• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear Analysis of Obliquely Propagating Longitudinal Waves in Partially Spin Polarized Degenerate Magnetized Plasma

    2017-05-09 11:46:44IqbalMurtazaandHussain
    Communications in Theoretical Physics 2017年12期

    Z.Iqbal,G.Murtaza,and A.Hussain

    1Salam Chair,Department of Physics,G.C.University Lahore,Katchery Road,Lahore 54000,Pakistan

    2Department of Physics,Mirpur University of Science and Technology,Mirpur-10250(AJK),Pakistan

    1 Introduction

    Electrostatic waves are the basic collective phenomena in plasmas.In the spectrum of low frequency electrostatic waves,ion acoustic(IA)wave,ion cyclotron(IC)and lower hybrid(LH)wave have received considerable attention of physicists due to their potential applications in space and laboratory plasmas.LH waves propagate perpendicular to the external magnetic field.The resonant interaction of LH waves with electrons and ions is responsible for the transfer of energy between the two species,which leads to plasma heating or particle acceleration.Due to this characteristic,LH waves are important in both laboratory[1?2]and space plasma environments.[3?6]In a classical plasma the dispersion of LH waves has been derived[7]by including electromagnetic and warm plasma effects and it has been shown that this dispersion relation is more consistent with numerical results than the previously reported analytical dispersion relation.Moreover it is shown that when the ion magnetization effects become important,the continuous LH mode breaks up into a series of segments of ion Bernstein modes.The dispersion relations of the dust LH wave and dust LH surface wave have been derived using the quantum hydrodynamic model as in Refs.[8–9].It is found that the dispersion relations of these waves are signi ficantly affected by the quantum corrections.Using a quantum hydrodynamic model the excitations of LH wave have been investigated by injecting an electron beam in a semiconductor plasma[10]and found that an increase of the electron number density and streaming speed of the electron beam enhance the instability.Recently,Tripti and Prerana[11]studied the dispersion properties of LH wave in electron-ion degenerate plasma with Bohm potential and exchange correlation potential effects.They found that these effects signi ficantly modify the dispersion properties of LH wave.

    The ion acoustic(IA)wave is one of the fundamental low frequency modes of plasma caused by density perturbations.These waves have been extensively studied in the solar wind and in various regions of the Earth’s magnetosphere.[12?14]The study of IA wave also gained its importance in quantum plasmas in order to understand the electrostatic wave propagation at the microscopic level.Electrostatic waves have also been studied in quantum plasma and it has been shown that,both the high frequency electron waves(Langmuir wave and upper-hybrid wave)and the low frequency ion acoustic and ion cyclotron waves can propagate when the plasmas are cold.[15]Using the quantum hydrodynamic(QHD)model,the effects of Bohm potential on the linear and nonlinear properties of the IA wave in an unmagnetized electron-ion plasma have been investigated in Ref.[16]and the quantum effects are found to modify the linear wave frequency.Hass and Mahmood[17?18]analyzed the linear and non linear IA waves in unmagnetized and magnetized quantum plasmas with arbitrary degeneracy of electrons.They found the dispersion relation of quantum IA wave in terms of generalized IA speed,valid for dilute and dense cases.

    The electrostatic IC mode is another fundamental mode of a magnetized plasma.In a multi-ion species plasma,IC waves can have frequencies near their respective ion gyrofrequencies.These waves were first observed by D’Angelo and Motley in laboratory plasmas[19?20]and subsequently have been observed in space plasma by Mosier and Gurnett.[21]These waves are studied due to their importance in the heating of plasmas.[22]The excitation ofelectrostatic IC waves by an ion beam in a two-component collisionless or collisional plasma has been investigated in Refs.[23–24].Very recently,the coupling of electrostatic IC and IA waves has been examined in a three-component magnetized plasma consisting of electrons,protons and alpha particles and the results have been applied to the study of solar wind plasma.[25]

    The QHD model was extended for spin-1/2 particles in Refs.[26–28].The derivation of QHD model for spin-1/2 particles was first presented by Kuzmenkov in 2001.Later,the so called spin-1/2 quantum plasmas in which the spin properties of electrons are taken into account,have received great attention due to the occurrence of some new wave phenomena.[29?37]Subsequently,the quantum kinetics for spin-1/2 quantum plasmas has been developed and applied to study the dispersion properties of various plasma waves.[31,38?43]

