• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of New Structure Energetic Composite of HNIW Implanted into Macroporous Fibosa

    2017-05-07 06:06:59LIYaruRENHuiJIAOQingjie
    含能材料 2017年4期

    LI Ya-ru, REN Hui, JIAO Qing-jie

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    With the development of insensitive ammunition, ignition charges are required to have higher energy. Traditional charges are faced with new challenges and explosives with high energy density were hence introduced to the ignition system to improve the energy output[1]. Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW) has been widely investigated for its all respects especially explosion and combustion abilities since it was synthesized[2-6]. Relative documents showed HNIW would be a potential component of higher ignition charge[7]. As a new generation explosive, HNIW has higher energy density than other pyrotechnic charges[8-9], however, its thermal sensitivity is lower than other pyrotechnic charges. It is vital to improve the sensitivity of HNIW to heat to make it a perfect ignition charge. One way to achieve this is to combine HNIW with another material of more thermal sensitive, such as polymer.

    Electrostatic spinning(ES) technique has become a mature technology for the preparation of micro/nano-scale fibers in recent years. The fibers fabricated by ES have been widely used in tissue engineering[10-11], battery[12-13], filter[14]. In the electrostatic spinning process, an electrically conducting polymer solution is charged when it flows through a fine nozzle connected to high voltage. The electric field between the nozzle and the ground receptor exerts electrostatic forces to stretch polymer solution into micro/nano-scale fibers[15]. Fibrosa with various pore structures and mechanical properties can be fabricated by adjusting the high voltage, viscosity of precursor solution, the receptor, and so on[16-19]. After the solvent evaporation, fibers remain on the receptor and form a macro porous fibrosa. The diameter, morphology and porosity of fiber will be determined by different synthesized parameters[20-22]. So it offers a new route to fabricate composite energetic materials. Polyacrylonitrile(PAN) is one of the materials easy to be electrospun, and carbon fibers prepared by PAN have good mechanical properties, therefore PAN has been widely used as electrospinning precursor[23-24]. We can use the fibers prepared by electrospinning as the matrix, then some high energy density compounds were coated or deposited on the surface of micor & nano-fibers. Besides, we noted that other researches have completed the fabrication of thermite fibers by means of electrospinning[25-27]. Previous researches focused on the thermite or nitrocellulose etc. Up to now, no published articles discussed explosive-contained composite energetic fibers. Consideration of electrostatic danger, the high voltage may trigger explosive reaction during electrospinning. We first obtained the fibrosa, followed by explosive implanted into the porous mats, energetic composites were resulted. In this work, PAN was chosen to be electrospun into fibrous mats as a matrix to strengthen the mechanical property and to improve the thermal sensitivity of mixed ignition charge.

    2 Experiment Section

    2.1 Materials and Instruments

    The polyacrylonitrile(PAN), with average relative molecular mass of 102700, was acquired from Scientific Polymer Product Company(New York, USA).N,N-dimethylformamide(DMF) was produced by Sinopharm Chemcial Reagent Co., Ltd.(Shanghai, China). Acetone was produced by Beijing Reagent Company(Beijing, China). PAN, DMF and acetone were of analytical purity. HNIW (5-15 μm, 40% ε and 60%αcrystal form) was produced by Qingyang Liaoning Special Chemical Co., Ltd.(Liaoning, China) with chemical purity, higher than 99% .

    A model RCT basic magnetic heated stirrer was obtained from IKA Company(Germany). A model BGG high voltage supply with +40 kV was supplied by Beijing Electro-mechanical Research Institute Supesvoltage Technique Company(Beijing, China). A model LSP02-1B constant flow pump was from Longer Precision Pump Co.,Ltd(Baoding, China).

    Micromorphology was characterized by a Hitachi S4800 scanning electron microscope(Japan). Infrared spectra were recorded in KBr discs on a Bruker VERTEX70 infrared spectrometer(Germany) in the range of 4000-400 cm-1. Thermal behavior was studied on a STA449F3 differential scanning calorimeter(NET Co, Germany) at the rate of 5 ℃·min-1. A SIMD8 high-speed camera(Britain) was applied to record the ignition process with the sampling frequency of 250 fps.

