• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General Solutions for Hydromagnetic Free Convection Flow over an In finite Plate with Newtonian Heating,Mass Diffusion and Chemical Reaction

    2017-05-09 11:46:34ConstatinFetecauNehadAliShahandDumitruVieru
    Communications in Theoretical Physics 2017年12期

    Constatin Fetecau,Nehad Ali Shah,and Dumitru Vieru

    1Academy of Romanian Scientists,Bucuresti 050094,Romania

    2Abdus Salam School of Mathematical Sciences GC,University Lahore,54600,Pakistan

    3Technical University of Iasi,Iasi 700050,Romania

    1 Introduction

    Natural or free convection flows are abundantly met in nature.They are particularly important in oceanic and atmospheric circulation, filtration processes,cooling of nuclear reactors,solar energy collectors and arise in fluids when the temperature changes imply variations of the density leading to buoyancy forces which affect their motion.Details about the applications of free convection flows can be found in the books of Ghoshdastidar[1]and Nield and Bejan[2]but one of the oldest and interesting studies regarding the free convection from a heated vertical plate is that of Turnbull[3]in presence of an electric field.Such flows,which are also affected by the differences in concentration,have been extensively studied due to their multiple applications in engineering and environmental processes.The study of free convection flow in the presence of magnetic field is also important in polymer industry,metallurgy,astrophysics and geophysics and the first authors who took into consideration the effects of magnetic field in their work seem to be Soundalgekaret al.[4]

    Hydromagnetic flows combined with heat and mass transfer by free convection have been studied by many authors due to their diverse applications in science and technology.The mass transfer,that means the transport of a constituent between two regions having different concentrations,is the basis of many biological and chemical processes.[5]It also appears in the theory of stellar and solar structures.On the other hand,in the last time,hydromagnetic free convection flows involving heat and mass transfer with chemical reaction received a special attention(see for instance the recent works of Reddyet al.[6?7]Raoet al.,[8]Srihari and Chirra Kesava Reddy,[9]Pattnaik and Biswal,[10]Sethet al.[11]and therein references).They are important in different areas of sciences and engineering and usually occur in magnetohydrodynamic power generation systems,cooling of nuclear reactors,power and cooling systems as well as in petro-chemical industry.

    However,the heat transfer characteristics are strongly dependent on the thermal boundary conditions,and in all above-mentioned papers the free convection flows are driven by a prescribed surface temperature or prescribed surface heat flux.Merkin[12]was the first author who assumed that the flow is set up by Newtonian heating from the surface.In such flows,which are also called conjugate convective flows and have important applications in many ture.Effects of Newtonian heating on the free convection lf ow of a viscous fluid along an in finite vertical or horizontal plate embedded in a porous medium have been studied by Lesnicet al.[14?15]and Popet al.[16]Other interesting solutions,in the absence of mass transfer,have been also established by Chaudhary and Jain,[17]Mebine and Adigio,[18]Narahari and Ishak,[19]Daset al.[20]and Hussananet al.[21]The effects of mass transfer on such flows have been studied by Narahari and Nayan,[22]Narahariet al.,[23]Narahari and Dutta[24]and Hussananet al.[25?26]However,none of these works took into consideration,heat source or chemical reaction.Free convection flows with Newtonian heating and mass diffusion in which the plate applies a shear stress to the fluid or slip effects are taken into consideration have been studied by Vieruet al.,[27]Khanet al.,[28]and Fetecauet al.[29]An interesting mathematical study of the free convection with dissipative heating has been developed by Sheremetet al.[30]

    The main purpose of this work is to provide a general study of hydromagnetic free convection flow of an engineering devices,[13]the rate of heat transfer from the plate surface is proportional to the local surface temperaincompressible viscous fluid over a moving in finite vertical plate with Newtonian heating,heat source and chemical reaction.Radiative and porous effects are not taken into consideration but,according to Magyari and Pantokratoras[31]and Fetecauet al.,[32]they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.Exact analytical solutions are established for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient.They can generate exact solutions for any flow of this type and,for illustration,three special cases are considered and some known results from the literature are recovered or corrected.The in fluence of physical parameters on some flows with technical relevance is graphically underlined and discussed.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together brought to light for motions due to a highly accelerating plate.The required time to reach the steady-state for cosine or sine oscillations of the concentration on the boundary is also determined.

    2 Mathematical Formulation of the Problem

    Let us consider the hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid with Newtonian heating and mass diffusion over a moving in finite non conducting vertical flat plate(Fig.1).At the initial momentt=0,both the fluid and the plate are at rest with the same temperatureT∞and the species concentrationC∞.After timet=0+the plate,whose concentration is raised or lowered to the valueC∞+Cwg(t),is moving in its plane against the gravitational field with an arbitrary velocityUf(t).HereCwandUare constants while the dimensionless functionsf(·)andg(·)are piecewise continuous andf(0)=g(0)=0.A transverse magnetic field of uniform strengthB,whose magnetic lines of force are fixed relative to the fluid,acts perpendicular to the plate and the magnetic Reynolds number is assumed to be small enough so that the induced magnetic field can be neglected.

    Fig.1 Schematic diagram of the flow con figuration.

    Radiative and porous effects are not taken into consideration but,as we already mentioned,they can be immediately included by a simple rescaling of Prandtl number,respectively the magnetic parameter.Our results are obtained in the presence of heat source and chemical reaction,but the viscous dissipation is neglected due to its small size.This assumption can be justi fied by small velocities usually encountered in free convection flows.[33]In these conditions,choosing a suitable Cartesian coordinate system and using the usual Boussinesqs approximation,our flow is governed by the following partial differential equations[10](the inertia terms are also neglected)

    whereu,T,andCare velocity,temperature and species concentration of the fluid,νis the kinematic viscosity,gis the acceleration due to gravity,βTis the thermal expansion coefficient,βCis the volumetric coefficient of concentration expansion,σis electrical conductivity,ρis fluid density,cpis the speci fic heat at constant pressure,kis the thermal conductivity,Qis the heat generation or absorption coefficient,Dis the chemical molecular diffusivity andRis chemical reaction parameter.

