• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of New Structure Energetic Composite of HNIW Implanted into Macroporous Fibosa

    2017-05-07 06:06:59LIYaruRENHuiJIAOQingjie
    含能材料 2017年4期

    LI Ya-ru, REN Hui, JIAO Qing-jie

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    With the development of insensitive ammunition, ignition charges are required to have higher energy. Traditional charges are faced with new challenges and explosives with high energy density were hence introduced to the ignition system to improve the energy output[1]. Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW) has been widely investigated for its all respects especially explosion and combustion abilities since it was synthesized[2-6]. Relative documents showed HNIW would be a potential component of higher ignition charge[7]. As a new generation explosive, HNIW has higher energy density than other pyrotechnic charges[8-9], however, its thermal sensitivity is lower than other pyrotechnic charges. It is vital to improve the sensitivity of HNIW to heat to make it a perfect ignition charge. One way to achieve this is to combine HNIW with another material of more thermal sensitive, such as polymer.

    Electrostatic spinning(ES) technique has become a mature technology for the preparation of micro/nano-scale fibers in recent years. The fibers fabricated by ES have been widely used in tissue engineering[10-11], battery[12-13], filter[14]. In the electrostatic spinning process, an electrically conducting polymer solution is charged when it flows through a fine nozzle connected to high voltage. The electric field between the nozzle and the ground receptor exerts electrostatic forces to stretch polymer solution into micro/nano-scale fibers[15]. Fibrosa with various pore structures and mechanical properties can be fabricated by adjusting the high voltage, viscosity of precursor solution, the receptor, and so on[16-19]. After the solvent evaporation, fibers remain on the receptor and form a macro porous fibrosa. The diameter, morphology and porosity of fiber will be determined by different synthesized parameters[20-22]. So it offers a new route to fabricate composite energetic materials. Polyacrylonitrile(PAN) is one of the materials easy to be electrospun, and carbon fibers prepared by PAN have good mechanical properties, therefore PAN has been widely used as electrospinning precursor[23-24]. We can use the fibers prepared by electrospinning as the matrix, then some high energy density compounds were coated or deposited on the surface of micor & nano-fibers. Besides, we noted that other researches have completed the fabrication of thermite fibers by means of electrospinning[25-27]. Previous researches focused on the thermite or nitrocellulose etc. Up to now, no published articles discussed explosive-contained composite energetic fibers. Consideration of electrostatic danger, the high voltage may trigger explosive reaction during electrospinning. We first obtained the fibrosa, followed by explosive implanted into the porous mats, energetic composites were resulted. In this work, PAN was chosen to be electrospun into fibrous mats as a matrix to strengthen the mechanical property and to improve the thermal sensitivity of mixed ignition charge.

    2 Experiment Section

    2.1 Materials and Instruments

    The polyacrylonitrile(PAN), with average relative molecular mass of 102700, was acquired from Scientific Polymer Product Company(New York, USA).N,N-dimethylformamide(DMF) was produced by Sinopharm Chemcial Reagent Co., Ltd.(Shanghai, China). Acetone was produced by Beijing Reagent Company(Beijing, China). PAN, DMF and acetone were of analytical purity. HNIW (5-15 μm, 40% ε and 60%αcrystal form) was produced by Qingyang Liaoning Special Chemical Co., Ltd.(Liaoning, China) with chemical purity, higher than 99% .

    A model RCT basic magnetic heated stirrer was obtained from IKA Company(Germany). A model BGG high voltage supply with +40 kV was supplied by Beijing Electro-mechanical Research Institute Supesvoltage Technique Company(Beijing, China). A model LSP02-1B constant flow pump was from Longer Precision Pump Co.,Ltd(Baoding, China).

    Micromorphology was characterized by a Hitachi S4800 scanning electron microscope(Japan). Infrared spectra were recorded in KBr discs on a Bruker VERTEX70 infrared spectrometer(Germany) in the range of 4000-400 cm-1. Thermal behavior was studied on a STA449F3 differential scanning calorimeter(NET Co, Germany) at the rate of 5 ℃·min-1. A SIMD8 high-speed camera(Britain) was applied to record the ignition process with the sampling frequency of 250 fps.

    2.2 Preparation of Fibrosa

    PAN (8 g) was dissolved in DMF (92 mL) under agitation by magnetic heated stirrer at 60 ℃ for 6 h. The electrostatic spinning solution was loaded into a 20 mL syringe capped with blunt tipped needle. The positive lead of a high voltage supply was attached by an alligator clip to the blunt tipped needle. A 25 kV accelerating voltage was used in the electrostatic spinning process. A constantly-flow longer pump was used to meter the delivery of the PAN solution to the electric field, the delivery rate was set to 4 mL·h-1. The distance between needle and the receptor was 15 cm. After solvent evaporation, pure PAN fibrosa was obtained.