    2.2 Preparation of Fibrosa

    PAN (8 g) was dissolved in DMF (92 mL) under agitation by magnetic heated stirrer at 60 ℃ for 6 h. The electrostatic spinning solution was loaded into a 20 mL syringe capped with blunt tipped needle. The positive lead of a high voltage supply was attached by an alligator clip to the blunt tipped needle. A 25 kV accelerating voltage was used in the electrostatic spinning process. A constantly-flow longer pump was used to meter the delivery of the PAN solution to the electric field, the delivery rate was set to 4 mL·h-1. The distance between needle and the receptor was 15 cm. After solvent evaporation, pure PAN fibrosa was obtained.

    2.3 Fabrication of Composites

    Composites of HNIW and PAN fibrosa were fabricated by dipping the PAN fibrosa into acetone solution of HNIW with certain concentration. The content of HNIW in the composite could be adjusted by changing the amount of HNIW in acetone. After solvent was completely evaporated, composites dried in vacuum drying oven at 50 ℃ for 2 h were obtained.

    2.4 Ignition Experiment

    To judge the feasibility of composite as ignition charge, an ignition experiment was designed. Test material was cut into strips and then loosely filled into quartz tube to obtain enough oxygen. After that, electric igniter device was connected to the side of quartz tube with test materials to ensure the ignition head was fully contacted with materials. Moreover, to make sure the ignition head would not recoil the moment materials ignited, it should be deep enough into the tube. High-speed camera was employed to record and analyze the combustion process. To make a comparison, both pure PAN fibrosa and composite were ignited under the same condition.

    3 Results and Discussions

    3.1 Prediction of Optimal Proportion

    The ingredient, proportion, thermodynamic state of energetic composites will influence its combustion reaction. In order to acquire the optimal proportion of the composites, it is necessary to have a thorough understanding on the reaction behavior of the composite with different proportions. Therefore, we conducted a serial of calculations both on the heat of formation and the adiabatic flame temperature(AFT) of the composites at different proportions according to principle of minimum free energy. The calculated results are shown in Fig.1. It can be learnt that both AFT and the heat of formation rise first and then fall with the mass ratio of PAN increasing. One should be noted that at the mass ratio of 3∶7, the heat of formation reaches the highest point which nearly the same to AFT, showing the advantage of that ratio over the rest. So we obtain the better stoichiometry used in following experiments.

    Fig.1 Calculated heat of formation and adiabatic flame temperature (AFT) of composite at different ratio of PAN/HNIW

    3.2 Characterization of Morphology

    To observe the microstructure of composites, the morphologies of fibrosa, composites and combustion residue of PAN fibrosa and composite were investigated by scanning electron microscope(SEM). Their SEM images are shown in Fig.2.

    a. electrostatic spinning fibre

    b. composite of explosive and fibrosa

    c. combustion residue of PAN fibrosa

    d. combustion residue of composite

    Fig.2 SEM images of samples

    Fig.2a displays the electrostatic spinning fibers randomly distributed with smooth surface and an average diameter of 500 nm. The pore space between fibers is big enough to contain high mass loading. Fig.2b shows that HNIW particles uniformly adhere to the mat, which fully proves the feasibility of compound explosive and fibrosa together. And the structure of PAN fiber is very beneficial to be adhered by explosive.

    PAN fibrosa and composite were separately ignited under the same condition, and the combustion residues of them were observed by SEM, as shown in Fig.2c and Fig.2d. During the ignition experiment, just small part of PAN fibrosa were fired due to no constant thermal source supplied. Fibers and carbides exist in the combustion residues according to Fig.2c, in accord with the experiment. In contrast, the composite with HNIW can be fully burnt. And compared with PAN fibrosa (see Fig.2c), there are more pores in combustion residue (see Fig.2d) of composite. Porous parts are speculated to be the combustion loss of HNIW.

    3.3 FT-IRAnalysis

    Fig.3 FT-IR spectra of four samples

    3.4 Thermal Behavior

    DSC/TG analysis is mainly used to analyze the reaction of energetic system under heat stimulus, and it is usually used to study the thermal decomposition of explosive. To know the thermal decomposition interaction between PAN fibrosa and HNIW, differential scanning calorimetry was used to analyze the thermal decomposition behaviors of PAN fibrosa, HNIW and their composite. Results are shown in Fig.4. In the thermal decomposition process, the starting point of decomposition for HNIW is 221.9 ℃ (see Fig.4b), while that for composite and PAN is 204.7 ℃(see Fig.4c) and 270 ℃(see Fig.4a), respectively. According to the above results, we can speculate that PAN makes the initial exothermic temperature of HNIW shifts