    However,generalized QHD equations were obtained in Ref.[34]by considering the electrons with spin-up and spin-down as two different fluids.In the presence of ambient magnetic field,the equilibrium concentration of spinup and spin-down electrons are different(nu/=nd),which is responsible for the difference of Fermi pressures of the spin-up and spin-down electrons and the model is called separate spin evolution(SSE).The difference of Fermi pressures gives rise to a new type of longitudinal collective excitation in degenerate quantum plasmas.This excitation is called the spin-electron acoustic wave(SEAW).Oblique propagation of longitudinal waves with the SSEQHD equations in electron-ion(e-i)and(e-p-i)plasmas further gives birth to new type of spin-dependent longitudinal waves.[35?36]Non-linear analysis of these waves is given in Refs.[44–45]The new spin-dependent wave has also been found by applying the SSE-QHD equations to the two-dimensional electron gas in plane samples and nanotubes embedded in an external magnetic field in Refs.[46–47]Further,generalization of SSE-QHD equations by including the spin-orbit interaction(quantumrelativistic effects)has been presented in Ref.[48]This generalization is based upon the nonlinear Pauli equation by including Fermi spin current contribution in the spin evolution.It is demonstrated that the SEAW spectrum signi ficantly changes due to transverse part of the electric field and an extra shift in the extraordinary wave spectrum is observed due to the spin-orbit interaction.

    From the above literature,one may notice that the low frequency electrostatic waves have been well studied in the classical and quantum plasma(without taking account of electron spin effects)regimes.The electron spin effects on the electrostatic wave have been investigated with the aid of SSE-QHD equations but in most of the investigations for electrostatic waves,the ion dynamic is ignored.In the present work we examine the electron spin effects on the linear low frequency obliquely propagating electrostatic(LH wave,IA wave,and IC wave)waves in degenerate magnetized plasma using the SSE-QHD equations and highlight the role of the new spin dependent wave on their spectra.

    The article is organized in the following manner.In Sec.2,the dynamic equations are described to investigate the linear properties of longitudinal waves in partially spin polarized plasma and a general dispersion equation of obliquely propagating longitudinal waves is derived.In Sec.3,analytical and numerical analysis of waves under consideration is presented.Finally,the conclusion is described in Sec.4.

    2 Governing Equations

    We study the obliquely propagating low frequency electrostatic waves in collisionless electron-ion plasma embedded in an external magnetic fieldB0that is directed along thezdirection and the wave is taken to propagate in(x,z)plane at an angleθwithz-axis.The electrons and ions are considered to be degenerate and magnetized.The continuity and momentum equations for ions are given as

    For governing the dynamics of electrons,we consider the SSE-QHD equations,which were recently developed in Refs.[34–35].In the SSE-QHD equations under the action of external magnetic field,each species with spin-up and spin-down are considered as a separate fluid.Therefore,the continuity equation with spin projection of each species is presented as

    wheres=u,dfor the spin-up and spin-down state of particles,nesandvesare the concentration and velocity field of electrons being in the spin states,Tez=(γe/?)(BxSey?BySex)is the z-projection of spin torqueis:iu=2,id=1,with the spin density projectionsSexandSey,each describing the evolution of the spin-up and spindown states of particles andγe=?μB,μBis the Bohr magneton.Therefore,the functionsSexandSeydo not bear subindexesuandd.In this model,thez-projection of the spin densitySezis not an independent variable,it is a combination of concentrations i.e.,Sez=neu?ned.The momentum equation for electrons is given as

    For the oblique propagation of longitudinal waves in electron-ion plasma,the required Maxewell’s equations can be written as

    In order to study the linear response,we linearize Eqs.(1)–(2)and(5)–(8)by considering the first order perturbations only.Assuming sinusoidal perturbation ei(k·r?ωt),the resulting equations lead to dispersion equation

    3 Analytical and Numerical Analysis of Low Frequency Longitudinal Waves

    In this section,we explicitly derive the dispersion relations of waves under consideration from the dispersion Eq.(9).To obtain numerical results,we choose the plasma regime having equilibrium number densityn0e=1027cm?3,the electrons Fermi temperature corresponding to this density isTFe=(3π2n0e)2/3(?2/2mekB)=4.23×107K,for degenerate ions[34,41]TFi=2.30×104K,which means that our results are applicable in the plasma regimes having thermal temperatureT<TFi.Further,for the variation of spin polarizationηwe keep number density fixed and consider the variation of ambient magnetic fieldB0in the range from 1010G to 4×1011G.Our results can be applied to the degenerate astrophysical plasma environments.

    3.1 Lower Hybrid Waves

    In this section we are interested to study the dispersion properties of LH waves.In the first case,ions are unmagnetized and electrons are magnetized and the propagation is perpendicular to ambient magnetic field(θ=π/2).Applying LH wave conditionωci?ω?ωce,we obtain

    From the above equation,we observe how the electron spin polarization affects the dispersion character of LH wave.Here,it is important to mention that we have neglected the Bohm potential effects because the same has already been discussed quite a lot in the literature.If we consider the electrons as a single fluid and assumeω2pe?ω2ce,we retrieve the results of LH wave discussed in Ref.[7].The dispersion relation(10)is plotted in Fig.1,which shows the effect of spin polarization on the frequency of wave.It is obvious from the graph that the frequency of LH waves decreases as we increase the spin polarization.The wave under consideration bears cyclotron character and one would expect the frequency of the wave to increase with magnetic field.Thus for fixed values of equilibrium number density,the spin polarizationηwould increase with magnetic field and the LH wave frequency would decrease as is evident from Eq.(10).