    2.3 Fabrication of Composites

    Composites of HNIW and PAN fibrosa were fabricated by dipping the PAN fibrosa into acetone solution of HNIW with certain concentration. The content of HNIW in the composite could be adjusted by changing the amount of HNIW in acetone. After solvent was completely evaporated, composites dried in vacuum drying oven at 50 ℃ for 2 h were obtained.

    2.4 Ignition Experiment

    To judge the feasibility of composite as ignition charge, an ignition experiment was designed. Test material was cut into strips and then loosely filled into quartz tube to obtain enough oxygen. After that, electric igniter device was connected to the side of quartz tube with test materials to ensure the ignition head was fully contacted with materials. Moreover, to make sure the ignition head would not recoil the moment materials ignited, it should be deep enough into the tube. High-speed camera was employed to record and analyze the combustion process. To make a comparison, both pure PAN fibrosa and composite were ignited under the same condition.

    3 Results and Discussions

    3.1 Prediction of Optimal Proportion

    The ingredient, proportion, thermodynamic state of energetic composites will influence its combustion reaction. In order to acquire the optimal proportion of the composites, it is necessary to have a thorough understanding on the reaction behavior of the composite with different proportions. Therefore, we conducted a serial of calculations both on the heat of formation and the adiabatic flame temperature(AFT) of the composites at different proportions according to principle of minimum free energy. The calculated results are shown in Fig.1. It can be learnt that both AFT and the heat of formation rise first and then fall with the mass ratio of PAN increasing. One should be noted that at the mass ratio of 3∶7, the heat of formation reaches the highest point which nearly the same to AFT, showing the advantage of that ratio over the rest. So we obtain the better stoichiometry used in following experiments.

    Fig.1 Calculated heat of formation and adiabatic flame temperature (AFT) of composite at different ratio of PAN/HNIW

    3.2 Characterization of Morphology

    To observe the microstructure of composites, the morphologies of fibrosa, composites and combustion residue of PAN fibrosa and composite were investigated by scanning electron microscope(SEM). Their SEM images are shown in Fig.2.

    a. electrostatic spinning fibre

    b. composite of explosive and fibrosa

    c. combustion residue of PAN fibrosa

    d. combustion residue of composite

    Fig.2 SEM images of samples

    Fig.2a displays the electrostatic spinning fibers randomly distributed with smooth surface and an average diameter of 500 nm. The pore space between fibers is big enough to contain high mass loading. Fig.2b shows that HNIW particles uniformly adhere to the mat, which fully proves the feasibility of compound explosive and fibrosa together. And the structure of PAN fiber is very beneficial to be adhered by explosive.

    PAN fibrosa and composite were separately ignited under the same condition, and the combustion residues of them were observed by SEM, as shown in Fig.2c and Fig.2d. During the ignition experiment, just small part of PAN fibrosa were fired due to no constant thermal source supplied. Fibers and carbides exist in the combustion residues according to Fig.2c, in accord with the experiment. In contrast, the composite with HNIW can be fully burnt. And compared with PAN fibrosa (see Fig.2c), there are more pores in combustion residue (see Fig.2d) of composite. Porous parts are speculated to be the combustion loss of HNIW.

    3.3 FT-IRAnalysis

    Fig.3 FT-IR spectra of four samples

    3.4 Thermal Behavior

    DSC/TG analysis is mainly used to analyze the reaction of energetic system under heat stimulus, and it is usually used to study the thermal decomposition of explosive. To know the thermal decomposition interaction between PAN fibrosa and HNIW, differential scanning calorimetry was used to analyze the thermal decomposition behaviors of PAN fibrosa, HNIW and their composite. Results are shown in Fig.4. In the thermal decomposition process, the starting point of decomposition for HNIW is 221.9 ℃ (see Fig.4b), while that for composite and PAN is 204.7 ℃(see Fig.4c) and 270 ℃(see Fig.4a), respectively. According to the above results, we can speculate that PAN makes the initial exothermic temperature of HNIW shifts

    a. PAN

    b. HNIW

    c. PAN/HNIW

    Fig.4 DSC and TG curves of samples

    about 38 ℃ downwards. Besides, PAN enhances the exothermic quantity of HNIW, making the exothermic peak of HNIW shifts 19 ℃ downwards. The thermogravimetric analysis results reveal that the exothermic rate of composite is highest of all, which proves that the composite is more sensitive than HNIW. Based on the above analyses, the interaction process between PAN and HNIW includes three steps: first, reaching its decomposition point of HNIW and releasing heat, then, reaching its decomposition point of PAN by absorbing the decomposition heat of HNIW, finally, occurring the further thermal decomposition of HNIW by absorbing the exothermic quantity of PAN. In conclusion, the thermal decomposition of composite is the result of interaction of HNIW and PAN.