    a. PAN

    b. HNIW

    c. PAN/HNIW

    Fig.4 DSC and TG curves of samples

    about 38 ℃ downwards. Besides, PAN enhances the exothermic quantity of HNIW, making the exothermic peak of HNIW shifts 19 ℃ downwards. The thermogravimetric analysis results reveal that the exothermic rate of composite is highest of all, which proves that the composite is more sensitive than HNIW. Based on the above analyses, the interaction process between PAN and HNIW includes three steps: first, reaching its decomposition point of HNIW and releasing heat, then, reaching its decomposition point of PAN by absorbing the decomposition heat of HNIW, finally, occurring the further thermal decomposition of HNIW by absorbing the exothermic quantity of PAN. In conclusion, the thermal decomposition of composite is the result of interaction of HNIW and PAN.

    3.5 Combustion Properties

    Fig.5 shows the ignition and combustion process of PAN fibosa recorded by a high-speed camera. The highest temperature of ignition head is about 300 ℃, but only few fibers contacted with ignition head are fired. Besides, fibosa flame is disappeared with ignition head dying out, indicating electrostatic spinning fibers can not burn constantly. Fig.6 shows the combustion process of composite recorded by a high-speed camera. According to combustion behavior, the whole process can be divided into four stages. First, composite contacted with ignition head is ignited by the combustion heat of ignition head (see Fig.6a). According to the record by camera, there is obvious flame which becomes lighter and longer. Second, the ignited part starts its long combustion process which moves to the near part (see Fig.6b). Material of this part can be totally burnt due to enough oxygen and heat supply. Then, due to the consumption of combustible and oxygen in the former stage, the combustion of this stage becomes weak and the flame becomes shorter and dimmer (see Fig.6c). The final combustion process is for the part inside the tube. Combustion of this stage is incomplete with no flame but tan smoke, due to lack of oxygen.

    4 Conclusions

    (1) Composite of PAN fibrosa and HNIW was successfully fabricated through the combination of electrostatic spinning method and self-assembly method. HNIW can physically imbed in PAN fibrosa and the composite showed a good uniformity, with no new organic groups appeared after imbed process.

    (2) The addition of HNIW to PAN fibrosa efficiently increases combustion ability of PAN which can not burn constantly itself. The composite burnt process can be divided into four stages and it burnt more thoroughly than PAN itself under the same condition.

    (3) The thermal decomposition of composite is a result of

    c. 108 ms b. 140 ms c. 172 ms d. 316 ms

    Fig.5 Ignition of PAN fibrosa

    c. 160 ms b. 1520 ms c. 2400 ms d. 3040 ms

    Fig.6 Ignition of PAN/HNIW composite

    interaction of HNIW and PAN. DSC/TG demonstrated that composites had a higher thermal sensitivity than HNIW itself, which meets the demand of high ignition energy in narrow space. PAN makes the initial exothermic temperature of HNIW shifts about 38 ℃ downwards. This new composite have the potential application on ignition devices.

    [1] YI Nai-rong, SHI Chun-hong, LU Qiao-li. A new HMX-containing high energetic ignition mixture[J].Initiators&Pyrotechnics, 2004, (3): 9-12.

    [2] Elbeih A, Zeman S, Pachman J, et al. Heat of combustion and detonation characteristics of HNIW bonded by different plastic matrices[C]∥8th Asia-Pacific Conference on Combustion, Hyderabad, India, 2010: 295-300

    [3] WANG Yu-ping, YANG Zong-wei, LI Hong-zhen. A novel cocrystal explosive of HNIW with good comprehensive properties[J].Propellants,Explosives,Pyrotechnics, 2014, 39(4): 590-596.

    [4] YANG Zong-wei, LI Hong-zhen, HUANG Hui, et al. Preparation and performance of a HNIW/TNT cocrystal explosive[J].Propellants,Explosives,Pyrotechnics, 2013, 38(4): 495-501.

    [5] CHEN Song-lin, LIU Jia-bin, WEI Shu-qiong, et al. Study on thermal decomposition kinetics of hexanitrohexaazaisowurtzitane[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2002, 10(1): 46-48.

    [6] LIAO Su-ran, LUO Yun-jun, SUN Jie, et al. Preparation of WPU-g-SAN and its coating on HNIW[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(2): 155-160.