    The corresponding initial and boundary conditions are:

    wherehis the heat transfer coefficient for Newtonian heating.

    By introducing the dimensionless variables and functions

    and dropping out the star notation,we attain to the following dimensionless initial boundary values problem:

    are the thermal Grashof number,the mass Grashof number,the buoyancy ratio parameter,the magnetic parameter,the Prandtl number and the Schmidt number,respectively.Of course,the characteristic velocityUhas been taken to be equal with(gβT/νU)(k/h)2T∞.

    It is worth pointing out thatPrandScare transport parameters representing the thermal diffusivity,respectively the mass diffusivity whileNgives the relative contribution of the mass transport rate on the flow into consideration.[24]AsβCcan be positive or negative[34]andβTis a positive quantity,Ncan be also positive or negative.IfNis positive,the mass and thermal buoyancy forces act in the same direction.In the contrary case,the two forces are opposite.Of course,N=0 in the absence of mass diffusion.

    3 Solution of the Problem

    The temperature fieldT(y,t)corresponding to this problem has been already determined by Vieruet al.[27]in a problem with shear stress on the boundary.Our interest here,is to determine the velocity and concentration fields as well as the corresponding Sherwood number and the skin friction coefficient whenT(y,t)is known.For completion,the thermal boundary layer thickness will be also determined.To do that,the Laplace transform technique will be used and the corresponding Laplace transform(Ref.[27],Eq.(19))

    In order to determine the differential equation describing the thickness of the thermal boundary layer,[35]we integrate Eq.(9)with respect toyfrom zero to in finity,respectively toδ1T,whereδ1Tis the thermal layer thickness,introduce the measure of thermal layer

    and use the boundary conditions(12)2and(13)2.The obtained equation is

    Applying the Laplace transform to Eq.(16)and using Eq.(14)as well as the fact thatδT(0)=0,we find that

    3.1 Species Concentration

    Applying the Laplace transform to Eq.(10)and using the corresponding initial and boundary conditions,we find that

    Here,G(q)is the Laplace transform ofg(t)andqis the transform parameter.

    The solution of the ordinary differential equation(19)subjected to the boundary conditions(20),is given as

    Applying the inverse Laplace transform to Eq.(21)and using Eq.(A1)from Appendix,the fact thatL?1{qG(q)}=g′(t)ifg(0)=0 and the convolution theorem,we find that

    where the function Φ is de fined in Appendix.

    The rate of mass transfer from the plate to fluid,in terms of Sherwood number,is given by

    Introducing the equality(22)into Eq.(23),we find that

    Now,we integrate Eq.(10)across the concentration layer from zero to in finity,respectively toδ1C,whereδ1Cis the concentration layer thickness,introduce the measure of the concentration boundary layer

    and use the boundary conditions(12)3and(13)3.It results that

    whose inverse Laplace transform is

    3.2 Velocity Field

    Applying the Laplace transform to Eq.(8)and bearing in mind the corresponding initial and boundary conditions,it results that

    Introducing Eqs.(14)and(21)into Eq.(29),it results that

    The solution of the ordinary differential equation(31)with the boundary conditions(30),is given by

    Applying the inverse Laplace transform to Eq.(32)and using again the convolution theorem and Eq.(A2)from Appendix,we find the velocity field under the form

    Appling the inverse Laplace transform to Eq.(37),um(y,t)remain unchanged while the thermal and concentration components of velocity become(see Eqs.(A1)and(A3)1)

    Another physical entity of interest is the skin friction coefficient at the plate[7,10]

    Introducing Eq.(33)in Eq.(40),we find the skin friction coefficient

    are its mechanical,thermal and concentration components.

    Thedifferentialequation describing thevelocity boundary layer thickness,namely

    is obtained integrating Eq.(8)across the velocity boundary layer and following the same line as before for temperature and concentration.The solution of this differential equation with the initial conditionδV(0)=0 can be also obtained by means of the Laplace transform technique.

    Applying the inverse Laplace transform to Eq.(46),and using Eqs.(A2)and(A3)2,it results

    4 Special Cases with Engineering Applications

    As we previously mentioned,the general expressions that have been here obtained for velocity,concentration,Sherwood number and the skin friction coefficient can generate exact solutions for any hydromagnetic free convection flow of this type.In order to validate their correctness,as well as to get some physical insight of certain fundamental flows with possible engineering applications,three special cases are considered and some results from the existing literature are recovered or corrected.

    Case 1Uniform Motion and Constant Concentration of the Plate

    By substituting the functionsf(·)andg(·)byH(·)(the Heaviside unit step function)in Eqs.(22),(34),and(36)and bearing in mind the fact that

    whereδ(·)is the Dirac delta function,we find the dimensionless fluid concentration

    and the mechanical and concentration components of ve-

    corresponding to the hydromagnetic free convection flow over an in finite plate,which is maintained at a constant concentration and is moving in its plane with a constant velocity.The thermal component of velocity remain unchanged while the expressions ofC0(y,t)andum0(y,t)are identical to those obtained in(Ref.[6],Eqs.(12)and(16)).

    The corresponding Sherwood number,namely

    are obtained substitutingf(t)byH(t)in Eqs.(42)and(44).As expected,Eq.(53)is identical to the first term of Eq.(19)from Ref.[6].In the absence of magnetic effects and chemical reaction,Eqs.(49),(50),(52),and(53)take the simple forms

    which are well known in the literature.