    3.5 Combustion Properties

    Fig.5 shows the ignition and combustion process of PAN fibosa recorded by a high-speed camera. The highest temperature of ignition head is about 300 ℃, but only few fibers contacted with ignition head are fired. Besides, fibosa flame is disappeared with ignition head dying out, indicating electrostatic spinning fibers can not burn constantly. Fig.6 shows the combustion process of composite recorded by a high-speed camera. According to combustion behavior, the whole process can be divided into four stages. First, composite contacted with ignition head is ignited by the combustion heat of ignition head (see Fig.6a). According to the record by camera, there is obvious flame which becomes lighter and longer. Second, the ignited part starts its long combustion process which moves to the near part (see Fig.6b). Material of this part can be totally burnt due to enough oxygen and heat supply. Then, due to the consumption of combustible and oxygen in the former stage, the combustion of this stage becomes weak and the flame becomes shorter and dimmer (see Fig.6c). The final combustion process is for the part inside the tube. Combustion of this stage is incomplete with no flame but tan smoke, due to lack of oxygen.

    4 Conclusions

    (1) Composite of PAN fibrosa and HNIW was successfully fabricated through the combination of electrostatic spinning method and self-assembly method. HNIW can physically imbed in PAN fibrosa and the composite showed a good uniformity, with no new organic groups appeared after imbed process.

    (2) The addition of HNIW to PAN fibrosa efficiently increases combustion ability of PAN which can not burn constantly itself. The composite burnt process can be divided into four stages and it burnt more thoroughly than PAN itself under the same condition.

    (3) The thermal decomposition of composite is a result of

    c. 108 ms b. 140 ms c. 172 ms d. 316 ms

    Fig.5 Ignition of PAN fibrosa

    c. 160 ms b. 1520 ms c. 2400 ms d. 3040 ms

    Fig.6 Ignition of PAN/HNIW composite

    interaction of HNIW and PAN. DSC/TG demonstrated that composites had a higher thermal sensitivity than HNIW itself, which meets the demand of high ignition energy in narrow space. PAN makes the initial exothermic temperature of HNIW shifts about 38 ℃ downwards. This new composite have the potential application on ignition devices.

    [1] YI Nai-rong, SHI Chun-hong, LU Qiao-li. A new HMX-containing high energetic ignition mixture[J].Initiators&Pyrotechnics, 2004, (3): 9-12.

    [2] Elbeih A, Zeman S, Pachman J, et al. Heat of combustion and detonation characteristics of HNIW bonded by different plastic matrices[C]∥8th Asia-Pacific Conference on Combustion, Hyderabad, India, 2010: 295-300

    [3] WANG Yu-ping, YANG Zong-wei, LI Hong-zhen. A novel cocrystal explosive of HNIW with good comprehensive properties[J].Propellants,Explosives,Pyrotechnics, 2014, 39(4): 590-596.

    [4] YANG Zong-wei, LI Hong-zhen, HUANG Hui, et al. Preparation and performance of a HNIW/TNT cocrystal explosive[J].Propellants,Explosives,Pyrotechnics, 2013, 38(4): 495-501.

    [5] CHEN Song-lin, LIU Jia-bin, WEI Shu-qiong, et al. Study on thermal decomposition kinetics of hexanitrohexaazaisowurtzitane[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2002, 10(1): 46-48.

    [6] LIAO Su-ran, LUO Yun-jun, SUN Jie, et al. Preparation of WPU-g-SAN and its coating on HNIW[J].ChineseJournalofEnergeticMaterials(HannengCailiao), 2012, 20(2): 155-160.

    [7] Elbeih A, Pachman J, Zeman S, et al. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders[J].JournalofEnergeticMaterials, 2012, 30(4): 358-371.

    [8] Simpson R L, Urtiev P A, Ornellas D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants,Explosives,Pyrotechnics, 1997, 22(5): 249-255.