    [7] Elbeih A, Pachman J, Zeman S, et al. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders[J].JournalofEnergeticMaterials, 2012, 30(4): 358-371.

    [8] Simpson R L, Urtiev P A, Ornellas D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants,Explosives,Pyrotechnics, 1997, 22(5): 249-255.

    [9] Bazaki H, Kawabe S, Miya H, et al. Synthesis and sensitivity of hexanitrohexaaza-isowurtzitane(HNIW)[J].Propellants,Explosives,Pyrotechnics, 1998, 23(6): 333-336.

    [10] Erben J, Pilarova K, Sanetrnik F, et al. The combination of melt blown and electrospinning for bone tissue engineering[J].MaterialsLetters, 2015, 143(15): 172-176.

    [11] ZHU Wei, Masood F, O′Brien J, et al. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration[J].Nanomedicine:Nanotechnology,BiologyandMedicine, 2015, 11(3): 693-704.

    [12] Croce F, Focarete M L, Hassoun J, et al. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J].Energy&EnvironmentalScience, 2011, 4(3): 921-927.

    [13] LI Jia-xin, ZOU Ming-zhong, ZHAO Yi, et al. A simple integrated design and manufacture by electrospinning of stabilized lithium battery tin-based anodes[J].RSCAdvances, 2013, 3: 19251-19254.

    [14] Chuang Y H, Hong G B, Chang C T. Study on particulates and volatile organic compounds removal with TiO2nonwoven filter prepared by electrospinning[J].JournaloftheAir&WasteManagementAssociation, 2014, 64(6): 738-742.

    [15] WANG Ce, LU Xiao-Feng. Organic functional nano-materials-high voltage electrospinning technique and nanofibers[M]. Beijing: Science Press, 2011: 18.

    [16] LI Dan, WANG Yu-liang, XIA You-nan. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].NanoLetters, 2003, 3(8): 1167-1171.

    [17] WEN Shi-peng, LIU Li, ZHANG Li-feng. Hierarchical electrospun SiO2nanofibers containing SiO2nanoparticles with controllable surface-roughness and/or porosity[J].MaterialsLetters, 2010, 64(13): 1517-1520.

    [18] Demir M M. Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF[J].ExpressPolymerLetters, 2010, 4(1): 2-8.

    [19] Simonet M, Schneider O D, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template[J].PolymerEngineering&Science, 2007, 47(12):2020-2026.

    [20] Lubasova D, Martinova L. Controlled morphology of porous polyvinyl butyral nanofibers[J].JournalofNanomaterials, 2011, 6(20):157-165.

    [21] Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model[J].Polymer, 2007, 48(23): 6913-6922.

    [22] Nayani K, Katepalli H, Sharma C S, et al. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers[J].IndustrialEngineeringChemistryResearch, 2011, 51(4): 1761-1766.

    [23] WANG Gang, PAN Chao, WANG Liu-ping, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J].ElectrochimicaActa, 2012, 69(5): 65-70.

    [24] Katepalli H, Bikshapathi M, Sharma C S, et al. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications[J].ChemicalEngineeringJournal, 2011, 171(3): 1194-1200.

    [25] YAN Shi, JIAN Guoqiang, Zachariah M R. Electrospun nanofiber-based thermite textiles and their reactive properties[J].ACSAppliedMaterials&Interfaces, 2012, 4(12): 6432-6435.

    [26] XU Hong-mei, LI Rui, SHEN Jin-peng, et al. Preparation and characterisation of nanofibrous CuO/Al metastable intermolecular composite films[J].Micro&NanoLetters, 2012, 7(12): 1251-1255.

    [27] Ji Y A, Kim W D, Kim S H. Synthesis of metal oxide porous nanowires and their applications into energetic materials[C]∥10th IEEE Conference on Nanotechnology (IEEE-NANO). Kintex, Korea, 2010: 422-425.