    Fig.1 The dispersion relation of LH wave(Eq.(10))for different values of spin polarization η =0.047,0.071 and 0.095 corresponding to B0=(2,3 and 4)×1010G and n0=1027cm?3.

    Fig.2 Figure shows the spectra of electrostatic waves propagating nearly perpendicular to magnetic field.The figure depicts dispersion branches of LH wave(upper curve),spin electron acoustic wave(middle curve)and IA wave having lowest frequency.

    Forθexactlyπ/2 we have only one wave solution i.e.,LH wave.However,if we consider small deviation fromθ=π/2 and impose constraintωci?ω?ωce,the dispersion equation acquires the following form

    In the absence of electron spin polarization,the Eq.(11)becomes second degree inω2,and has two real solutions,one is IA wave and the other LH wave.However,Eq.(11),as it is,is cubic inω2and thus has three real wave solutions corresponding to IA and LH waves and a new spin dependent wave called spin electron acoustic wave.It may be pointed out here that the spectra of low frequency longitudinal waves are modi fied due to new electron spin dependent mode,which appears as a result of our consideration of SSE-QHD equations.The dispersion relation(11)is graphically represented in Fig.2.At fixed values of spin polarizationηand the propagation angleθ,the graph depicts three curves with the upper curve describing the LH wave,the middle curve the SEAW and lower curve the IA wave.Also it is clear from the graph that the frequencies of all the three waves first increase at small wave numbers and then become constant at relatively large values.

    3.2 Ion Acoustic Wave

    If we consider parallel propagation and treat electrons inertialess the dispersion Eq.(9)takes the following form

    which is the dispersion relation of IA wave in a partially spin polarized degenerate magnetized plasma.In the long wavelength limitω2pe?k2v2Fe,the above dispersion relation reduces to Herec2Fs=(3π2n0e)1/3?/3memithe square acoustic speed in degenerate plasma.Further,for unpolarized plasma(η=0),we get the standard dispersion relation of IA wave in degenerate plasma.The graphical analysis of dispersion relation(13)is shown in Fig.3.From the figure,it is obvious that by increasing spin polarization,the frequency of IA wave reduces.However,without taking long wavelength limit,the frequency of IA wave increases but the increase is negligibly small as shown in Fig.4.It is important to mention here that if we retain the inertia of electrons,the spectrum of IA wave is modi fied with SEAW,which is already reported in Ref.[34].

    Fig.3 The dispersion relation of IA wave in the limit of long wavelength(Eq.(13))for different values of spin polarization η=0.1,0.7 and 0.9 corresponding to B0=4.20×1010G,2.94×1011G and 3.78×1011G and n0=1027cm?3.

    Fig.4 The figure exhibits dispersion character of IA wave without taking long wavelength limit(Eq.(12))for the same parameters as used in Fig.3.

    3.3 Ion Cyclotron Waves

    An electrostatic IC wave propagates nearly at right angle to the external magnetic field.If the angle is not exactlyπ/2,the electrons can move along the external magnetic field to carry charge from negative to positive region and carry out Debye shielding.The ions cannot do this effectively because their inertia prevents them from moving such long distances in a wave period;this is why we can neglect the parallel propagation of ions.[49]With these assumptions,the dispersion Eq.(9)becomes

    which is the modi fied dispersion relation of electrostatic IC waves with spin polarization effects.If we assume that the electrons are inertialess,the above dispersion relation attains the following form

    In case of long wave length limitk2v2Fe?ω2pe,the above dispersion relation reduces to

    In general,in deriving the dispersion relation of IC wave the electrons are considered to be inertialess.If we retain the inertia of electrons,then the dispersion Eq.(14)becomes cubic inω2,which means that it contains three real wave solutions.If the electrons are treated as single fluid we have only two wave solutions:IA and IC waves.But in case of partially spin polarized plasma we have three wave solutions instead of two.Thus,like LH waves the spectrum of IC waves is also modi fied with the new spin dependent wave.The dispersion Eq.(14)is plotted in Fig.7 for a fixed value of spin polarization.In this plot,the low frequency curve corresponds to IA wave,the middle curve corresponds to SEAW and the upper line shows the IC wave.In Fig.7 left hand side ofy-axis represent magnitude of solid curves(Red,Green,and Blue).As the lower thick blue line seems to be merged withx-axis and is therefore redrawn on the right hand side ofy-axis.Now the blue dashed curve is the actual representation of solid blue curve.

    Fig.5 Figure shows the increase in frequency of IC wave(Eq.(15))with increasing spin polarization η using the same parameters as in Fig.3.