    [9] Bazaki H, Kawabe S, Miya H, et al. Synthesis and sensitivity of hexanitrohexaaza-isowurtzitane(HNIW)[J].Propellants,Explosives,Pyrotechnics, 1998, 23(6): 333-336.

    [10] Erben J, Pilarova K, Sanetrnik F, et al. The combination of melt blown and electrospinning for bone tissue engineering[J].MaterialsLetters, 2015, 143(15): 172-176.

    [11] ZHU Wei, Masood F, O′Brien J, et al. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration[J].Nanomedicine:Nanotechnology,BiologyandMedicine, 2015, 11(3): 693-704.

    [12] Croce F, Focarete M L, Hassoun J, et al. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J].Energy&EnvironmentalScience, 2011, 4(3): 921-927.

    [13] LI Jia-xin, ZOU Ming-zhong, ZHAO Yi, et al. A simple integrated design and manufacture by electrospinning of stabilized lithium battery tin-based anodes[J].RSCAdvances, 2013, 3: 19251-19254.

    [14] Chuang Y H, Hong G B, Chang C T. Study on particulates and volatile organic compounds removal with TiO2nonwoven filter prepared by electrospinning[J].JournaloftheAir&WasteManagementAssociation, 2014, 64(6): 738-742.

    [15] WANG Ce, LU Xiao-Feng. Organic functional nano-materials-high voltage electrospinning technique and nanofibers[M]. Beijing: Science Press, 2011: 18.

    [16] LI Dan, WANG Yu-liang, XIA You-nan. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].NanoLetters, 2003, 3(8): 1167-1171.

    [17] WEN Shi-peng, LIU Li, ZHANG Li-feng. Hierarchical electrospun SiO2nanofibers containing SiO2nanoparticles with controllable surface-roughness and/or porosity[J].MaterialsLetters, 2010, 64(13): 1517-1520.

    [18] Demir M M. Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF[J].ExpressPolymerLetters, 2010, 4(1): 2-8.

    [19] Simonet M, Schneider O D, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template[J].PolymerEngineering&Science, 2007, 47(12):2020-2026.

    [20] Lubasova D, Martinova L. Controlled morphology of porous polyvinyl butyral nanofibers[J].JournalofNanomaterials, 2011, 6(20):157-165.

    [21] Thompson C J, Chase G G, Yarin A L, et al. Effects of parameters on nanofiber diameter determined from electrospinning model[J].Polymer, 2007, 48(23): 6913-6922.

    [22] Nayani K, Katepalli H, Sharma C S, et al. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers[J].IndustrialEngineeringChemistryResearch, 2011, 51(4): 1761-1766.

    [23] WANG Gang, PAN Chao, WANG Liu-ping, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J].ElectrochimicaActa, 2012, 69(5): 65-70.

    [24] Katepalli H, Bikshapathi M, Sharma C S, et al. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications[J].ChemicalEngineeringJournal, 2011, 171(3): 1194-1200.

    [25] YAN Shi, JIAN Guoqiang, Zachariah M R. Electrospun nanofiber-based thermite textiles and their reactive properties[J].ACSAppliedMaterials&Interfaces, 2012, 4(12): 6432-6435.

    [26] XU Hong-mei, LI Rui, SHEN Jin-peng, et al. Preparation and characterisation of nanofibrous CuO/Al metastable intermolecular composite films[J].Micro&NanoLetters, 2012, 7(12): 1251-1255.

    [27] Ji Y A, Kim W D, Kim S H. Synthesis of metal oxide porous nanowires and their applications into energetic materials[C]∥10th IEEE Conference on Nanotechnology (IEEE-NANO). Kintex, Korea, 2010: 422-425.