    三上悠亚av全集在线观看| 亚洲专区字幕在线| 午夜两性在线视频| 日韩大码丰满熟妇| 亚洲国产看品久久| 国产成人a∨麻豆精品| 中亚洲国语对白在线视频| 无遮挡黄片免费观看| 黄色视频在线播放观看不卡| 成人18禁高潮啪啪吃奶动态图| 亚洲激情五月婷婷啪啪| 午夜福利免费观看在线| 亚洲视频免费观看视频| 12—13女人毛片做爰片一| 69精品国产乱码久久久| 在线观看免费日韩欧美大片| 99久久国产精品久久久| 99久久国产精品久久久| 亚洲国产日韩一区二区| av又黄又爽大尺度在线免费看| 性高湖久久久久久久久免费观看| 女人高潮潮喷娇喘18禁视频| a级毛片黄视频| 美女扒开内裤让男人捅视频| 波多野结衣一区麻豆| 亚洲一区二区三区欧美精品| 欧美在线一区亚洲| 最近最新中文字幕大全免费视频| 男女之事视频高清在线观看| 国产在线免费精品| 亚洲国产av影院在线观看| 国产欧美日韩精品亚洲av| 久久人人爽人人片av| 777米奇影视久久| 精品免费久久久久久久清纯 | 妹子高潮喷水视频| 窝窝影院91人妻| www.熟女人妻精品国产| 99久久国产精品久久久| 别揉我奶头~嗯~啊~动态视频 | 久久ye,这里只有精品| 电影成人av| 亚洲精品美女久久久久99蜜臀| 亚洲成人免费av在线播放| 亚洲精品中文字幕在线视频| 精品国产超薄肉色丝袜足j| 动漫黄色视频在线观看| 超碰97精品在线观看| 啦啦啦啦在线视频资源| 黑人巨大精品欧美一区二区mp4| 女性被躁到高潮视频| 老司机亚洲免费影院| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 亚洲综合色网址| 免费人妻精品一区二区三区视频| av网站免费在线观看视频| 欧美精品一区二区大全| a级毛片在线看网站| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久精品古装| 成年女人毛片免费观看观看9 | 五月开心婷婷网| 亚洲中文av在线| 亚洲国产成人一精品久久久| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸 | av一本久久久久| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区黑人| av欧美777| 亚洲熟女毛片儿| 超碰97精品在线观看| 亚洲全国av大片| 成人av一区二区三区在线看 | 91成年电影在线观看| 国产精品九九99| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| 满18在线观看网站| 人成视频在线观看免费观看| 丁香六月天网| 国产精品免费视频内射| 精品一区二区三区av网在线观看 | 日韩一区二区三区影片| 一区二区三区乱码不卡18| 丰满人妻熟妇乱又伦精品不卡| 99久久精品国产亚洲精品| 天天操日日干夜夜撸| 精品人妻熟女毛片av久久网站| 男人添女人高潮全过程视频| 99久久人妻综合| 欧美亚洲日本最大视频资源| 又紧又爽又黄一区二区| 岛国在线观看网站| 窝窝影院91人妻| 国产精品一区二区在线不卡| 别揉我奶头~嗯~啊~动态视频 | 777米奇影视久久| 视频在线观看一区二区三区| 男女之事视频高清在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久99一区二区三区| av网站免费在线观看视频| 亚洲五月婷婷丁香| 亚洲天堂av无毛| 日本vs欧美在线观看视频| av网站在线播放免费| 精品一区二区三区四区五区乱码| 欧美激情高清一区二区三区| 亚洲全国av大片| 在线观看免费高清a一片| 一个人免费在线观看的高清视频 | 夜夜骑夜夜射夜夜干| 后天国语完整版免费观看| 十八禁网站网址无遮挡| 男女午夜视频在线观看| 亚洲成人免费av在线播放| 国产一区有黄有色的免费视频| 国产在线一区二区三区精| 超碰97精品在线观看| 国产日韩欧美视频二区| 老司机靠b影院| 不卡一级毛片| 国产视频一区二区在线看| 日日爽夜夜爽网站| 国产av国产精品国产| 亚洲国产精品一区三区| 欧美久久黑人一区二区| 午夜福利视频精品| 久久国产亚洲av麻豆专区| 国产亚洲精品一区二区www | 十八禁网站网址无遮挡| 精品福利观看| 成人影院久久| 夜夜夜夜夜久久久久| 精品免费久久久久久久清纯 | 免费人妻精品一区二区三区视频| 成人免费观看视频高清| 在线观看一区二区三区激情| 精品人妻1区二区| 韩国高清视频一区二区三区| av不卡在线播放| 久久久久国产精品人妻一区二区| 一区二区三区激情视频| 欧美 日韩 精品 国产| 涩涩av久久男人的天堂| av视频免费观看在线观看| 1024香蕉在线观看| 日韩熟女老妇一区二区性免费视频| 51午夜福利影视在线观看| a级毛片在线看网站| 欧美精品人与动牲交sv欧美| 