    By now substitutingf(t)andg(t)byH(t)in Eqs.(28)and(47),the expressions of the thickness of the corresponding boundary layers are obtained.The concentration boundary layer thickness,for instance,has the simple form

    whent→∞.

    Case 2Accelerated Plate with Ramp-Type Concentration

    By now lettingf(t)=g(t)H(t)ta(a>0)into Eqs.(22),(34),and(36),we find solutions

    corresponding to the hydromagnetic free convection flow due to a slowly(a<1),constantly(a=1)or highly(a>1)accelerating plate with ramp-type concentration.[36]Of course,the corresponding velocity field is

    whereuT(y,t)is given by Eq.(35).

    Making the same substitutions in Eqs.(24),(42),and(44),we find that

    Of a special interest is the casea=1 corresponding to the free convection flow due to a constantly accelerating plate.By makinga=1 in Eqs.(58)–(60),and(62)–(64)and using Eqs.(A4)–(A9),it results that

    It is worth pointing out the fact thatum1(y,t)from Eq.(66)is identical to the result of Reddyet al.(Ref.[6]Eq.(17)and Sethet al.(Ref.[37],Eq.(2.11))while the expression ofτm1from Eq.(69)corrects the similar result of Ref.[6].The corresponding expressions of the associated boundary layers thickness can be immediately obtained puttingf(t)=g(t)=H(t)tain Eqs.(28)and(47).Fora=1 Eq.(28)reduces to

    Case 3Oscillating Plate with Oscillatory Concentration

    Let us now assume that the plate,with oscillatory concentration on the boundary,is oscillating in its plane with the same frequencyωas well as the concentration.The dimensionless solutions corresponding to the free convection flow due to cosine or sine oscillations of the concentration on the boundary,namely

    are obtained substitutingf(t)andg(t)byH(t)cos(ωt)orH(t)sin(ωt)in Eqs.(22),(24),(34),(36),(42),and(44),respectively.As expected,the solutions(72)–(77)reduce to those given by Eqs.(49)–(54)if the frequencyωof oscillations tends to zero(foruCc(y,t),uC0(y,t)andτCc,τC0see also the general solutions(36)and(44)).Furthermore,all solutions corresponding to this subsection can be written as a sum of steady-state(permanent)and transient solutions.The steady-state solutions corresponding toCc(y,t)andCs(y,t),for instance,can be given by the equalities(see also Eq.(A10))

    Moreover,lengthy but straightforward computation show that these solutions can be written in the simple forms(see Eqs.(A11)and(A12))

    5 Numerical Results and Discussions

    In order to gain some physical insight of results that have been here obtained and to avoid repetition,the effects of buoyancy ratio parameter(N),heat generation or absorption coefficient(Q),Schmidt number(Sc)and chemical reaction parameter(R)on dimensionless concentration and velocity fields are graphically underlined in Figs.2–7 for fluid motions induced by a highly accelerating plate(f(t)=H(t)t3/2)with ramp-type concentration(g(t)=H(t)ta).Variations of Sherwood number(Sh)with respect toScandRare presented in Fig.8 while the diagrams of the skin friction coefficientτagainsttare given in Fig.9.Finally,for completion,the contributions of mechanical,thermal and concentration components of velocity on the fluid motion are brought to light by Fig.10 and the required time to reach the steady-state of mass transfer is graphically obtained in Figs.11 and 12 for flows with cosine or sine oscillations of concentration at the plate.Time variation of thermal or concentration boundary layer thickness is presented in Figs.13 and 14 for different values of physical parameters when the species concentration is constant on the boundary.

    Fig.2 Pro files of the dimensionless concentration C1(y,t)against y for R=1.5,t=0.5,and 1 with different values of Sc.

    Fig.3 Pro files of the dimensionless concentration Ca(y,t)against y for t=2.5,Sc=0.8,R=0.4,and 0.9 with different values of a.

    Pro files of the concentrationCa(y,t)againstyare presented in Figs.2 and 3 for different values ofSc,R,aand the timet.The species concentration,as expected,is an increasing function with respect toaandtbut it decreases for increasing values ofScandR.As it is known,[5]a diminution in the Schmidt numberScmeans an increase in mass diffusivity which enhances the species concentration in fluid.Consequently,an increase ofScorRlowers the concentration level of the fluid.In all cases,the concentration pro files smoothly descend from maximum values on the wall to the zero value for large values ofy.

    Fig.4 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,M=0.2,Pr=1.5,Q=0.7,Sc=0.2,R=0.3,and different values of N.

    Fig.5 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Sc=0.5,R=0.7,and different values of Q.

    Numerical values of the fluid velocityua(y,t),given by Eq.(61),are graphically displayed in Figs.4–7 fora=3/2 the plate concentrationC(0,t)=tH(t)and different value of physical parameters.Velocity pro files againstyare presented in Fig.4 for aiding(N>0)and opposing(N<0)flows at the timet=2.In the first case,when thermal and mass buoyancy forces act in the same direction,the fluid velocity increases for increasing values ofNas a result of the growth of concentration.N=0 implies the mass Grashof numberGm=0 and the mass diffusion phenomenon is absent.IfN<0,the mass buoyancy forces are negative and the fluid velocity is signi ficantly diminished.However,it increases for increasing values ofN.For positive values ofNgreater than a criticalNcvalue(about 1.9),in the plate vicinity,the fluid velocity increases from the common value on the wall up to a maximum value and then decreases to the stream value for large values ofy.

    Effects of the heat generation or absorption coefficientQon the fluid motion are displayed in Fig.5.The presence of heat generation(Q<0)generates thermal energy,which increases the fluid temperature.As a result,the fluid velocity increases due to the increasing thermal buoyancy force.An opposite effect appears in the case of heat absorption.More exactly,due to the heat absorption(Q>0),the fluid temperature diminishes and the thermal buoyancy force decreases.This implies a reduction of fluid velocity with increasing values ofQ.However,in the case of heat generation,for eachQless than a critical valueQc(about?0.5),the fluid velocity increases from the common value on the plate up to a maximum value and then smoothly decreases to the zero value for increasing values ofy.