    Fig.7 (Color online)Figure shows the existence of SEAW in the spectra of IC and IA waves.High frequency curve corresponds to IC wave,middle curve describes SEA wave and lower frequency wave is IA wave.Here,η=0.23 with B0=1011G and n0=1027cm?3.

    4 Conclusions

    The beauty of SSE is that it generates new wave phenomena in the spectrum of both the electrostatic and electromagnetic waves.Exploring the applications of SSEQHD model,we are probably the first to consider the problem of low frequency longitudinal waves in degenerate magnetized plasma and to have derived the general dispersion relation of longitudinal waves in a partially spin polarized degenerate magnetized plasma.In the spectrum of low frequency electrostatic waves we present analytical and numerical analysis of LH wave,IA wave,and IC wave.For perpendicular propagation,the frequency of LH wave decreases with increasing values of spin polarization(η).However at small deviation from perpendicular propagation,the spectra of LH and IA waves are modi fied with SEAW.Further,signi ficant frequency shifts are observed in the spectrum of IA wave with the variation of spin polarization effects.In case of inertialess electron,the frequency of IC wave increases with increasing spin polarization but if we impose the condition of long wavelength limit the frequency of IC wave decreases with increasing spin polarization.By taking account of inertia of electrons,the spectra of IC and IA waves are also modi fied with SEAW like in LH wave.

    Since our chosen parameters are typically found in the pulsating white dwarfs i.e.,n0=(1026–1028)cm?3andB0=(109–1011)G,therefore our present investigations are useful for understanding the existence of new waves and propagation of low frequency electrostatic waves in such dense astrophysical objects.Further,we hope that our findings may shed new light on further study of instabilities and nonlinear structures of electrostatic and electromagnetic waves.

    Fig.6 Figure shows the propagation character of the IC wave in limit of long wavelength(Eq.(16)).The parameters are the same as of Fig.3.

    [1]T.H.Stix,Phys.Rev.Lett.15(1965)878.

    [2]J.F.Drake,J.D.Huba,and N.T.Gladd,Phys.Fluids 26(1983)2247.

    [3]D.B.Melrose,Instabilities in Space and Laboratory Plasmas,Cambridge University Press,Cambridge(1986).

    [4]V.D.Shapiro,R.Bingham,J.M.Dawson,et al.,Phys.Scr.T 75(1998)39.

    [5]I.H.Cairns and B.F.McMillan,Phys.Plasmas 12(2005)102110.

    [6]B.F.McMillan and I.H.Cairns,Phys.Plasmas 14(2007)012103.

    [7]A.L.Verdon,I.H.Cairns,D.B.Melrose,and P.A.Robinson,Phys.Plasmas 16(2009)052105.

    [8]M.Salimullah,I.Zeba,Ch.Uzma,H.A.Shah,and G.Murtaza,Phys.Lett.A 372(2008)2291.

    [9]M.Ayub,H.A.Shah,M.N.S.Qureshi,and M.Salimullah,Commun.Theor.Phys.60(2013)623.

    [10]A Rasheed,M.Jamil,F.Areeb,M.Siddique,and M.Salimullah,J.Phys.D:Appl.Phys.49(2016)175109.

    [11]T.Rimza and P.Sharma,J.Phys:Conf.Series 836(2017)012028.

    [12]D.A.Gurnett and L.A.Frank,J.Geophys.Res.83(1978)58.

    [13]N.Lin,P.J.Kellogg,R.J.MacDowall,and S.P.Gary,Space Sci.Rev.97(2001)196.

    [14]M.Backrud-Ivgren,G.Stenberg,M.Andr,et al.,Ann.Geophys.23(2005)3739.

    [15]W.C.Hua,S.X.Xia,and W.C.Qun,Commun.Theor.Phys.53(2010)771.

    [16]F.Haas,L.G.Garcia,J.Goedert,and G.Manfredi,Phys.Plasmas 10(2003)3858.

    [17]F.Haas and S.Mahmood,Phys.Rev.E 92(2015)053112.

    [18]F.Haas and S.Mahmood,Phys.Rev.E 94(2016)033212.

    [19]N.D’Angelo and R.W.Motley,Phys.Fluids 5(1962)633.

    [20]R.W.Motley and N.D’Angelo,Phys.Fluids 6(1963)296.

    [21]S.R.Mosier and D.A.Gurnett,Nature(London)223(1969)605.

    [22]M.Kono,J.Vranjes,and N.Batool,Phys.Rev.Lett.112(2014)105001.

    [23]J.Sharma and S.C.Sharma,Phys.Plasmas 17(2010)123701.

    [24]J.Sharma,S.C.Sharma,and D.Kaur,Prog.Electromagn.Res.Lett.54(2015)123.

