exponent(LLE)should be considered.In this paper,the Wolf algorithm is chosen to calculate LLE in this fractional-order delayed memristive chaotic system.It is known that the Max Lyapunov Exponent(MLE)increases from the negative number to zero when periodic cycles appear,and the chaotic dynamics occurs when MLE is positive.By fixing the parameter of the fractional-order(q=0.9)and varying the parameter of the time delay(τ∈[0.4,1.6]),the transitions from one cycle to two cycles,two cycles to four cycles,and four cycles to chaos are observed atτ=1.18,τ=1.27,andτ=1.28.In the interval 0.54<τ<1.18,one cycle is observed.Chaos is observed in the intervalτ>1.28.The bifurcation diagram and the MLE are shown in Fig.6.

    The states of the system(6)under the designed controller(16)are illustrated in Fig.7 whenKr=?1,which shows that the sliding control law guarantees the states reaching the sliding surface and finally stabilization.

    Fig.6 Bifurcation diagram and Max Lyapunov Exponent with q=0.9.

    Fig.7 Time response of controlled commensurate fractional-order system states(The control u(t)is activated at t=15 s).

    Case 4Commensurate order with uncertainty and an external disturbance

    Fig.8 Time response of controlled commensurate fractional-order system states in the presence of uncertainty and an external disturbance(The control u(t)is activated at t=15 s).

    In this case,the fractional-order delayed commensurate system(q=0.99)is perturbed by an uncertainty term Δg(x,y)=0.45sin(πx)cos(πy)and an external disturbanced(t)=0.5sin(πt),where|Δg(x,y)|≤e1=0.45 and|d(t)|≤e2=0.5.The system state responses of the closed-loop system in the presence of the control law(16)are illustrated in Fig.8 whenKr=?1,which satis fies Theorem 2.

    5 Conclusions

    In this paper,a fractional-order delayed memristive chaotic system has been introduced and a fractional-order sliding mode controller is proposed in order to control the chaotic behavior in the system. According to the Lyapunov stability theorem,the control law can asymptotically stabilize the fractional-order delayed memristive chaotic system.The proposed control method is simple,robust and theoretically rigorous,and its performance is satisfactory in the presence of uncertainty and an external disturbance within non-commensurate order system and commensurate order system.It indicates that the sliding mode control has the anti-jamming capability.Finally,numerical simulations present the effectiveness of the control scheme.

    Considering that the current system research is not perfect,these studies tend to be more numerical simulation of the system,and did not develop to realize the hardware circuits.In the future,we should focus on how to construct chaotic hardware circuits with associated delay factors.

    [1]Leon O.Chua,IEEE Trans.Circuit Theory 18(1971)507.

    [2]D.B.Strukov,G.S.Snider,D.R.Stewart,and R.S.Williams,Nature(London)453(2008)80.

    [3]B.Muthuswamy and P.P.Kokate,IETE Tech.Rev.26(2009)417.

    [4]I.Vourkas and G.C.Sirakoulis,IEEE Trans.Nanotechnol.11(2012)1151.

    [5]Makoto Itoh and Leon O.Chua,Inter.J.Bifurcat.Chaos 18(2008)3183.

    [6]Corinto,Fernando,A.Ascoli,and M.Gilli,IEEE Trans.Circuits Syst.I,Reg.Papers 58(2011)1323.

    [7]D.W.Ding,S.J.Li,and N.Wang,Dynamic Analysis of Fractional-Order Memristive Chaotic System,J.Harbin Inst.Tech.(2017);doi:10.11916/j.issn.1005-9113.16136.

    [8]Abbas,Syed,V.S.Erturk,and S.Momani,Signal Process.102(2014)171.

    [9]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,J.Vib.Control.21(2002)85.

    [10]Girejko,Ewa,and E.Pawluszewicz,J.Dynam.Control Syst.(2016)1.

    [11]Kamaljeet and D.Bahuguna,J.Dyn.Control Syst.22(2015)1.

    [12]Xu Beibei,et al.,Nonlinear Dynam.81(2005)19.