    Fig.6 Pro files of the dimensionless velocity u3/2(y,t)against y at time t=2,for M=1,N=2,Pr=1.5,Q=0.5,Sc=0.5,and different values of R.

    Figure 6 displays the in fluence of chemical parameterRon the fluid velocity.The presence of destructive chemical reaction(R>0),as it results from Fig.3,diminishes the species concentration and implicitly reduces the mass buoyancy force.As a result,the fluid velocity decreases for increasing values ofR.Of course,an opposite trend appears in the case of non-destructive chemical reactions whenR<0.Variations of the fluid velocity are also presented in Fig.7 for two values ofPrand different values ofScwhile the other parameters are fixed.From this figure,it clearly results that the velocity is a decreasing function both withPrandSc.Consequently,the viscous forces predominate thermal diffusion or mass diffusion effects for increasing values of Prandtl,respectively Schmidt number.

    The variation of Sherwood numberShin time is graphically presented in Fig.8 at different values ofScandRfor flows with ramp-type surface concentration.It is found that the rate of mass transfer at the plate is an almost linearly increasing function oft.It also increases for increasing values ofScandR.Consequently,the destructive chemical reaction enhances the rate of mass transfer at the plate.An opposite effect produces the increase of the chemical molecular diffusivityD.

    Figure 9 shows the skin friction coefficient variation againsttunder the in fluence ofQandN,respectivelyRandPr.The skin friction coefficient is an increasing function with respect tot,Q,N,Prand decreases for increasing positive values ofR.It increases almost linearly intforN=3 withQ=0.6 and 0.7 orPr=3.5 withR=0.5,1.0 and 1.5.From physical point of view,it means that a destructive chemical reaction diminishes the viscous drag at the plate while the heat absorption enhances it.Fig.9Variation of skin frictionτgiven by Eq.(41)againsttforM=0.4,Sc=0.5,f(t)=t3/2,g(t)=tand different values ofQ,N,R,andPr.

    Fig.8 Variation of Sherwood number Sh,given by Eq.(68),with respect to Sc and R.

    Fig. 10 Pro filesofthe dimensionlessvelocities um3/2(y,t),um3/2(y,t)+uT(y,t),and um3/2(y,t)+uT(y,t)+uC(y,t)against y for Pr=1.5,Q=0.5,Sc=0.5,R=0.7,M=0.6,N=2,and t=3.

    In order to evaluate the importance of thermal or mass diffusion effects on free convection flows of viscous fluids,the contributions of mechanical,thermal and concentration components of velocityu3/2(y,t)on the fluid motion are together brought to light in Fig.10.As it clearly results from this figure,each component signi ficantly influences the fluid velocity and cannot be neglected.

    In Figs.11 and 12,the required time to reach the steady-state for mass diffusion is graphically determined for flows with cosine or sine oscillations of concentration at the plate for two values of chemical reaction parameterR.This is the time after which the diagrams of starting solutions(72)or(78)are almost identical to those of steadystate solutions(86)1,respectively(86)2.At small values oft,the difference between the corresponding solutions is signi ficant but it quickly dissapears and the required time to reach the steady-state is higher for sine in comparison to cosine oscillations of concentration at the wall.This is obvious,because at timet=0 the concentration level at the plate is zero for sine oscillations.Furthermore,as it clearly results from these figures,the presence of destructive chemical reaction improves this time for increasing values ofR>0.

    Fig.11 Required time to reach the steady-state of mass transfer for cosine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Figures 13 and 14 bring to light the time variation of the thickness of thermal or concentration boundary layers with respect toPrandQ,respectivelyScandRandg(t)=H(t).In all cases,the boundary layer thickness signi ficantly increases up to a critical value oft(aroundt=10)and then rapidly tends to the asymptotic value.The thermal boundary layer thickness is a decreasing function with respect toProrQand it rather reaches the asymptotic value for greater values of these parameters.A similar behavior appears from Fig.14 for the concentration boundary layer thickness with regard toRandSc.

    Fig.12 Required time to reach the steady-state of mass transfer for sine oscillations of concentration at the plate at Sc=0.9 and ω =2π/3.

    Fig.13 Time variation of thermal boundary layer thickness for different values of Prandtl number Pr and heat generation/obsorption parameter Q.

    Fig.14 Time variation of thermal boundary layer concentration for different values of Schmidt number Sc and chemical reaction parameter R.

    6 Conclusions

    Hydromagnetic free convection flow of an electrically conducting,incompressible viscous fluid over a moving infinite vertical plate with Newtonian heating,heat source,mass diffusion and chemical reaction is completely solved.Exact analytic solutions are established for velocity,con-centration,Sherwood number and skin friction coefficient when the plate is moving in its plane with an arbitrary velocity and the concentration at the wall is a timedependent function.They satisfy all imposed initial and boundary conditions and can generate exact solutions for any free convection flow of this type.For illustration,as well as to get some physical insight of the obtained results,three special cases with technical relevance are considered and some results from the existing literature are recovered or corrected.Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter.[31?32]

    The solutions corresponding to the motion due to a plate with uniform velocity(Stokes first problem)and constant concentration at the wall,as well as those induced by a constantly accelerating plate with ramp-type concentration at the wall,[36]are presented in simple forms in terms of exponential function and error function or complementary error function of Gauss.In addition,the solutions of the second problem can be written as simple integrals of the similar solutions corresponding to the first problem of Stokes.The solutions corresponding to motions due to an oscillating plate(Stokes second problem)with oscillatory concentration at the wall can be written as sum of steady-state(permanent)and transient solutions.These solutions,which are independent of the initial conditions but satisfy the boundary conditions and governing equations,are important for those who want to eliminate the transients from their experiments.Moreover,as it was to be expected,all solutions corresponding to cosine oscillations of the plate and of the concentration at the wall reduce to the similar solutions of Stokes first problem when the oscillation frequencyωtends to zero.