    [25]T.Sreeraj,S.V.Singh,and G.S.Lakhina,Phys.Plasmas 23(2016)082901.

    [26]L.S.Kuz’menkov,S.G.Maksimov,and V.V.Fedoseev,Theor.Math.Phys.126(2001)110.

    [27]L.S.Kuz’menkov,S.G.Maksimov,and V.V.Fedoseev,Theor.Math.Phys.126(2001)212.

    [28]M.Marklund and G.Brodin,Phys.Rev.Lett.98(2007)025001.

    [29]D.V.Vagin,N.E.Kim,P.A.Polyakov,and A.E.Rusakov,Izv.Ranser.Fiz.70(2006)443[Bull.Rus.Acad.Sci.:Phys.70(2006)505].

    [30]P.A.Andreev and L.S.Kuz’menkov,Moscow University Phys.Bull.62(2007)271.

    [31]G.Brodin,M.Marklund,J.Zamanian,A.Ericsson,and P.L.Mana,Phys.Rev.Lett.101(2008)245002.

    [32]A.P.Misra,G.Brodin,M.Marklund,and P.K.Shukla,J.Plasma Phys.76(2010)857.

    [33]A.Hussain,M.Stefan,and G.Brodin,Phys.Plasmas 21(2014)032104.

    [34]P.A.Andreev,Phys.Rev.E 91(2015)033111.

    [35]P.A.Andreev,Ann.Phys.361(2015)278.

    [36]P.A.Andreev and Z.Iqbal,Phys.Rev.E 93(2016)033209.

    [37]M.Shahid,Z.Iqbal,A.Hussain,and G.Murtaza,Phys.Scr.90(2015)025605.

    [38]F.A.Asenjo,J.Zamanian,M.Marklund,G.Brodin,and P.Johansson,New J.Phys.14(2012)073042.

    [39]J.Zamanian,M.Marklund,and G.Brodin,New J.Phys.12(2010)043019.

    [40]P.A.Andreev,Physica A 432(2015)108.

    [41]P.A.Andreev,Phys.Plasmas 23(2016)062103.

    [42]P.A.Andreev,Phys.Plasmas 24(2017)022114.

    [43]Z.Iqbal,A.Hussain,G.Murtaza,and M.Ali,Phys.Plasmas 21(2014)122118.

    [44]P.A.Andreev,Phys.Plasmas 23(2016)012106.

    [45]Z.Iqbal and P.A.Andreev,Phys.Plasmas 23(2016)062320.

    [46]P.A.Andreev and L.S.Kuz’menkov,EPL 113(2016)17001.

    [47]P.A.Andreev,Phys.Plasmas 24(2017)022106.

    [48]P.A.Andreev and M.I.Trukhanova,e-print arXiv:1603.07506.

    [49]F.F.Chen,Introduction to Plasma Physics and Controlled Fusion,Vol.1,Plenum,New York(1984).