    看非洲黑人一级黄片| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| 国产精品偷伦视频观看了| 美女视频免费永久观看网站| 国产亚洲欧美精品永久| 国产成人精品在线电影| 老女人水多毛片| 亚洲高清免费不卡视频| 亚洲综合色网址| 老司机影院毛片| 九色亚洲精品在线播放| 视频中文字幕在线观看| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av涩爱| 啦啦啦啦在线视频资源| 老司机影院成人| xxxhd国产人妻xxx| 高清av免费在线| 在线观看免费日韩欧美大片| 成人免费观看视频高清| 一二三四在线观看免费中文在 | 中文天堂在线官网| 热re99久久精品国产66热6| 成人无遮挡网站| 熟女电影av网| 人妻 亚洲 视频| 啦啦啦中文免费视频观看日本| 天天操日日干夜夜撸| 男女无遮挡免费网站观看| 久久午夜福利片| 精品国产一区二区久久| 永久网站在线| 尾随美女入室| 香蕉精品网在线| 亚洲欧洲精品一区二区精品久久久 | 毛片一级片免费看久久久久| 一本—道久久a久久精品蜜桃钙片| 这个男人来自地球电影免费观看 | 亚洲av福利一区| 99久久精品国产国产毛片| 国产精品秋霞免费鲁丝片| 人人妻人人澡人人爽人人夜夜| 国产乱人偷精品视频| 97精品久久久久久久久久精品| 丰满乱子伦码专区| 桃花免费在线播放| 一级,二级,三级黄色视频| 少妇高潮的动态图| 一区二区日韩欧美中文字幕 | 久久精品国产亚洲av天美| 亚洲国产色片| 看免费av毛片| 国产片内射在线| 少妇人妻久久综合中文| 日韩熟女老妇一区二区性免费视频| 国产xxxxx性猛交| 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 午夜91福利影院| 亚洲av电影在线观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 两性夫妻黄色片 | 久久精品国产亚洲av涩爱| 精品人妻一区二区三区麻豆| 一级黄片播放器| av不卡在线播放| 亚洲婷婷狠狠爱综合网| 国产av国产精品国产| 一本—道久久a久久精品蜜桃钙片| 观看av在线不卡| 亚洲国产精品一区二区三区在线| 黄色配什么色好看| 欧美老熟妇乱子伦牲交| 亚洲五月色婷婷综合| 亚洲国产最新在线播放| 最近最新中文字幕免费大全7| 国产一区二区三区av在线| 寂寞人妻少妇视频99o| 夫妻性生交免费视频一级片| 九草在线视频观看| 精品酒店卫生间| 亚洲av在线观看美女高潮| 国产老妇伦熟女老妇高清| 国产成人av激情在线播放| 亚洲欧洲日产国产| 欧美亚洲 丝袜 人妻 在线| 交换朋友夫妻互换小说| 国产成人精品在线电影| 在线精品无人区一区二区三| 国产淫语在线视频| 国产爽快片一区二区三区| 久久久久国产精品人妻一区二区| 高清不卡的av网站| 色视频在线一区二区三区| 欧美日韩精品成人综合77777| 亚洲av中文av极速乱| 五月伊人婷婷丁香| 精品久久久久久电影网| 少妇被粗大猛烈的视频| 七月丁香在线播放| 在线观看三级黄色| 亚洲av电影在线观看一区二区三区| 亚洲欧洲日产国产| 视频中文字幕在线观看| 国产精品嫩草影院av在线观看| 97精品久久久久久久久久精品| 女性被躁到高潮视频| 人妻人人澡人人爽人人| 青青草视频在线视频观看| 亚洲国产av影院在线观看| 如日韩欧美国产精品一区二区三区| 日本-黄色视频高清免费观看| 国产一区二区激情短视频 | 1024视频免费在线观看| 永久网站在线| 美女大奶头黄色视频| 精品国产乱码久久久久久小说| av免费观看日本| 草草在线视频免费看| 亚洲国产精品专区欧美| 亚洲av男天堂| 最近最新中文字幕免费大全7| 一本色道久久久久久精品综合| 亚洲精品自拍成人| 岛国毛片在线播放| www.av在线官网国产| 少妇的逼水好多| 久久99热这里只频精品6学生| av播播在线观看一区| 天天影视国产精品| 中文乱码字字幕精品一区二区三区| 91久久精品国产一区二区三区| 久久99一区二区三区| 伦理电影大哥的女人| 日韩欧美一区视频在线观看| 如何舔出高潮| a级毛色黄片| 久久久久网色| 搡女人真爽免费视频火全软件| 免费在线观看完整版高清| 少妇人妻精品综合一区二区| 午夜日本视频在线| 内地一区二区视频在线| 大片免费播放器 马上看| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 亚洲成人手机| 国产黄色免费在线视频| 亚洲美女搞黄在线观看| 亚洲 欧美一区二区三区| 哪个播放器可以免费观看大片| 久久精品国产亚洲av涩爱| 韩国av在线不卡| 大码成人一级视频| 国产免费福利视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲精品色激情综合| 