    Finally,in order to bring to light some physical penetration of results that have been obtained,the diagrams of dimensionless concentration and velocity fields,Sherwood number and skin friction coefficient are presented in different situations for typical values of pertinent parameters.However,in order to avoid repetition,their pro files have been here presented and discussed only for variations of physical parametersN,Q,ScandRwith ramp-type concentration at the wall.Contributions of mechanical,thermal and concentration components of velocity on the fluid motion are together underlined for motions due to highly accelerating plate.The required time to reach the steady-state of mass diffusion for cosine or sine oscillations of the concentration at the plate has been graphically determined and the main results that have been here obtained are:

    (i)The problem in consideration has been completely solved.Obtained results can generate exact solutions for any free convection flow of this type.

    (ii) Species concentration is increasing function in time and ramp-type parametera.

    (iii) The increase of mass diffusivity brings up the concentration level of the fluid while the presence of destructive chemical reaction diminishes it.

    (iv)For aiding flows(N>0),velocity of the fluid is increasing function with respect toN.An opposite trend appears in the case of opposing flows when(N<0).

    (v)Heat absorption(Q>0)causes a reduction of velocity for increasing value ofQ.This is due to the fact the fluid temperature diminishes and the thermal buoyancy force decreases.A reverse trend appears in the presence of heat generationQ<0.

    (vi)Destructive chemical reaction(R>0)reduces the mass buoyancy force and the fluid velocity decreases for increasing values ofRthrough the boundary layer region.The non-destructive chemical reaction(R<0)enhances the fluid velocity.

    (vii)Destructive chemical reaction enhances the rate of mass transfer at the plate.

    (viii)The presence of heat absorption enhances the viscous drag at the plate while the destructive chemical reaction diminishes it.

    (ix)Mechanical,thermal or concentration effects signi ficantly in fluence the fluid motion and they cannot be neglected.

    (x)Required time to reach the steady-state for the mass transfer is higher for sine in comparison to cosine oscillations of concentration of the plate and it is improved in the presence of destructive chemical reaction.

    (xi)Thermal or concentration boundary layer thickness signi ficantly increases up to a critical value oftand then it rather reaches the asymptotic value for greater values ofQorPr,respectivelyRorSc.It is a decreasing function with respect to each of the respective parameters.

    Appendix

    The author Nehad Ali Shah is highly thankful and grateful to Abdus Salam School of Mathematical Sciences,GC University,Lahore,Pakistan and Higher Education Commission of Pakistan,for generous supporting and facilitating this research work.

    [1]P.S.Ghoshdastidar,Heat Transfer,Oxford University Press,Oxford(2004)p.225.

    [2]D.A.Nield and A.Bejan,Convection in Porous Media,Springer,Verlag,New York(2006)pp.94-97.

    [3]R.J.Turnbull,Phys.Fluids 12(1969)2255.

    [4]V.M.Soundalgekar,S.K.Gupta,and N.S.Birajdar,Nucl.Eng.Des.53(1979)339.

    [5]N.Ahmed and M.Dutta,Int.J.Phys.Sci.8(2013)254.

    [6]T.S.Reddy,M.C.Raju,and S.V.K.Varma,J.Appl.Fluid Mech.6(2013)443.

    [7]T.S.Reddy,M.C.Raju,and S.V.K.Varma,Journal of Computational and Applied Research in Mechanical Engineering(JCARME)3(2013)53.

    [8]B.M.Rao,G.V.Reddy,M.C.Raju,and S.V.K.Varma,IOSR J.Appl.Phys.(IOSR-JAP)3(2013)22.

    [9]K.Srihari,Chirra Kesava Reddy,Int.J.Mech.Eng.3(2014)1.

    [10]P.K.Pattnaik and T.Biswal,Walailak J.Sci.Technol.12(2015)749.

    [11]G.S.Seth,B.Kumbhakar,and S.Sarkar,Int.J.Eng.Sci.7(2015)94.

    [12]J.H.Merkin,Int.J.Heat Fluid Flow 15(1994)392.

    [13]V.Rajesh,Int.J.Heat Mass Tran.85(2012)221.

    [14]D.Lesnic,D.B.Ingham,and I.Pop,Int.J.Heat Mass Tran.42(1999)2621.

    [15]D.Lesnic,D.B.Ingham,and I.Pop,J.Porous Media 3(2000)227.

    [16]I.Pop,D.Lesnic,and D.B.Ingham,Hybrid Methods Eng.2(2000)31.

    [17]R.C.Chaudhary and P.Jain,J.Eng.Phys.Thermophys.80(2007)954.

    [18]P.Mebine and E.M.Adigio,Turk.J.Phys.33(2009)109.

    [19]M.Narahari and A.Ishak,J.Appl.Sci.11(2011)1096.

    [20]S.Das,C.Mandal,and R.N.Jana,Int.J.Comput.Appl.41(2012)36.

    [21]A.Hussanan,M.I.Anwar,F.Ali,I.Khan,and S.Sha fie,Heat Trans.Res.45(2014)119.

    [22]M.Narahari and M.Y.Nayan,Turkish J.Eng.Env.Sci.35(2011)187.

    [23]M.Narahari,R.Pendyala,and M.Y.Nayan,AIP Conference Proceedings 1482(2012)340.

    [24]M.Narahari and B.K.Dutta,Chem.Eng.Commun.199(2012)628.

    [25]A.Hussanan,Z.Ismail,I.Khan,and S.Sha fie,Materials Sciences and Application,2013,doi:104236/msa.2013.