    亚洲精品自拍成人| 99热网站在线观看| 国产真实伦视频高清在线观看| 国产免费一级a男人的天堂| 国产熟女欧美一区二区| 免费看a级黄色片| 国产男人的电影天堂91| 国产精品三级大全| 亚洲av福利一区| 国产av不卡久久| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜添av毛片| 97热精品久久久久久| 91精品伊人久久大香线蕉| 大香蕉97超碰在线| 国产久久久一区二区三区| 91狼人影院| av.在线天堂| 免费播放大片免费观看视频在线观看| 女人十人毛片免费观看3o分钟| 麻豆乱淫一区二区| 国产淫语在线视频| av在线蜜桃| av免费在线看不卡| 午夜福利视频1000在线观看| 99热这里只有是精品50| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 国产精品蜜桃在线观看| 亚洲最大成人中文| 日韩中字成人| av在线播放精品| 麻豆精品久久久久久蜜桃| 午夜免费观看性视频| 成年版毛片免费区| 亚洲av男天堂| 插阴视频在线观看视频| 国产乱人偷精品视频| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站| 国产成人精品婷婷| 丰满少妇做爰视频| 天堂网av新在线| 99re6热这里在线精品视频| 日韩人妻高清精品专区| 国产av不卡久久| 日韩亚洲欧美综合| 联通29元200g的流量卡| 男人舔奶头视频| 欧美高清成人免费视频www| 亚洲av日韩在线播放| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 国产精品蜜桃在线观看| 精品国产一区二区三区久久久樱花 | 天堂√8在线中文| 高清欧美精品videossex| 国产大屁股一区二区在线视频| .国产精品久久| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 午夜激情欧美在线| 色5月婷婷丁香| 2021天堂中文幕一二区在线观| 国产欧美另类精品又又久久亚洲欧美| 国产老妇伦熟女老妇高清| 日本一本二区三区精品| 纵有疾风起免费观看全集完整版 | 欧美3d第一页| 免费无遮挡裸体视频| 少妇丰满av| 丝袜美腿在线中文| 午夜久久久久精精品| 成人亚洲欧美一区二区av| 亚洲怡红院男人天堂| 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版 | 国产综合懂色| 亚洲欧美一区二区三区黑人 | 亚洲欧美日韩东京热| 国产一区二区三区av在线| 国产高清国产精品国产三级 | 欧美bdsm另类| 男女下面进入的视频免费午夜| 亚洲美女视频黄频| 丰满人妻一区二区三区视频av| 久久久久久久午夜电影| videossex国产| 亚洲一区高清亚洲精品| 欧美xxxx性猛交bbbb| 日日撸夜夜添| 一级毛片电影观看| 大片免费播放器 马上看| 久久久亚洲精品成人影院| 色网站视频免费| 亚洲欧美一区二区三区黑人 | 欧美3d第一页| 老女人水多毛片| 伦精品一区二区三区| 成人亚洲欧美一区二区av| 久久热精品热| 久久久久久久午夜电影| 亚洲成人一二三区av| 久久鲁丝午夜福利片| 亚洲国产精品sss在线观看| 日本av手机在线免费观看| 亚洲av不卡在线观看| 国产成人精品福利久久| 午夜激情久久久久久久| 国产视频内射| 亚洲av成人精品一区久久| 免费少妇av软件| 久久久久久久午夜电影| 乱人视频在线观看| 99久国产av精品国产电影| 99久久人妻综合| 你懂的网址亚洲精品在线观看| 日日撸夜夜添| 午夜激情福利司机影院| 国产精品.久久久| 美女国产视频在线观看| 狂野欧美白嫩少妇大欣赏| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 69av精品久久久久久| 中文在线观看免费www的网站| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 三级毛片av免费| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久| 天天躁日日操中文字幕| 欧美潮喷喷水| 午夜日本视频在线| 欧美成人一区二区免费高清观看| 午夜视频国产福利| 日本wwww免费看| 美女cb高潮喷水在线观看| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| 午夜老司机福利剧场| 欧美97在线视频| 亚洲精品日韩在线中文字幕| 日本免费a在线| 久久草成人影院| 亚洲色图av天堂| 丰满人妻一区二区三区视频av| 水蜜桃什么品种好| 看免费成人av毛片| 国产 亚洲一区二区三区 | a级毛片免费高清观看在线播放| 国产亚洲一区二区精品| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 一级黄片播放器| 高清视频免费观看一区二区 | 99久久人妻综合| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 亚洲国产最新在线播放| 18+在线观看网站| 精品久久久久久久久亚洲| 久久午夜福利片| 免费少妇av软件| av网站免费在线观看视频 | 国产色婷婷99| 97人妻精品一区二区三区麻豆| 亚洲高清免费不卡视频| 中文资源天堂在线| 亚洲国产欧美在线一区| 极品教师在线视频| 熟女电影av网| a级毛片免费高清观看在线播放| 欧美日韩亚洲高清精品| 成人毛片a级毛片在线播放| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 蜜臀久久99精品久久宅男| 性插视频无遮挡在线免费观看| 成人美女网站在线观看视频| 哪个播放器可以免费观看大片| 国模一区二区三区四区视频| 亚洲精品一二三| 少妇丰满av| 成年人午夜在线观看视频 | 夫妻午夜视频| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久电影| 亚洲av电影在线观看一区二区三区 | 乱码一卡2卡4卡精品| ponron亚洲| 天美传媒精品一区二区| 国产探花在线观看一区二区| 热99在线观看视频| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av涩爱| 久久久久久久久久黄片| 国产91av在线免费观看| 