久久久久国产网址| 建设人人有责人人尽责人人享有的| 国产成人91sexporn| 大香蕉久久网| 久久精品国产亚洲av天美| 国产成人aa在线观看| 精品卡一卡二卡四卡免费| 国产一级毛片在线| 免费高清在线观看视频在线观看| 亚洲三级黄色毛片| 亚洲五月色婷婷综合| 国产男人的电影天堂91| 免费av不卡在线播放| 亚洲伊人色综图| 毛片一级片免费看久久久久| 两性夫妻黄色片 | 国产1区2区3区精品| 国产一区二区三区av在线| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 99热网站在线观看| 国产成人精品无人区| 国产色婷婷99| 欧美人与性动交α欧美软件 | 日产精品乱码卡一卡2卡三| 亚洲图色成人| 国产免费视频播放在线视频| 伊人亚洲综合成人网| av黄色大香蕉| 大香蕉97超碰在线| 精品一区二区免费观看| 亚洲精品aⅴ在线观看| 国产成人免费观看mmmm| 久久亚洲国产成人精品v| 午夜91福利影院| 一区二区av电影网| 在线观看免费视频网站a站| 亚洲,一卡二卡三卡| 母亲3免费完整高清在线观看 | 母亲3免费完整高清在线观看 | 一级a做视频免费观看| 熟女电影av网| 又黄又爽又刺激的免费视频.| 卡戴珊不雅视频在线播放| 大片电影免费在线观看免费| 中文天堂在线官网| 18禁国产床啪视频网站| 一个人免费看片子| 又黄又爽又刺激的免费视频.| 天天躁夜夜躁狠狠躁躁| 精品亚洲乱码少妇综合久久| 精品亚洲乱码少妇综合久久| 久久精品久久久久久久性| 熟女人妻精品中文字幕| 久久人人爽人人片av| 久久99热这里只频精品6学生| 亚洲综合色惰| 国产黄频视频在线观看| 91aial.com中文字幕在线观看| 久久久久久久久久久免费av| 精品亚洲成a人片在线观看| 国产又爽黄色视频| 国产精品不卡视频一区二区| 亚洲一码二码三码区别大吗| 国产精品国产三级专区第一集| 欧美日韩一区二区视频在线观看视频在线| 欧美激情国产日韩精品一区| 免费看光身美女| 色网站视频免费| a级片在线免费高清观看视频| 两个人免费观看高清视频| av视频免费观看在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩熟女老妇一区二区性免费视频| 久久久久国产网址| 香蕉丝袜av| 美女脱内裤让男人舔精品视频| 满18在线观看网站| 22中文网久久字幕| 亚洲av日韩在线播放| 精品国产一区二区三区久久久樱花| 免费在线观看完整版高清| 少妇被粗大的猛进出69影院 | 女人被躁到高潮嗷嗷叫费观| 少妇 在线观看| 精品卡一卡二卡四卡免费| 制服人妻中文乱码| 各种免费的搞黄视频| 日本色播在线视频| 桃花免费在线播放| 有码 亚洲区| 一级毛片 在线播放| 亚洲欧美精品自产自拍| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99精品国语久久久| 插逼视频在线观看| 国产免费福利视频在线观看| 日本黄大片高清| 母亲3免费完整高清在线观看 | 18禁观看日本| 天天躁夜夜躁狠狠躁躁| 精品亚洲成国产av| 国产成人精品一,二区| 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看| 欧美成人午夜精品| 天堂俺去俺来也www色官网| 男人爽女人下面视频在线观看| 午夜福利影视在线免费观看| www日本在线高清视频| 9色porny在线观看| 一级毛片我不卡| 亚洲国产最新在线播放| 免费观看无遮挡的男女| 国产精品一国产av| 日本av免费视频播放| 国产精品无大码| 久久影院123| 桃花免费在线播放| 各种免费的搞黄视频| 日韩伦理黄色片| 大香蕉久久成人网| 一级,二级,三级黄色视频| 久久99一区二区三区| 寂寞人妻少妇视频99o| 黄色配什么色好看| 午夜日本视频在线| 香蕉丝袜av| 免费观看在线日韩| 国产精品久久久久久久电影| 成人亚洲精品一区在线观看| 中国美白少妇内射xxxbb| 亚洲一码二码三码区别大吗| 亚洲激情五月婷婷啪啪| 国产黄频视频在线观看| 91午夜精品亚洲一区二区三区| 蜜桃在线观看..| 天堂中文最新版在线下载| 2022亚洲国产成人精品| 欧美激情高清一区二区三区| 少妇裸体淫交视频免费看高清 | videos熟女内射| 国产又爽黄色视频| 91成人精品电影| 精品人妻在线不人妻| 少妇粗大呻吟视频| 宅男免费午夜| 一区二区日韩欧美中文字幕| 午夜福利乱码中文字幕| 精品久久久久久,| 99re在线观看精品视频| 日韩制服丝袜自拍偷拍| 宅男免费午夜| 欧美黑人欧美精品刺激| 精品乱码久久久久久99久播| 母亲3免费完整高清在线观看| 国产成人欧美在线观看 | 在线观看舔阴道视频| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻熟女乱码| 男女下面插进去视频免费观看| a在线观看视频网站| 操出白浆在线播放| 免费不卡黄色视频| 精品无人区乱码1区二区| 看片在线看免费视频| 岛国在线观看网站| 999久久久精品免费观看国产| www.