    [13]J.G.Lu,Phys.Lett.A 354(2006)301.

    [14]A.K.Golmankhaneh,R.Are fi,and D.Baleanu,Adv.Math.Phys.2013(2013)84.

    [15]C.Li and G.Chen,Chaos,Solitons and Fractals 22(2004)549.

    [16]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Computat.Nonlinear Dynam.(2010);doi:10.1115/1.4002092.

    [17]Xu,Yong,Y.Li,and D.Liu,J.Comput.Nonlinear Dynam.9(2014)031015.

    [18]Gui-Quan Sun,et al.,Sci.Rep.5(2015)11246.

    [19]Chang-Jin Xu,Pei-Luan Li,and Yi-Cheng Pang,Commun.Theor.Phys.67(2017)137.

    [20]L.Liu,F.Pan,and D.Xue,Opt.Inter.J.Light Electron Opt.125(2014)7020.

    [21]J.Cao,C.Ma,H.Xie,and Z.Jiang,J.Comput.Nonlinear Dynam.4(2010)1003.

    [22]R.Li,Opt.Int.J.Light Electron Opt.127(2016)6695.

    [23]Z.Wang,X.Huang,and G.Shi,Comput.Math.Appl.62(2011)1531.

    [24]Liping Chen,et al.,J.Comput.Nonlinear Dynam.10(2015).

    [25]G.Velmurugan and R.Rakkiyappan,Nonlinear Dynam.11(2015)1.

    [26]A.Babakhani,D.Baleanu,and R.Khanbabaie,Nonlinear Dynam.69(2012)721.

    [27]M.Xiao,W.X.Zheng,and J.Cao,IEEE Trans.Neur.Net.Lear.Syst.24(2012)118.

    [28]A.Y.T.Leung,H.X.Yang,and P.Zhu,Commun.Nonlinear Sci.19(2014)1142.

    [29]Chengdai Huang,J.Cao,and Z.Ma,Inter.J.Syst.Sci.47(2015)1.

    [30]Baleanu,Dumitru,et al.,Commun.Nonlinear Sci.25(2015)41.

    [31]G.C.Wu and D.Baleanu,Nonlinear Dynam.80(2015)1697.

    [32]W.Hu,D.Ding,Y.Zhang,N.Wang,and D.Liang,Optik 130(2017)189.

    [33]S.K.Agrawal,M.Srivastava,and S.Das,Chaos,Solitons&Fractals 45(2012)628.

    [34]H.Xi,S.Yu,R.Zhang,et al.,Opt.Inter.J.Light Electron Opt.125(2014)2036.

    [35]S.Kuntanapreeda,Nonlinear Dynam.84(2016)2505.

    [36]Kocamaz,Ugur Erkin,Y.Uyaroglu,and S.Vaidyanathan,Advances and Applications in Chaotic Systems,Springer International Publishing,Berlin(2016).

    [37]A.Boulkroune,A.Bouzeriba,and T.Bouden,Neurocomputing 173(2016)606.

    [38]Jun-Jun Liu,Xin Chen,and Jun-Min Wang,J.Dynam.Control Syst.22(2016)117.

    [39]Bao-Zhu Guo,Hua-Cheng Zhou,et al.,J.Dynam.Control Syst.20(2014)539.

    [40]B.Jiang,P.Shi,and Z.Mao,Circ.Syst.Signal Process.30(2011)1.

    [41]Z.Gao,B.Jiang,P.Shi,et al.,J.Franklin Inst.349(2012)1543.

    [42]L.Gao,Z.Wang,K.Zhou,et al.,Neurocomputing 166(2015)53.

    [43]Dasgupta Tanmoy,P.Paral,and S.Bhattacharya,Int.Conference Comput.Commun.Inform.IEEE(2015)pp.1-6.

    [44]S.Shao,M.Chen,and X.Yan,Nonlinear Dynam.83(2016)1855.

    [45]M.Zak,Phys.Lett.A 133(1988)18.