成年美女黄网站色视频大全免费| 欧美激情高清一区二区三区| 老司机影院毛片| 十八禁网站免费在线| 久久天堂一区二区三区四区| 欧美日韩亚洲高清精品| 一级a爱视频在线免费观看| 水蜜桃什么品种好| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩综合在线一区二区| 欧美日韩一级在线毛片| av福利片在线| 亚洲欧美成人综合另类久久久| 女人精品久久久久毛片| 亚洲成国产人片在线观看| 老司机午夜福利在线观看视频 | 欧美变态另类bdsm刘玥| 黑人巨大精品欧美一区二区蜜桃| 男人舔女人的私密视频| 18禁观看日本| 久久精品国产亚洲av香蕉五月 | 精品第一国产精品| 一级片'在线观看视频| 国产成人精品无人区| 日韩视频一区二区在线观看| 国产日韩欧美视频二区| 成年av动漫网址| 亚洲成人免费av在线播放| 99国产精品免费福利视频| 肉色欧美久久久久久久蜜桃| 午夜福利在线观看吧| 亚洲一码二码三码区别大吗| 欧美日韩视频精品一区| 波多野结衣一区麻豆| 国产色视频综合| 日韩制服骚丝袜av| 国产亚洲午夜精品一区二区久久| 亚洲国产精品一区三区| 一区二区三区乱码不卡18| a级毛片黄视频| 亚洲国产精品成人久久小说| 国产精品一二三区在线看| 亚洲精品一区蜜桃| 91麻豆精品激情在线观看国产 | 欧美一级毛片孕妇| 国产成人av教育| 午夜成年电影在线免费观看| 精品国内亚洲2022精品成人 | 亚洲精品国产av蜜桃| 亚洲伊人色综图| 亚洲一区中文字幕在线| 黑人操中国人逼视频| 天堂8中文在线网| 成人三级做爰电影| 欧美精品av麻豆av| 777米奇影视久久| 大片免费播放器 马上看| 99久久99久久久精品蜜桃| 视频区图区小说| 午夜老司机福利片| 久久天堂一区二区三区四区| 91精品国产国语对白视频| kizo精华| a 毛片基地| 欧美激情久久久久久爽电影 | 每晚都被弄得嗷嗷叫到高潮| 嫩草影视91久久| 日韩欧美一区视频在线观看| www.999成人在线观看| 91av网站免费观看| 这个男人来自地球电影免费观看| 国产国语露脸激情在线看| 高清av免费在线| 久久99热这里只频精品6学生| 免费在线观看视频国产中文字幕亚洲 | 悠悠久久av| 老熟妇仑乱视频hdxx| 婷婷色av中文字幕| 免费黄频网站在线观看国产| 亚洲男人天堂网一区| 国产欧美日韩精品亚洲av| 香蕉丝袜av| 欧美日韩亚洲综合一区二区三区_| 欧美精品人与动牲交sv欧美| 免费高清在线观看视频在线观看| 香蕉国产在线看| 操出白浆在线播放| 亚洲免费av在线视频| 人妻久久中文字幕网| 国产精品欧美亚洲77777| 久久这里只有精品19| 亚洲精品日韩在线中文字幕| 90打野战视频偷拍视频| 久久久欧美国产精品| 极品少妇高潮喷水抽搐| 婷婷成人精品国产| 欧美人与性动交α欧美软件| 91大片在线观看| 午夜久久久在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲成人国产一区在线观看| av在线老鸭窝| 国产高清视频在线播放一区 | 12—13女人毛片做爰片一| 午夜两性在线视频| 老熟妇乱子伦视频在线观看 | 啦啦啦视频在线资源免费观看| 欧美少妇被猛烈插入视频| 女人精品久久久久毛片| av福利片在线| 如日韩欧美国产精品一区二区三区| 久久精品人人爽人人爽视色| 韩国精品一区二区三区| 国产成人系列免费观看| 欧美黄色片欧美黄色片| 女人久久www免费人成看片| 最新的欧美精品一区二区| 国产精品亚洲av一区麻豆| 亚洲欧洲精品一区二区精品久久久| 99九九在线精品视频| 亚洲精品国产区一区二| 久久久欧美国产精品| 男女下面插进去视频免费观看| 欧美日韩福利视频一区二区| www.熟女人妻精品国产| 高清欧美精品videossex| 免费在线观看影片大全网站| 国产伦理片在线播放av一区| av网站免费在线观看视频| 99国产精品一区二区蜜桃av | 交换朋友夫妻互换小说| 老司机午夜福利在线观看视频 | 少妇的丰满在线观看| 操出白浆在线播放| 大香蕉久久成人网| 黑人欧美特级aaaaaa片| 97精品久久久久久久久久精品| 久久亚洲精品不卡| 国产成人精品无人区| 可以免费在线观看a视频的电影网站| 无限看片的www在线观看| 国产高清视频在线播放一区 | av有码第一页| 在线天堂中文资源库| 久久久久国内视频| 免费高清在线观看视频在线观看| 亚洲国产中文字幕在线视频| 大片电影免费在线观看免费| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品中文字幕在线视频| 亚洲中文字幕日韩| 啦啦啦视频在线资源免费观看| 青草久久国产| 久久免费观看电影| 久久人妻熟女aⅴ| 精品久久久久久久毛片微露脸 | 人人妻人人爽人人添夜夜欢视频| h视频一区二区三区| 