    [26]A.Hussanan,Z.Ismail,I.Khan,A.G.Hussein,and S.Sha fie,Eur.Phys.J.Plus 129(2014)1.

    [27]D.Vieru,Corina Fetecau,C.Fetecau,and Nait Nigar,Z.Naturforsch.69a(2014)714.

    [28]A.Khan,I.Khan,and S.Sha fie,Jurnal Teknologi(Sciences and Engineering)78(2016)71.

    [29]C.Fetecau,D.Vieru,Fetecau Corina,and I.Pop,Eur.Phys.J.Plus 130(2015)1.

    [30]M.A.Sheremet,T.Grosan,and I.Pop,Eur.J.Mech.B/Fluid 53(2015)241.

    [31]E.Magyari and A.Pantokratoras,Int.Commun.Heat Mass Transfer 38(2011)554.

    [32]C.Fetecau and S.Akhter,Bull.Inst.Polit.Iasi,Sect.Matematica,Mecanica Teoretica,Fizica LIX 3(2013)15.

    [33]G.R.Pande,G.A.Georgantopoulos,and C.L.Goudas,Astrophys.Space Sci.60(1979)125.

    [34]M.Turkyilmazoglu and I.Pop,Int.J.Heat Mass Tran.55(2012)7635.

    [35]A.S.Dorfman,Conjugate Problems in Convective Heat Transfer,CRC Press,Boca Raton,London,New York(2010).

    [36]C.J.Toki and J.N.Tokis,Z.Angew.Math.Mech.87(2007)4.

    [37]G.S.Seth,S.M.Hussain,and S.Sarkar,Journal of Egyptian Mathematical Society 23(2015)197.