    [46]S.Mobayen,Nonlinear Dynam.82(2015)599.

    [47]Di-Yi Chen,Yu-Xiao Liu,and Xiao-Yi Ma,Nonlinear Dynam.67(2011)893.

    [48]Sundarapandian Vaidyanathan and Sivaperumal Sampath,Inter.J.Automat.Comput.9(2012)274.

    [49]I.Podlubny,Math.Sci.Eng.(1999).

    [50]W.Hu,D.Ding,and N.Wang,J.Comput.Nonlinear Dynam.12(2017)0410031.

    [51]Dadras Sara and H.R.Momeni,Phys.A Stat.Mech.Appl.389(2010)2434.

    [52]S.Bhalekar and V.Daftardar-Gejji,Fract.Calc.Appl.Anal.1(2011)1.

    猜你喜歡
    陳輝
    革命烈士和詩人陳輝
    Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
    “購物式”相親不可取
    Kinetic theory of Jeans’gravitational instability in millicharged dark matter system
    Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
    要想腸胃功能好 按摩中脘不可少
    保健與生活(2022年8期)2022-04-08 21:48:33
    Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures*
    Second-order interference of two independent photons with different spectra?
    真誠的道歉
    民間文學(2019年12期)2019-05-26 14:12:45
    見者發(fā)財
    性欧美人与动物交配| 久久欧美精品欧美久久欧美| 欧美最黄视频在线播放免费| 久久久久网色| 最好的美女福利视频网| 日韩欧美在线乱码| 久久精品久久久久久久性| 狂野欧美激情性xxxx在线观看| 日本五十路高清| 不卡视频在线观看欧美| 亚洲av中文字字幕乱码综合| 国内久久婷婷六月综合欲色啪| 亚洲国产精品久久男人天堂| 久久久国产成人免费| 狂野欧美激情性xxxx在线观看| 两个人视频免费观看高清| 日本免费a在线| 少妇猛男粗大的猛烈进出视频 | 男的添女的下面高潮视频| 欧美变态另类bdsm刘玥| 久久久久久久久久久丰满| 日本一二三区视频观看| 国产精品人妻久久久影院| 久久久久久国产a免费观看| 嫩草影院精品99| 亚洲国产精品成人综合色| www.色视频.com| 亚洲人成网站在线播放欧美日韩| 日韩视频在线欧美| 国产日本99.免费观看| 欧美激情在线99| 美女国产视频在线观看| 国产午夜福利久久久久久| 波多野结衣巨乳人妻| 成人二区视频| 天天躁日日操中文字幕| 亚洲av免费在线观看| av在线观看视频网站免费| 少妇高潮的动态图| av在线老鸭窝| 特大巨黑吊av在线直播| 国产精品嫩草影院av在线观看| 亚洲av熟女| 美女国产视频在线观看| 永久网站在线| 精品久久久久久久人妻蜜臀av| 亚洲一区高清亚洲精品| 一边摸一边抽搐一进一小说| 色哟哟·www| 免费观看a级毛片全部| av在线观看视频网站免费| 伦理电影大哥的女人| 国产成人影院久久av| 久久久久久大精品| 亚洲国产精品sss在线观看| 白带黄色成豆腐渣| 免费观看精品视频网站| 麻豆av噜噜一区二区三区| 欧美成人一区二区免费高清观看| 久久人人爽人人爽人人片va| 91aial.com中文字幕在线观看| 亚洲电影在线观看av| 国产高潮美女av| 日韩av不卡免费在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产av一区在线观看免费| 午夜激情欧美在线| 丝袜美腿在线中文| 