一区福利在线观看| 18禁国产床啪视频网站| 精品乱码久久久久久99久播| 日韩视频一区二区在线观看| 国产一区二区三区在线臀色熟女 | 狂野欧美激情性xxxx| 国产成人一区二区三区免费视频网站| 亚洲人成电影免费在线| 波多野结衣一区麻豆| 亚洲美女黄色视频免费看| 亚洲一区二区三区欧美精品| 91av网站免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲男人天堂网一区| 一级片免费观看大全| 嫁个100分男人电影在线观看| 精品欧美一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 一区二区三区激情视频| 欧美97在线视频| av网站免费在线观看视频| 高清在线国产一区| 美国免费a级毛片| 中文字幕制服av| 亚洲第一青青草原| 美女大奶头黄色视频| 亚洲av男天堂| 啦啦啦视频在线资源免费观看| 亚洲中文字幕日韩| 另类亚洲欧美激情| 一个人免费在线观看的高清视频 | 视频在线观看一区二区三区| 99热国产这里只有精品6| 国产成人av激情在线播放| 国产视频一区二区在线看| 亚洲成人免费av在线播放| 欧美日本中文国产一区发布| 欧美成狂野欧美在线观看| 国产激情久久老熟女| 丝袜脚勾引网站| 人妻 亚洲 视频| 一级片免费观看大全| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| av福利片在线| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 午夜福利,免费看| 中国美女看黄片| 一本—道久久a久久精品蜜桃钙片| 一级毛片精品| 飞空精品影院首页| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av香蕉五月 | 免费久久久久久久精品成人欧美视频| 91九色精品人成在线观看| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 视频区图区小说| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区三 | 亚洲天堂av无毛| 久久久久久久精品精品| 国产精品久久久久久精品古装| 99国产精品免费福利视频| 老司机午夜十八禁免费视频| 亚洲成人手机| tube8黄色片| videosex国产| 成人黄色视频免费在线看| 国产麻豆69| 一级片'在线观看视频| 99久久综合免费| 久久国产精品影院| 国产精品久久久av美女十八| 亚洲中文av在线| 国产精品久久久久久人妻精品电影 | 性色av乱码一区二区三区2| 国产伦人伦偷精品视频| 亚洲熟女精品中文字幕| 男人添女人高潮全过程视频| 在线观看免费视频网站a站| 大陆偷拍与自拍| 亚洲国产精品999| 亚洲欧美日韩高清在线视频 | 女警被强在线播放| 黄色怎么调成土黄色| 老司机亚洲免费影院| 一二三四社区在线视频社区8| 亚洲免费av在线视频| 亚洲国产精品成人久久小说| 成年av动漫网址| a级片在线免费高清观看视频| 亚洲欧美精品自产自拍| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 老熟女久久久| 久久中文字幕一级| 成人影院久久| 国产野战对白在线观看| 高清黄色对白视频在线免费看| 女性生殖器流出的白浆| 两性夫妻黄色片| 无限看片的www在线观看| 宅男免费午夜| 亚洲精品粉嫩美女一区| 精品少妇一区二区三区视频日本电影| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 啪啪无遮挡十八禁网站| 国产极品粉嫩免费观看在线| 纵有疾风起免费观看全集完整版| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 后天国语完整版免费观看| 美女福利国产在线| 丁香六月天网| 91国产中文字幕| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 91麻豆av在线| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 日韩中文字幕视频在线看片| 精品福利观看| 精品少妇黑人巨大在线播放| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久 | 1024香蕉在线观看| 亚洲天堂av无毛| 黑人操中国人逼视频| 免费少妇av软件| 亚洲精华国产精华精| 国产成人av激情在线播放| 男人舔女人的私密视频| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 一边摸一边做爽爽视频免费| 欧美黑人欧美精品刺激| 