中文字幕av成人在线电影| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 成人无遮挡网站| 色尼玛亚洲综合影院| 九草在线视频观看| 亚洲激情五月婷婷啪啪| 久久鲁丝午夜福利片| 免费黄网站久久成人精品| 黄色日韩在线| 亚洲精品,欧美精品| 亚洲av成人av| a级毛色黄片| 国内精品一区二区在线观看| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| a级毛色黄片| av在线亚洲专区| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 成人鲁丝片一二三区免费| 精品久久久久久久人妻蜜臀av| 精品熟女少妇av免费看| 在线观看av片永久免费下载| 高清av免费在线| 能在线免费看毛片的网站| 一级av片app| 日韩电影二区| 精品熟女少妇av免费看| 国产一区亚洲一区在线观看| 一区二区三区免费毛片| 亚洲综合精品二区| 插逼视频在线观看| 黄色一级大片看看| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 久久久精品欧美日韩精品| a级毛色黄片| 国产亚洲av片在线观看秒播厂 | kizo精华| 三级国产精品欧美在线观看| 国产精品一及| 毛片女人毛片| 九九爱精品视频在线观看| 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 亚洲精品一区蜜桃| 亚洲色图av天堂| 婷婷色麻豆天堂久久| xxx大片免费视频| 精品久久久久久久末码| 中文字幕免费在线视频6| 中文字幕av在线有码专区| 只有这里有精品99| 欧美一区二区亚洲| 少妇熟女欧美另类| 全区人妻精品视频| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 床上黄色一级片| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 最后的刺客免费高清国语| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 欧美日韩在线观看h| 久99久视频精品免费| 最近中文字幕2019免费版| 偷拍熟女少妇极品色| 欧美潮喷喷水| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久 | 成年免费大片在线观看| 婷婷色麻豆天堂久久| 亚洲最大成人手机在线| 白带黄色成豆腐渣| 久久99热这里只频精品6学生| 80岁老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 亚洲精品日本国产第一区| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 成人欧美大片| 亚洲欧洲日产国产| 国产淫语在线视频| 99久久中文字幕三级久久日本| 18禁动态无遮挡网站| 男女边摸边吃奶| 一本一本综合久久| 日本黄大片高清| 国产精品久久视频播放| av福利片在线观看| 在线观看免费高清a一片| 亚洲,欧美,日韩| 人妻制服诱惑在线中文字幕| 精品一区在线观看国产| 青春草视频在线免费观看| 高清日韩中文字幕在线| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 亚洲人成网站在线播| 日本色播在线视频| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 成人无遮挡网站| 熟妇人妻久久中文字幕3abv| 夫妻午夜视频| 久久久精品免费免费高清| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 午夜精品一区二区三区免费看| 午夜福利在线在线| 欧美激情在线99| 欧美3d第一页| av在线天堂中文字幕| 中文字幕制服av| 亚洲av二区三区四区| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 极品教师在线视频| 精品国内亚洲2022精品成人| 一区二区三区高清视频在线| 五月玫瑰六月丁香| 欧美成人午夜免费资源| 久久99热这里只有精品18| 国产精品熟女久久久久浪| 夫妻性生交免费视频一级片| 性色avwww在线观看| 人人妻人人看人人澡| 2018国产大陆天天弄谢| 成人综合一区亚洲| 少妇丰满av| 极品教师在线视频| 又大又黄又爽视频免费| 久久久久性生活片| 国产黄频视频在线观看| 久久草成人影院| 九九在线视频观看精品| 一本久久精品| 精品国产一区二区三区久久久樱花 | 综合色丁香网| 麻豆成人av视频| 亚洲av电影在线观看一区二区三区 | 欧美一级a爱片免费观看看| 美女大奶头视频| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 大香蕉久久网| 日韩av在线大香蕉| 青春草视频在线免费观看| 亚洲18禁久久av| 午夜久久久久精精品| 男女边摸边吃奶| 久久精品夜色国产| 亚洲精品视频女| 欧美xxxx黑人xx丫x性爽| 国产高清不卡午夜福利| 嫩草影院入口| 国产伦理片在线播放av一区| 综合色丁香网| 少妇熟女aⅴ在线视频| 有码 亚洲区| 日韩欧美一区视频在线观看 | 亚洲在线自拍视频| 久久99蜜桃精品久久| 午夜精品在线福利| 身体一侧抽搐| 亚洲精品日本国产第一区| 免费av不卡在线播放| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 街头女战士在线观看网站| 成人二区视频| 寂寞人妻少妇视频99o| 一本久久精品| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频精品| 大陆偷拍与自拍| 天美传媒精品一区二区| 看十八女毛片水多多多| 婷婷色综合www| 黄色配什么色好看| 男女视频在线观看网站免费| 亚洲av二区三区四区| 偷拍熟女少妇极品色| 免费av观看视频| 最近视频中文字幕2019在线8| videos熟女内射| 97人妻精品一区二区三区麻豆| 午夜福利成人在线免费观看| 国产成人91sexporn| 成人亚洲精品av一区二区| 久久久久精品久久久久真实原创| 精品亚洲乱码少妇综合久久| eeuss影院久久| 蜜桃久久精品国产亚洲av| 久久久久久九九精品二区国产| 51国产日韩欧美| 国产精品1区2区在线观看.