亚洲最大成人av| 亚洲美女视频黄频| 国内少妇人妻偷人精品xxx网站| 久久久久国产网址| 波多野结衣巨乳人妻| 国产精品永久免费网站| 久久精品夜色国产| 国产精品久久久久久av不卡| 变态另类丝袜制服| 26uuu在线亚洲综合色| 一进一出抽搐gif免费好疼| 亚洲欧美日韩东京热| 99热精品在线国产| 精品久久久久久成人av| 久99久视频精品免费| 色播亚洲综合网| 国产一区二区激情短视频| 成人国产麻豆网| 男女啪啪激烈高潮av片| 婷婷精品国产亚洲av| kizo精华| 熟女人妻精品中文字幕| 一区二区三区四区激情视频 | 欧美丝袜亚洲另类| 日韩高清综合在线| 亚洲av熟女| 青春草亚洲视频在线观看| АⅤ资源中文在线天堂| 免费av毛片视频| 欧美bdsm另类| 欧美日本亚洲视频在线播放| 日韩欧美 国产精品| 神马国产精品三级电影在线观看| 少妇丰满av| 在线免费观看的www视频| 国产精品日韩av在线免费观看| 国产精品爽爽va在线观看网站| 搡老妇女老女人老熟妇| 一夜夜www| 一夜夜www| 精品人妻熟女av久视频| 麻豆成人午夜福利视频| 女人十人毛片免费观看3o分钟| 一级毛片电影观看 | 日韩在线高清观看一区二区三区| 久久久久久久亚洲中文字幕| 国产精品久久久久久久久免| 日韩 亚洲 欧美在线| 国产亚洲精品久久久com| 欧美激情在线99| 超碰av人人做人人爽久久| 国产成人福利小说| 久久中文看片网| 精华霜和精华液先用哪个| 国产极品天堂在线| 欧美日韩一区二区视频在线观看视频在线 | 在线观看免费视频日本深夜| 欧美日本视频| 真实男女啪啪啪动态图| 免费看日本二区| 欧美xxxx性猛交bbbb| 久久久久九九精品影院| 最近中文字幕高清免费大全6| 亚洲精品粉嫩美女一区| 男女下面进入的视频免费午夜| 日本黄大片高清| 岛国毛片在线播放| 免费一级毛片在线播放高清视频| 亚洲美女搞黄在线观看| 欧美xxxx性猛交bbbb| 高清毛片免费观看视频网站| 我要搜黄色片| 国产精品日韩av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 人妻夜夜爽99麻豆av| 夫妻性生交免费视频一级片| 国产伦理片在线播放av一区 | 波野结衣二区三区在线| 亚洲,欧美,日韩| 日日摸夜夜添夜夜添av毛片| 啦啦啦韩国在线观看视频| 国产日韩欧美在线精品| 国产乱人偷精品视频| 女的被弄到高潮叫床怎么办| 欧美成人免费av一区二区三区| 日韩一区二区三区影片| 国产麻豆成人av免费视频| 可以在线观看的亚洲视频| 欧美色视频一区免费| 毛片女人毛片| 精品欧美国产一区二区三| 久久国内精品自在自线图片| 久久国内精品自在自线图片| 免费观看的影片在线观看| 午夜免费激情av| 好男人视频免费观看在线| 嫩草影院新地址| 18禁在线播放成人免费| 91久久精品国产一区二区三区| 国产成人精品婷婷| 免费av毛片视频| avwww免费| 美女大奶头视频| 91午夜精品亚洲一区二区三区| 在线观看av片永久免费下载| 午夜福利高清视频| 精品人妻偷拍中文字幕| 国产女主播在线喷水免费视频网站 | 天堂中文最新版在线下载 | 久久99热这里只有精品18| 国产午夜精品久久久久久一区二区三区| 日韩人妻高清精品专区| 亚洲成人久久性| 天堂中文最新版在线下载 | 一卡2卡三卡四卡精品乱码亚洲| 国产精品伦人一区二区| 91精品国产九色| 精品日产1卡2卡| 99热这里只有精品一区| 亚洲美女搞黄在线观看| 内地一区二区视频在线| 如何舔出高潮| 欧美成人免费av一区二区三区| 嘟嘟电影网在线观看| 国产69精品久久久久777片| 美女 人体艺术 gogo| 好男人在线观看高清免费视频| 午夜福利视频1000在线观看| 欧美成人一区二区免费高清观看| 嫩草影院入口| 免费搜索国产男女视频| 亚洲七黄色美女视频| 最近中文字幕高清免费大全6| 69人妻影院| 成人无遮挡网站| 午夜精品在线福利| 少妇人妻精品综合一区二区 | 99热这里只有是精品50| 精品久久久噜噜| 亚洲天堂国产精品一区在线| 51国产日韩欧美| 免费搜索国产男女视频| 免费观看人在逋| 亚洲av熟女| 久久午夜福利片| 18禁裸乳无遮挡免费网站照片| 国产亚洲av嫩草精品影院| 99riav亚洲国产免费| 日韩欧美精品免费久久| 