    色综合婷婷激情| 精品人妻1区二区| 国产成人系列免费观看| 男人舔女人下体高潮全视频| 亚洲av美国av| 91麻豆精品激情在线观看国产| 久久久国产欧美日韩av| 欧美三级亚洲精品| 国产精品综合久久久久久久免费| 久久久久久人人人人人| 女同久久另类99精品国产91| 欧美激情久久久久久爽电影| 久久精品亚洲精品国产色婷小说| 国产激情欧美一区二区| 啦啦啦观看免费观看视频高清| 亚洲av电影不卡..在线观看| 国产97色在线日韩免费| 精品无人区乱码1区二区| 一进一出抽搐动态| 好男人在线观看高清免费视频 | 国产久久久一区二区三区| 欧美中文综合在线视频| 欧美丝袜亚洲另类 | 搞女人的毛片| 黑人操中国人逼视频| 中文字幕高清在线视频| 精品一区二区三区av网在线观看| 一级毛片精品| 正在播放国产对白刺激| 黄片播放在线免费| 一本大道久久a久久精品| 久热爱精品视频在线9| 999久久久精品免费观看国产| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久av网站| av在线天堂中文字幕| 欧美日韩乱码在线| 欧美乱妇无乱码| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久国产高清桃花| 成人手机av| 欧美日韩一级在线毛片| www.www免费av| 禁无遮挡网站| 国产成人av教育| 国产精品久久视频播放| 丝袜人妻中文字幕| 精品国产乱码久久久久久男人| 日韩av在线大香蕉| 99riav亚洲国产免费| 亚洲精品久久国产高清桃花| 成人手机av| 国产亚洲av嫩草精品影院| av福利片在线| 成人国语在线视频| 欧美国产精品va在线观看不卡| 精品久久久久久,| 国产精品av久久久久免费| 97超级碰碰碰精品色视频在线观看| 色综合婷婷激情| 亚洲一区中文字幕在线| 婷婷精品国产亚洲av在线| av有码第一页| 日韩一卡2卡3卡4卡2021年| 在线国产一区二区在线| 搡老岳熟女国产| 欧美成人性av电影在线观看| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 日本 av在线| 亚洲五月天丁香| 高清在线国产一区| 熟女电影av网| 久久中文看片网| 俺也久久电影网| 九色国产91popny在线| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 一本一本综合久久| 日日摸夜夜添夜夜添小说| 日本免费一区二区三区高清不卡| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 精品国产国语对白av| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 99国产精品一区二区三区| 美女大奶头视频| 人成视频在线观看免费观看| 久久国产精品人妻蜜桃| 色哟哟哟哟哟哟| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 日本熟妇午夜| 一区福利在线观看| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频| 在线视频色国产色| 又大又爽又粗| 一级毛片精品| 国产不卡一卡二| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 欧美午夜高清在线| 午夜福利视频1000在线观看| 亚洲av片天天在线观看| 午夜a级毛片| 免费看十八禁软件| 国产激情欧美一区二区| 搡老岳熟女国产| 亚洲五月天丁香| 黑人欧美特级aaaaaa片| 午夜影院日韩av| 久久精品国产亚洲av高清一级| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 欧美激情高清一区二区三区| www.熟女人妻精品国产| 亚洲专区中文字幕在线| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 少妇 在线观看| 亚洲久久久国产精品| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 黄色女人牲交| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 精品乱码久久久久久99久播| xxxwww97欧美| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 老司机午夜十八禁免费视频| 国产精品一区二区精品视频观看| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 999精品在线视频| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 国内揄拍国产精品人妻在线 | 午夜成年电影在线免费观看| 欧美 亚洲 国产 日韩一| 国内少妇人妻偷人精品xxx网站 | 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 亚洲av成人一区二区三| 亚洲精品在线美女| 妹子高潮喷水视频| 国产成人系列免费观看| 国产av不卡久久| 国产精品精品国产色婷婷| 亚洲国产精品成人综合色| 欧美日韩福利视频一区二区| 亚洲欧洲精品一区二区精品久久久| www日本在线高清视频| 老司机在亚洲福利影院| 久久国产乱子伦精品免费另类| 老汉色av国产亚洲站长工具| bbb黄色大片| 国产亚洲精品综合一区在线观看 | 久久精品91蜜桃| 女人高潮潮喷娇喘18禁视频| videosex国产| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 国产av不卡久久| 一个人观看的视频www高清免费观看 | 国产麻豆成人av免费视频| www.精华液| 波多野结衣巨乳人妻| 亚洲一区中文字幕在线| 国产男靠女视频免费网站| 中文字幕人妻丝袜一区二区| 欧美黑人巨大hd| 99久久精品国产亚洲精品| 国产高清videossex| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 999久久久国产精品视频| 日本免费a在线| 正在播放国产对白刺激| 美女免费视频网站| 大香蕉久久成人网| 色婷婷久久久亚洲欧美| 免费高清视频大片| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 999久久久国产精品视频| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 国产又黄又爽又无遮挡在线| 人人妻人人看人人澡| 亚洲 国产 在线| 亚洲中文av在线| 国产成人一区二区三区免费视频网站| 啦啦啦观看免费观看视频高清| 亚洲国产欧美日韩在线播放| 亚洲成av片中文字幕在线观看| 久久久国产成人免费| 久久午夜综合久久蜜桃| 亚洲国产日韩欧美精品在线观看 | 天天躁夜夜躁狠狠躁躁| 国产私拍福利视频在线观看| 国产黄色小视频在线观看| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩无卡精品| 嫩草影视91久久| 婷婷六月久久综合丁香| 亚洲精品色激情综合| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 亚洲久久久国产精品| 中出人妻视频一区二区| 亚洲精品在线观看二区| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| 精品乱码久久久久久99久播| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 黄片大片在线免费观看| 曰老女人黄片| 少妇裸体淫交视频免费看高清 | 搡老熟女国产l中国老女人| 亚洲激情在线av| aaaaa片日本免费| 国产亚洲av高清不卡| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 一区福利在线观看| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 亚洲一码二码三码区别大吗| 一本综合久久免费| 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 日本五十路高清| 午夜免费激情av| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 成人一区二区视频在线观看| 在线免费观看的www视频| 首页视频小说图片口味搜索| 悠悠久久av| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看 | 在线观看舔阴道视频| 国产精品,欧美在线| 少妇的丰满在线观看| 一区二区三区高清视频在线| 久久亚洲真实| 91在线观看av| 国产三级黄色录像| 夜夜躁狠狠躁天天躁| 亚洲精品久久成人aⅴ小说| 热99re8久久精品国产| 黑人巨大精品欧美一区二区mp4| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 两个人免费观看高清视频| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三 | 欧美日本视频| 美女高潮到喷水免费观看| 女人被狂操c到高潮| 黄色成人免费大全| 国产又爽黄色视频| 丁香六月欧美| 不卡一级毛片| 黑丝袜美女国产一区| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 91九色精品人成在线观看| 午夜福利一区二区在线看| 国产国语露脸激情在线看| netflix在线观看网站| 日韩欧美一区视频在线观看| 麻豆av在线久日| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 国产色视频综合| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 中文在线观看免费www的网站 | 精品福利观看| 中文字幕人妻丝袜一区二区| 久久久国产成人精品二区| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 成人亚洲精品一区在线观看| 