自偷自拍.com| 伊人久久大香线蕉亚洲五| 久久久久久人人人人人| 精品电影一区二区在线| 巨乳人妻的诱惑在线观看| 亚洲久久久国产精品| 极品教师在线免费播放| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 热re99久久精品国产66热6| 亚洲精品中文字幕在线视频| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 天堂动漫精品| 亚洲av日韩在线播放| 免费高清在线观看日韩| 十八禁人妻一区二区| 后天国语完整版免费观看| 国产国语露脸激情在线看| 少妇的丰满在线观看| 亚洲精品国产色婷婷电影| 国产在视频线精品| 国产野战对白在线观看| 国产高清激情床上av| 精品人妻熟女毛片av久久网站| 亚洲精华国产精华精| 视频区图区小说| 熟女少妇亚洲综合色aaa.| 免费一级毛片在线播放高清视频 | 99久久精品国产亚洲精品| 中文字幕人妻丝袜制服| 99riav亚洲国产免费| 日本撒尿小便嘘嘘汇集6| 国产人伦9x9x在线观看| 精品第一国产精品| 久久久久久久久免费视频了| 国产乱人伦免费视频| 欧美亚洲日本最大视频资源| 亚洲精品国产区一区二| 午夜福利视频在线观看免费| 少妇被粗大的猛进出69影院| 国产av一区二区精品久久| 亚洲七黄色美女视频| 国产成人影院久久av| 首页视频小说图片口味搜索| 久久国产精品人妻蜜桃| 香蕉久久夜色| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 精品熟女少妇八av免费久了| 美女扒开内裤让男人捅视频| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| 亚洲精品国产色婷婷电影| 脱女人内裤的视频| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 在线天堂中文资源库| 成人免费观看视频高清| 亚洲一码二码三码区别大吗| 一区二区三区精品91| 热99re8久久精品国产| 欧美精品av麻豆av| 免费日韩欧美在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91国产中文字幕| 99久久精品国产亚洲精品| 在线av久久热| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女 | 国产精品综合久久久久久久免费 | 一级毛片精品| 无限看片的www在线观看| 手机成人av网站| 国产一区有黄有色的免费视频| 露出奶头的视频| 最新的欧美精品一区二区| 国产精品秋霞免费鲁丝片| 免费av中文字幕在线| 免费一级毛片在线播放高清视频 | 久久久国产一区二区| 色婷婷久久久亚洲欧美| 91成人精品电影| 男女床上黄色一级片免费看| 欧美黑人精品巨大| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 性色av乱码一区二区三区2| 中亚洲国语对白在线视频| 女警被强在线播放| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 国产99久久九九免费精品| 啦啦啦在线免费观看视频4| 一边摸一边抽搐一进一出视频| 免费在线观看影片大全网站| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区精品| xxx96com| 亚洲中文字幕日韩| 午夜福利乱码中文字幕| 他把我摸到了高潮在线观看| 久久人妻熟女aⅴ| av片东京热男人的天堂| 成人三级做爰电影| 久久久久久久久免费视频了| 成人永久免费在线观看视频| 不卡一级毛片| 国产精品久久久人人做人人爽| 巨乳人妻的诱惑在线观看| 老熟女久久久| 国内毛片毛片毛片毛片毛片| 精品久久久久久电影网| 亚洲欧美日韩高清在线视频| www日本在线高清视频| 国产成+人综合+亚洲专区| 在线观看免费视频日本深夜| 日本欧美视频一区| 一级a爱片免费观看的视频| avwww免费| 露出奶头的视频| tocl精华| 久久久久精品国产欧美久久久| 欧美 亚洲 国产 日韩一| 国产一区二区三区视频了| 宅男免费午夜| 国产熟女午夜一区二区三区| 精品久久蜜臀av无| 国产成人av激情在线播放| 色婷婷久久久亚洲欧美| 人人妻,人人澡人人爽秒播| 国产欧美亚洲国产| 国产av又大| 亚洲av成人一区二区三| 成人国产一区最新在线观看| 久久中文看片网| av超薄肉色丝袜交足视频| 18禁裸乳无遮挡免费网站照片 | 