日韩欧美精品免费久久| 在线观看午夜福利视频| 插阴视频在线观看视频| 精品欧美国产一区二区三| av女优亚洲男人天堂| 国产真实乱freesex| 少妇人妻精品综合一区二区 | 久久这里有精品视频免费| 色5月婷婷丁香| 亚洲经典国产精华液单| 国产一级毛片七仙女欲春2| 国产爱豆传媒在线观看| 国产三级在线视频| 国产精品av视频在线免费观看| 国产男人的电影天堂91| 久久精品综合一区二区三区| 少妇裸体淫交视频免费看高清| 在线观看午夜福利视频| 久久久国产成人免费| 麻豆精品久久久久久蜜桃| 欧美另类亚洲清纯唯美| 天堂影院成人在线观看| 成人一区二区视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产毛片a区久久久久| 欧美区成人在线视频| 99久久久亚洲精品蜜臀av| 只有这里有精品99| 午夜a级毛片| av免费在线看不卡| 五月玫瑰六月丁香| 欧美一区二区国产精品久久精品| 听说在线观看完整版免费高清| 免费观看人在逋| 免费搜索国产男女视频| 一级毛片我不卡| 麻豆成人午夜福利视频| 久久精品国产99精品国产亚洲性色| 欧洲精品卡2卡3卡4卡5卡区| 国内精品久久久久精免费| 波多野结衣巨乳人妻| 少妇高潮的动态图| 日韩欧美 国产精品| 97人妻精品一区二区三区麻豆| 久久中文看片网| 国产一区二区三区在线臀色熟女| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 人妻久久中文字幕网| 精品国内亚洲2022精品成人| 国产成人freesex在线| 寂寞人妻少妇视频99o| 91av网一区二区| 国产精品人妻久久久影院| 偷拍熟女少妇极品色| 亚洲婷婷狠狠爱综合网| 在现免费观看毛片| 韩国av在线不卡| 久久久久性生活片| 人妻久久中文字幕网| 精品久久久久久久久久免费视频| 中文字幕av在线有码专区| 久久鲁丝午夜福利片| 久久精品91蜜桃| 日日啪夜夜撸| 99久久精品热视频| 综合色av麻豆| 午夜福利在线观看吧| 能在线免费观看的黄片| 精品99又大又爽又粗少妇毛片| 成人欧美大片| 夫妻性生交免费视频一级片| 欧美又色又爽又黄视频| 丰满人妻一区二区三区视频av| 观看美女的网站| 一本一本综合久久| 午夜精品国产一区二区电影 | 在线观看美女被高潮喷水网站| 欧美成人a在线观看| 国产人妻一区二区三区在| 99久国产av精品| 国内精品久久久久精免费| 国产精品99久久久久久久久| 国产熟女欧美一区二区| 国产精品福利在线免费观看| 丰满人妻一区二区三区视频av| 欧美性感艳星| 国内精品宾馆在线| 91精品国产九色| 久久久久久久久中文| 你懂的网址亚洲精品在线观看 | 亚洲欧美精品自产自拍| 日本与韩国留学比较| 国产精品,欧美在线| 欧美日韩乱码在线| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| 日韩在线高清观看一区二区三区| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄 | 久久99热这里只有精品18| 99九九线精品视频在线观看视频| 亚洲四区av| 精品久久久久久久久久久久久| 欧美日本视频| 悠悠久久av| 亚洲一级一片aⅴ在线观看| 亚洲av熟女| 夜夜夜夜夜久久久久| 亚洲丝袜综合中文字幕| av福利片在线观看| 国产三级在线视频| 国产av不卡久久| 卡戴珊不雅视频在线播放| 久久人人爽人人片av| 国产 一区 欧美 日韩| 亚洲成av人片在线播放无| 免费av不卡在线播放| 91aial.com中文字幕在线观看| 国产成人精品婷婷| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 国产高清不卡午夜福利| 看非洲黑人一级黄片| 乱人视频在线观看| 国产麻豆成人av免费视频| 免费观看精品视频网站| 亚洲国产高清在线一区二区三| 成人国产麻豆网| 一夜夜www| 欧美色欧美亚洲另类二区| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久| av免费观看日本| 久久久久久久午夜电影| 18禁裸乳无遮挡免费网站照片| 国产精品伦人一区二区| 