| 在线观看免费高清a一片| 国产精品一区二区在线观看99 | 精品久久久久久久久久久久久| 亚洲精品久久久久久婷婷小说| 亚洲一区高清亚洲精品| av网站免费在线观看视频 | 小蜜桃在线观看免费完整版高清| 美女国产视频在线观看| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 国产淫片久久久久久久久| 久久久亚洲精品成人影院| 国产视频内射| 国产精品无大码| 国产美女午夜福利| 国产亚洲5aaaaa淫片| 干丝袜人妻中文字幕| 亚洲精品乱码久久久久久按摩| 日韩一区二区三区影片| 亚洲欧美精品专区久久| 亚洲精品成人av观看孕妇| 2021天堂中文幕一二区在线观| 91精品国产九色| 亚洲乱码一区二区免费版| 欧美极品一区二区三区四区| 最近最新中文字幕免费大全7| 久热久热在线精品观看| 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 亚洲国产欧美在线一区| 国产成人a区在线观看| 国国产精品蜜臀av免费| 女的被弄到高潮叫床怎么办| 精品国产三级普通话版| 真实男女啪啪啪动态图| 亚洲综合色惰| 成人欧美大片| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 嫩草影院新地址| 免费看不卡的av| 日本爱情动作片www.在线观看| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频 | 日韩伦理黄色片| 高清在线视频一区二区三区| 777米奇影视久久| av黄色大香蕉| 久久久国产一区二区| 赤兔流量卡办理| 一边亲一边摸免费视频| 人人妻人人看人人澡| 国产精品三级大全| 两个人视频免费观看高清| 国产在视频线精品| 国产在视频线在精品| 91av网一区二区| 三级国产精品片| 美女大奶头视频| 乱码一卡2卡4卡精品| 乱系列少妇在线播放| 伦理电影大哥的女人| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美一区二区三区黑人 | 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 免费看不卡的av| 免费观看无遮挡的男女| 欧美三级亚洲精品| 久久久久精品性色| 在线a可以看的网站| 大片免费播放器 马上看| h日本视频在线播放| 一二三四中文在线观看免费高清| 亚洲成色77777| 亚洲国产精品成人综合色| 久久久久久久久久成人| 精品久久久精品久久久| 婷婷色麻豆天堂久久| 最近2019中文字幕mv第一页| 日本与韩国留学比较| 久久99热6这里只有精品| 亚洲自拍偷在线| 免费看av在线观看网站| 成人亚洲精品一区在线观看 | 啦啦啦韩国在线观看视频| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 内地一区二区视频在线| 亚洲国产精品sss在线观看| 99热6这里只有精品| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 免费观看在线日韩| 久久综合国产亚洲精品| 亚洲无线观看免费| 国产欧美另类精品又又久久亚洲欧美| 亚洲在线观看片| 亚洲精品色激情综合| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线 | 人人妻人人看人人澡| 精品久久久久久久久亚洲| 乱系列少妇在线播放| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 国产乱人视频| 久久久久久久大尺度免费视频| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 日本爱情动作片www.在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产最新在线播放| 久久99精品国语久久久| 国产大屁股一区二区在线视频| 乱人视频在线观看| 九九在线视频观看精品| 久久99热6这里只有精品| av免费在线看不卡| 国产午夜精品论理片| 男插女下体视频免费在线播放| 国产av在哪里看| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 欧美zozozo另类| 日本黄大片高清| 国产精品久久久久久久久免| 国产伦精品一区二区三区视频9| 久久精品熟女亚洲av麻豆精品 | 天堂俺去俺来也www色官网 | 高清毛片免费看| 久久精品夜夜夜夜夜久久蜜豆| 国产探花在线观看一区二区| 欧美zozozo另类| 国产乱人视频| 免费看av在线观看网站| 美女国产视频在线观看| 日韩成人伦理影院| 大香蕉97超碰在线| 大香蕉久久网| 午夜激情福利司机影院| 美女国产视频在线观看| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 亚洲经典国产精华液单| 国产美女午夜福利| 大陆偷拍与自拍| 成年免费大片在线观看| 777米奇影视久久| 搞女人的毛片| 国国产精品蜜臀av免费| 在线a可以看的网站| 天堂俺去俺来也www色官网 | videossex国产| 免费高清在线观看视频在线观看| 国产精品麻豆人妻色哟哟久久 | 午夜精品一区二区三区免费看| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 亚洲精品色激情综合| 亚洲最大成人中文| 国产麻豆成人av免费视频| 久久国产乱子免费精品| 又黄又爽又刺激的免费视频.| 青青草视频在线视频观看| 免费观看av网站的网址| 精品一区二区三区视频在线| 精品国产三级普通话版| 日韩成人伦理影院| 男人和女人高潮做爰伦理| 久久99精品国语久久久| 午夜精品一区二区三区免费看| 91精品伊人久久大香线蕉| 2022亚洲国产成人精品| 亚洲精品乱码久久久v下载方式| 嫩草影院精品99| 精品一区二区三区人妻视频| 成年av动漫网址| 国产精品一区二区三区四区久久| 女人久久www免费人成看片| 国产乱来视频区| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线观看播放| 97热精品久久久久久| 97人妻精品一区二区三区麻豆| a级一级毛片免费在线观看| 淫秽高清视频在线观看| 免费观看在线日韩| 蜜桃久久精品国产亚洲av| 亚洲av电影在线观看一区二区三区 | 国产精品不卡视频一区二区| 亚州av有码| 看免费成人av毛片| 久久人人爽人人片av|