狂野欧美激情性xxxx| 免费久久久久久久精品成人欧美视频| 国产成人精品久久二区二区免费| 好男人电影高清在线观看| 男女下面插进去视频免费观看| 热99re8久久精品国产| 国产精品电影一区二区三区 | 中文字幕制服av| 亚洲av熟女| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 极品少妇高潮喷水抽搐| 中国美女看黄片| √禁漫天堂资源中文www| 精品福利观看| 国产又爽黄色视频| 99精国产麻豆久久婷婷| 久99久视频精品免费| 免费不卡黄色视频| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 天天影视国产精品| 欧美日韩瑟瑟在线播放| 午夜免费成人在线视频| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 日韩中文字幕欧美一区二区| 国产精品综合久久久久久久免费 | 一本一本久久a久久精品综合妖精| 99re在线观看精品视频| 成在线人永久免费视频| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽 | 老司机靠b影院| 黄网站色视频无遮挡免费观看| 一进一出抽搐gif免费好疼 | 久久国产精品大桥未久av| 精品国产乱码久久久久久男人| 大型av网站在线播放| 多毛熟女@视频| 欧洲精品卡2卡3卡4卡5卡区| 黑人操中国人逼视频| 好男人电影高清在线观看| 深夜精品福利| 性色av乱码一区二区三区2| 三级毛片av免费| 欧美成人午夜精品| 高清欧美精品videossex| 国产日韩欧美亚洲二区| videosex国产| 欧美成狂野欧美在线观看| xxx96com| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 国产单亲对白刺激| 久久精品亚洲精品国产色婷小说| 黄色女人牲交| 亚洲av美国av| 操出白浆在线播放| 久久久久久久久免费视频了| 好男人电影高清在线观看| 久久久久久久精品吃奶| av一本久久久久| 飞空精品影院首页| 美女视频免费永久观看网站| 一区二区日韩欧美中文字幕| 在线观看午夜福利视频| 首页视频小说图片口味搜索| 高清欧美精品videossex| 亚洲国产毛片av蜜桃av| 国产亚洲欧美在线一区二区| 午夜精品在线福利| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 人妻 亚洲 视频| 久久亚洲真实| 久久久久久久久免费视频了| 一本大道久久a久久精品| 美女午夜性视频免费| 国产免费现黄频在线看| 青草久久国产| 最新在线观看一区二区三区| 91在线观看av| 亚洲美女黄片视频| 久久久精品国产亚洲av高清涩受| 国产精品久久视频播放| 久久影院123| 好男人电影高清在线观看| 久久九九热精品免费| 91精品国产国语对白视频| 一进一出抽搐gif免费好疼 | 啪啪无遮挡十八禁网站| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久电影网| 午夜日韩欧美国产| 一区二区三区激情视频| 在线观看66精品国产| 成年动漫av网址| 免费在线观看黄色视频的| 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| 久久国产乱子伦精品免费另类| 天天操日日干夜夜撸| 中文字幕色久视频| 99国产精品99久久久久| 精品亚洲成a人片在线观看| 99国产精品一区二区蜜桃av | 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 久9热在线精品视频| 免费在线观看日本一区| 女人高潮潮喷娇喘18禁视频| 亚洲aⅴ乱码一区二区在线播放 | 国产激情久久老熟女| 亚洲中文日韩欧美视频| 在线观看免费视频日本深夜| av欧美777| 亚洲国产精品一区二区三区在线| 老司机午夜福利在线观看视频| 欧美不卡视频在线免费观看 | 国产1区2区3区精品| 亚洲avbb在线观看| 一级毛片高清免费大全| 乱人伦中国视频| 亚洲 国产 在线| 香蕉国产在线看| 亚洲色图av天堂| 中亚洲国语对白在线视频| 国产精品1区2区在线观看. | tocl精华| 精品电影一区二区在线| 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| 十八禁人妻一区二区| 香蕉久久夜色| 国产亚洲精品久久久久5区| 又黄又粗又硬又大视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影| 久久人妻av系列| www.999成人在线观看| 国产精品亚洲av一区麻豆| 在线观看66精品国产| 这个男人来自地球电影免费观看| 一区二区三区国产精品乱码|