精品久久久久久久人妻蜜臀av| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 日韩成人av中文字幕在线观看| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在 | 欧美精品国产亚洲| 国产成人影院久久av| 精品久久久久久久久久久久久| 伦理电影大哥的女人| 五月伊人婷婷丁香| 嫩草影院新地址| 一级av片app| 色5月婷婷丁香| 欧美又色又爽又黄视频| 国产精品三级大全| 国产精品嫩草影院av在线观看| 国产av一区在线观看免费| 国内精品一区二区在线观看| 久久国产乱子免费精品| 乱人视频在线观看| 久久精品夜色国产| 国产午夜精品一二区理论片| 日韩人妻高清精品专区| 国国产精品蜜臀av免费| 一进一出抽搐动态| 在线国产一区二区在线| 久久欧美精品欧美久久欧美| 一级毛片电影观看 | 黄片wwwwww| 一区二区三区四区激情视频 | 亚洲精品亚洲一区二区| 国产又黄又爽又无遮挡在线| 九九在线视频观看精品| 美女国产视频在线观看| 99riav亚洲国产免费| 老女人水多毛片| 免费观看在线日韩| 国产成年人精品一区二区| 午夜免费激情av| 久久久a久久爽久久v久久| 熟女电影av网| 91麻豆精品激情在线观看国产| 亚洲精品影视一区二区三区av| 国产精品久久电影中文字幕| 国产黄片美女视频| 久久这里只有精品中国| 亚洲高清免费不卡视频| 尤物成人国产欧美一区二区三区| 高清午夜精品一区二区三区 | 亚洲欧美精品综合久久99| 大香蕉久久网| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 内地一区二区视频在线| 国产白丝娇喘喷水9色精品| 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 99视频精品全部免费 在线| av免费在线看不卡| 亚洲欧美日韩高清专用| 波多野结衣巨乳人妻| 久久99精品国语久久久| 一夜夜www| 亚洲精品乱码久久久v下载方式| av福利片在线观看| 国产精品一及| 久久国内精品自在自线图片| 成人综合一区亚洲| 久久热精品热| 免费大片18禁| 中文字幕免费在线视频6| 在线a可以看的网站| 又粗又硬又长又爽又黄的视频 | 久久精品国产亚洲av天美| 熟女电影av网| 国产一区二区激情短视频| 中文字幕精品亚洲无线码一区| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| 亚洲av一区综合| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 中文欧美无线码| 夜夜爽天天搞| 精品久久久噜噜| 日本五十路高清| 欧美zozozo另类| 久久久a久久爽久久v久久| 91久久精品电影网| 中国国产av一级| 欧美丝袜亚洲另类| 欧美激情久久久久久爽电影| 九九久久精品国产亚洲av麻豆| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 久久欧美精品欧美久久欧美| av视频在线观看入口| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| 青青草视频在线视频观看| av.在线天堂| 国产成年人精品一区二区| 国产成人aa在线观看| 亚洲无线观看免费| 日韩中字成人| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 国产精品福利在线免费观看| 免费人成视频x8x8入口观看| 国产 一区 欧美 日韩| 亚洲激情五月婷婷啪啪| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 男的添女的下面高潮视频| 日本av手机在线免费观看| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| 成人漫画全彩无遮挡| 国内久久婷婷六月综合欲色啪| 欧美一区二区精品小视频在线| 观看美女的网站| 中文在线观看免费www的网站| 久久热精品热| 一夜夜www| 国产综合懂色| 男人舔奶头视频| 国产精品久久视频播放| 日韩一区二区视频免费看| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说 | 国产男人的电影天堂91| 美女高潮的动态| 人体艺术视频欧美日本| 一级毛片电影观看 | 久久久久久国产a免费观看| 亚洲欧美精品综合久久99| 亚洲中文字幕一区二区三区有码在线看| 一级二级三级毛片免费看| 99久久成人亚洲精品观看| 日韩精品青青久久久久久| 亚洲高清免费不卡视频| 看黄色毛片网站| 男女做爰动态图高潮gif福利片| 国产人妻一区二区三区在| 岛国毛片在线播放| 久久人人爽人人爽人人片va| 免费看日本二区| 国产午夜福利久久久久久| 99九九线精品视频在线观看视频| 直男gayav资源| 2022亚洲国产成人精品| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 3wmmmm亚洲av在线观看| 午夜爱爱视频在线播放| 黄色一级大片看看| 精品久久国产蜜桃| 日本在线视频免费播放| 久久欧美精品欧美久久欧美| 亚洲婷婷狠狠爱综合网| 欧美高清成人免费视频www| 白带黄色成豆腐渣| 国产成人福利小说| 直男gayav资源| 免费看a级黄色片| 最近手机中文字幕大全| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看 | 亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 女人十人毛片免费观看3o分钟| 天堂av国产一区二区熟女人妻| 国产精品久久久久久精品电影| 国产精品一二三区在线看| 国产成人精品久久久久久| 狠狠狠狠99中文字幕| 成人欧美大片| 91麻豆精品激情在线观看国产| 国产一级毛片在线| av在线蜜桃| 精品久久久久久久末码| 特级一级黄色大片| 男女边吃奶边做爰视频| 级片在线观看| av免费观看日本| 国产麻豆成人av免费视频| 小说图片视频综合网站| 一夜夜www| 日韩欧美在线乱码| 日韩三级伦理在线观看| 亚洲国产精品久久男人天堂| 中文欧美无线码| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看 | 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 亚洲国产精品sss在线观看| 国产美女午夜福利| 天堂中文最新版在线下载 | 一进一出抽搐gif免费好疼| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 久久久精品94久久精品| 国产成人a区在线观看| 男女做爰动态图高潮gif福利片| 国产单亲对白刺激| 国产极品天堂在线| 成人性生交大片免费视频hd| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品456在线播放app| 99久久九九国产精品国产免费| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 国产高清不卡午夜福利| 亚洲最大成人av| 美女被艹到高潮喷水动态| 亚州av有码| av黄色大香蕉| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 久久欧美精品欧美久久欧美| 欧美色视频一区免费| 插逼视频在线观看| 97热精品久久久久久| 国产精品一区二区三区四区免费观看| 欧美性感艳星| 久久久欧美国产精品| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| www.色视频.com| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 欧美3d第一页| 中文欧美无线码| 久久精品国产亚洲网站| 日韩av不卡免费在线播放| 国产真实乱freesex| 色哟哟哟哟哟哟| 亚洲av免费高清在线观看| 在线天堂最新版资源| 能在线免费看毛片的网站| .国产精品久久| 能在线免费看毛片的网站| 国产高清不卡午夜福利| 久久午夜福利片| 在线观看66精品国产| 国产精品久久久久久av不卡| 老熟妇乱子伦视频在线观看| 成人午夜高清在线视频| 国产白丝娇喘喷水9色精品| 免费人成视频x8x8入口观看| 大香蕉久久网| 色播亚洲综合网| 成年版毛片免费区| 日韩av在线大香蕉|