最新在线观看一区二区三区| 国产视频一区二区在线看| 午夜福利一区二区在线看| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 91成人精品电影| 欧美zozozo另类| 国产精品 欧美亚洲| 在线观看www视频免费| 91成年电影在线观看| 国产精品亚洲av一区麻豆| 精品卡一卡二卡四卡免费| 亚洲精品在线观看二区| 欧美成人一区二区免费高清观看 | 成人三级黄色视频| 两个人视频免费观看高清| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| av在线播放免费不卡| 又大又爽又粗| 在线播放国产精品三级| 12—13女人毛片做爰片一| 黄色视频,在线免费观看| 99久久精品国产亚洲精品| 变态另类成人亚洲欧美熟女| 99久久无色码亚洲精品果冻| 激情在线观看视频在线高清| 色播亚洲综合网| 亚洲一区二区三区不卡视频| 91av网站免费观看| 久久久久免费精品人妻一区二区 | 九色国产91popny在线| 久热这里只有精品99| 欧美成人免费av一区二区三区| 午夜影院日韩av| 很黄的视频免费| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器 | 国产成人啪精品午夜网站| 丁香欧美五月| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| www国产在线视频色| 欧美日本亚洲视频在线播放| 国产单亲对白刺激| 成人三级黄色视频| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 色在线成人网| 亚洲成国产人片在线观看| 亚洲美女黄片视频| 久久精品国产99精品国产亚洲性色| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 18禁黄网站禁片免费观看直播| 女人被狂操c到高潮| 最好的美女福利视频网| 国产单亲对白刺激| 国产又色又爽无遮挡免费看| 国产精品久久电影中文字幕| 少妇被粗大的猛进出69影院| 欧美久久黑人一区二区| 长腿黑丝高跟| 久久久久久久久免费视频了| 日韩欧美三级三区| 怎么达到女性高潮| 亚洲精品美女久久久久99蜜臀| 人人澡人人妻人| 免费在线观看完整版高清| 国产片内射在线| 97人妻精品一区二区三区麻豆 | 亚洲一区二区三区色噜噜| 国产精华一区二区三区| 999精品在线视频| 欧美乱妇无乱码| 在线观看www视频免费| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 亚洲色图 男人天堂 中文字幕| 欧美三级亚洲精品| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 99riav亚洲国产免费| 精品不卡国产一区二区三区| 禁无遮挡网站| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 香蕉国产在线看| 国产99白浆流出| 制服诱惑二区| 丝袜在线中文字幕| 国产麻豆成人av免费视频| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 国产精品影院久久| 免费看日本二区| 啦啦啦免费观看视频1| 成人三级做爰电影| 免费av毛片视频| 久久国产精品人妻蜜桃| 亚洲熟妇熟女久久| 91在线观看av| 亚洲av第一区精品v没综合| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 久久香蕉精品热| 在线观看免费日韩欧美大片| 丝袜在线中文字幕| 国产国语露脸激情在线看| 成人国产一区最新在线观看| xxxwww97欧美| 99re在线观看精品视频| 欧美中文综合在线视频| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 可以在线观看毛片的网站| 日韩欧美三级三区| 色尼玛亚洲综合影院| 午夜影院日韩av| 热99re8久久精品国产| 亚洲国产高清在线一区二区三 | 我的亚洲天堂| 黄色女人牲交| 女人被狂操c到高潮| 大型黄色视频在线免费观看| 国产色视频综合| 在线观看免费视频日本深夜| 69av精品久久久久久| 香蕉久久夜色| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 免费在线观看完整版高清| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 成人av一区二区三区在线看| 一本久久中文字幕| 国产精品一区二区精品视频观看| 满18在线观看网站| 欧美乱码精品一区二区三区| 哪里可以看免费的av片| 人人澡人人妻人| 精品国产美女av久久久久小说| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 日韩大码丰满熟妇| 欧美乱色亚洲激情| 国产黄a三级三级三级人| 黄色丝袜av网址大全| 亚洲国产精品999在线| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影| 免费在线观看日本一区| av天堂在线播放| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| 亚洲国产欧洲综合997久久, | or卡值多少钱| 曰老女人黄片| 一本一本综合久久| 免费看a级黄色片| 成熟少妇高潮喷水视频| 岛国视频午夜一区免费看| 一级毛片高清免费大全| 满18在线观看网站| 精品国产超薄肉色丝袜足j| 日韩有码中文字幕| 美女免费视频网站| 欧美久久黑人一区二区| 一个人免费在线观看的高清视频| 久久久久久国产a免费观看| 精品卡一卡二卡四卡免费| 欧美成人性av电影在线观看| 亚洲国产高清在线一区二区三 | 久久久久久亚洲精品国产蜜桃av| 男女做爰动态图高潮gif福利片| 人妻丰满熟妇av一区二区三区| 亚洲狠狠婷婷综合久久图片| 老司机深夜福利视频在线观看| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 91成年电影在线观看| 男男h啪啪无遮挡| 99热只有精品国产| 日本一本二区三区精品| 日本精品一区二区三区蜜桃| 精品久久久久久久久久免费视频| 天堂动漫精品| 免费观看精品视频网站| 日韩三级视频一区二区三区| 可以在线观看毛片的网站| 色综合站精品国产| 国产1区2区3区精品| 久久久久久国产a免费观看| 人人妻人人看人人澡| videosex国产| 一级毛片精品| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 制服诱惑二区| 白带黄色成豆腐渣| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 国产精品,欧美在线| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影视91久久| 亚洲成人久久爱视频| 国产爱豆传媒在线观看 | 麻豆av在线久日| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 精品高清国产在线一区| 日本精品一区二区三区蜜桃| 亚洲精品国产一区二区精华液| 嫩草影视91久久| 国产精华一区二区三区| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清 | 啦啦啦韩国在线观看视频| 91av网站免费观看| 亚洲国产高清在线一区二区三 | 一边摸一边做爽爽视频免费| 午夜激情福利司机影院| 久久狼人影院| 中文字幕久久专区| 亚洲av第一区精品v没综合| 熟女电影av网| 日本撒尿小便嘘嘘汇集6| 婷婷六月久久综合丁香| 精品久久久久久久人妻蜜臀av| 色播亚洲综合网| 午夜福利高清视频| svipshipincom国产片| 国产一区二区激情短视频| 白带黄色成豆腐渣| 黄色片一级片一级黄色片| 亚洲片人在线观看| 真人做人爱边吃奶动态| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 日本在线视频免费播放| 精品久久久久久久毛片微露脸| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 欧美午夜高清在线| 香蕉久久夜色| 禁无遮挡网站| 久久国产乱子伦精品免费另类| 最近最新中文字幕大全电影3 | 无人区码免费观看不卡| 黄色 视频免费看| 日韩精品青青久久久久久| 国内精品久久久久久久电影| 精品人妻1区二区| 很黄的视频免费| 午夜福利在线在线| 中文字幕精品亚洲无线码一区 | 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站 | av在线天堂中文字幕| 韩国av一区二区三区四区| av在线天堂中文字幕| 国产乱人伦免费视频| 黄片大片在线免费观看| 精品电影一区二区在线| 久久午夜亚洲精品久久| av天堂在线播放| 欧美中文综合在线视频| 亚洲,欧美精品.| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲| 亚洲天堂国产精品一区在线| 久久香蕉国产精品| 又黄又爽又免费观看的视频| 日韩高清综合在线| 国产爱豆传媒在线观看 | 日韩欧美在线二视频| 日本精品一区二区三区蜜桃| 亚洲av片天天在线观看| 亚洲av熟女| 757午夜福利合集在线观看| 高清毛片免费观看视频网站| 亚洲精品在线美女| 在线看三级毛片| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码| 亚洲,欧美精品.| 国产99久久九九免费精品| 久久香蕉国产精品| 精品国产国语对白av| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| 国产精品精品国产色婷婷| 国产精品乱码一区二三区的特点| 久久精品91无色码中文字幕| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 丰满人妻熟妇乱又伦精品不卡| 国产精品二区激情视频| 亚洲av中文字字幕乱码综合 | 国产成人精品久久二区二区免费| 亚洲精品中文字幕一二三四区| 亚洲中文字幕日韩| 在线观看日韩欧美|