性少妇av在线| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 亚洲av男天堂| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 秋霞在线观看毛片| 亚洲中文av在线| 亚洲精品国产一区二区精华液| 少妇 在线观看| 午夜福利,免费看| 女警被强在线播放| 一本大道久久a久久精品| 他把我摸到了高潮在线观看 | 超色免费av| 久久精品国产综合久久久| 宅男免费午夜| 91麻豆av在线| 丝袜喷水一区| 99精品久久久久人妻精品| 下体分泌物呈黄色| 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 97在线人人人人妻| 国产黄频视频在线观看| 久久精品亚洲熟妇少妇任你| 岛国毛片在线播放| 9色porny在线观看| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| a级毛片在线看网站| 亚洲精品国产av成人精品| 亚洲成av片中文字幕在线观看| 婷婷丁香在线五月| 三上悠亚av全集在线观看| 国产免费av片在线观看野外av| 国产av精品麻豆| av国产精品久久久久影院| 欧美黑人精品巨大| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区蜜桃| 久久九九热精品免费| 色老头精品视频在线观看| 久久女婷五月综合色啪小说| 两个人看的免费小视频| 国产精品麻豆人妻色哟哟久久| av福利片在线| 国产视频一区二区在线看| 天堂中文最新版在线下载| 久久 成人 亚洲| 久久中文看片网| 一级毛片电影观看| 欧美日韩亚洲高清精品| 国产日韩欧美亚洲二区| 美女主播在线视频| 一边摸一边做爽爽视频免费| 一级,二级,三级黄色视频| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 好男人电影高清在线观看| 十八禁人妻一区二区| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 可以免费在线观看a视频的电影网站| 激情视频va一区二区三区| 交换朋友夫妻互换小说| 亚洲av成人一区二区三| 亚洲精品美女久久久久99蜜臀| 正在播放国产对白刺激| 午夜福利乱码中文字幕| 亚洲天堂av无毛| 高清欧美精品videossex| 国产一区二区激情短视频 | 国产av国产精品国产| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| 国产成+人综合+亚洲专区| 久久亚洲精品不卡| 亚洲第一欧美日韩一区二区三区 | 国产精品熟女久久久久浪| 一二三四社区在线视频社区8| 女人精品久久久久毛片| 亚洲欧美日韩另类电影网站| 成在线人永久免费视频| 青春草亚洲视频在线观看| 男女午夜视频在线观看| 国产色视频综合| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 桃花免费在线播放| 欧美日韩黄片免| 超色免费av| 亚洲精品成人av观看孕妇| 亚洲黑人精品在线| 女性被躁到高潮视频| 大陆偷拍与自拍| 久久 成人 亚洲| 捣出白浆h1v1| 青青草视频在线视频观看| 欧美午夜高清在线| 黑人猛操日本美女一级片| 国产精品麻豆人妻色哟哟久久| 色婷婷av一区二区三区视频| 成年av动漫网址| 免费在线观看黄色视频的| 久久久久久久大尺度免费视频| 波多野结衣一区麻豆| 热re99久久精品国产66热6| 丝袜人妻中文字幕| 丝袜脚勾引网站| 国产伦人伦偷精品视频| 亚洲成人手机| 大陆偷拍与自拍| 精品卡一卡二卡四卡免费| 国产在线免费精品| 亚洲精品av麻豆狂野| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 日韩欧美一区二区三区在线观看 | 欧美另类亚洲清纯唯美| 成年av动漫网址| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 亚洲国产欧美一区二区综合| 亚洲一区中文字幕在线| 大型av网站在线播放| 久久久久网色| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| 大型av网站在线播放| 9热在线视频观看99| 国产福利在线免费观看视频| 国产精品熟女久久久久浪| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 久久国产精品大桥未久av| 精品少妇内射三级| 国产精品.久久久| 国产av国产精品国产| 国产精品.久久久| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 丁香六月欧美|