趙磊+方成
[摘 要]旅游業(yè)會(huì)通過(guò)溢出效應(yīng)對(duì)經(jīng)濟(jì)增長(zhǎng)產(chǎn)生非線性影響,但尚缺乏相關(guān)經(jīng)驗(yàn)證據(jù)。文章基于1999-2013年省級(jí)面板數(shù)據(jù),以旅游業(yè)發(fā)展水平作為轉(zhuǎn)換變量,采用面板平滑轉(zhuǎn)換回歸模型(PSTR),對(duì)旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系進(jìn)行了實(shí)證檢驗(yàn)。結(jié)果表明:旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)具有正向促進(jìn)效應(yīng),旅游導(dǎo)向型經(jīng)濟(jì)增長(zhǎng)假說(shuō)在中國(guó)真實(shí)有效;旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系存在非線性的旅游業(yè)門(mén)檻效應(yīng),旅游業(yè)發(fā)展水平與旅游業(yè)經(jīng)濟(jì)影響效應(yīng)顯著負(fù)相關(guān)。隨著旅游業(yè)發(fā)展水平的提高,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于高機(jī)制,當(dāng)旅游業(yè)發(fā)展跨越門(mén)檻值之后,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于低機(jī)制,旅游業(yè)發(fā)展會(huì)弱化其對(duì)經(jīng)濟(jì)增長(zhǎng)正向影響的邊際效應(yīng)。因此,可通過(guò)優(yōu)化旅游產(chǎn)業(yè)結(jié)構(gòu)和強(qiáng)化經(jīng)濟(jì)增長(zhǎng)其他決定因素對(duì)旅游業(yè)的外部性效應(yīng),來(lái)保持旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的穩(wěn)定持續(xù)貢獻(xiàn)。
[關(guān)鍵詞]旅游業(yè);經(jīng)濟(jì)增長(zhǎng);非線性;面板平滑轉(zhuǎn)換回歸
[中圖分類號(hào)]F59
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1002-5006(2017)04-0020-13
Doi: 10.3969/j.issn.1002-5006.2017.04.008
引言
旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系歷來(lái)是業(yè)界和學(xué)界關(guān)注的熱門(mén)話題。2014年,旅游業(yè)對(duì)全球經(jīng)濟(jì)的綜合貢獻(xiàn)達(dá)7.58萬(wàn)億美元,約占全球GDP的9.8%,創(chuàng)造就業(yè)機(jī)會(huì)2.77億個(gè),占全球就業(yè)人數(shù)的9.4%[1]。同期,中國(guó)旅游業(yè)對(duì)GDP的綜合貢獻(xiàn)則達(dá)6.61萬(wàn)億元,占GDP的10.39%。旅游業(yè)直接和間接就業(yè)人數(shù)為7873萬(wàn),占全國(guó)就業(yè)總?cè)藬?shù)的10.19%。對(duì)比來(lái)看,中國(guó)旅游發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)的貢獻(xiàn)程度略高于全球平均水平。旅游業(yè)因其可以為目的地創(chuàng)造外匯、帶動(dòng)就業(yè)、增加稅收和平衡收支,逐漸成為一國(guó)或地區(qū)促進(jìn)經(jīng)濟(jì)增長(zhǎng)的戰(zhàn)略工具[2-4]。進(jìn)而,全球范圍內(nèi),圍繞旅游發(fā)展與經(jīng)濟(jì)增長(zhǎng)關(guān)系的應(yīng)然性研究層出不窮[5],并為特定的國(guó)家或地區(qū)旨在發(fā)展經(jīng)濟(jì)過(guò)程中,在制定與旅游業(yè)發(fā)展相關(guān)政策時(shí)提供了理論認(rèn)知和判斷依據(jù)。
1998年中央經(jīng)濟(jì)工作會(huì)議提出將旅游業(yè)作為國(guó)民經(jīng)濟(jì)新的增長(zhǎng)點(diǎn),成為中國(guó)旅游業(yè)發(fā)展模式由“計(jì)劃事業(yè)型”向“市場(chǎng)產(chǎn)業(yè)型”轉(zhuǎn)變的標(biāo)志。自此,中國(guó)旅游業(yè)發(fā)展進(jìn)入快速發(fā)展時(shí)期。通過(guò)觀察中國(guó)1999—2014年旅游業(yè)專業(yè)化(旅游總收入GDP占比)變化趨勢(shì)可以發(fā)現(xiàn),盡管對(duì)旅游發(fā)展變化趨勢(shì)的線性擬合呈現(xiàn)單調(diào)增高,但卻無(wú)法掩蓋旅游發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)綜合貢獻(xiàn)階段變化的非一致性。毫無(wú)疑問(wèn),中國(guó)旅游業(yè)絕對(duì)規(guī)模正經(jīng)歷高速擴(kuò)張期,通過(guò)發(fā)展旅游業(yè)帶動(dòng)經(jīng)濟(jì)增長(zhǎng),是否能成為經(jīng)濟(jì)轉(zhuǎn)型期產(chǎn)業(yè)結(jié)構(gòu)優(yōu)化的有益選擇還需深入研究。圖1所隱含的一個(gè)重要信息是,由于時(shí)變環(huán)境的存在,旅游業(yè)發(fā)展同時(shí)具有波動(dòng)性,從而導(dǎo)致其對(duì)經(jīng)濟(jì)增長(zhǎng)的產(chǎn)業(yè)貢獻(xiàn)也并非持續(xù)穩(wěn)定。這種實(shí)踐現(xiàn)象,實(shí)際上在研究旅游發(fā)展與經(jīng)濟(jì)增長(zhǎng)之間關(guān)系時(shí)需要謹(jǐn)慎對(duì)待[6-7]。顯然,這直接關(guān)系到旅游發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)影響效應(yīng)的時(shí)變非線性。
目前,對(duì)旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)關(guān)系的研究主要涉及3個(gè)方向:其一,測(cè)算旅游經(jīng)濟(jì)貢獻(xiàn)[8];其二,應(yīng)用增長(zhǎng)模型框架[9];其三,檢驗(yàn)兩者因果關(guān)系[10]。然而,如果將時(shí)變環(huán)境因素納入旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的研究框架,細(xì)察來(lái)看,既有文獻(xiàn)無(wú)論是在方法論,還是在分析框架上,均存在與實(shí)踐現(xiàn)象相悖的學(xué)理弊端。首先,旅游經(jīng)濟(jì)影響的評(píng)估模型主要反映的是旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的靜態(tài)貢獻(xiàn),并且忽視了旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)關(guān)系的動(dòng)態(tài)特征,受到Lean和Tang以及Tang和Tan的質(zhì)疑[11-12]。其次,盡管現(xiàn)有研究遵循將旅游業(yè)納入經(jīng)典增長(zhǎng)模型基礎(chǔ)上的實(shí)證分析思路,但具體研究范式仍拘泥于線性框架,因而無(wú)法反映出旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間關(guān)系的非線性特征,尤其很難識(shí)別出旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的門(mén)檻效應(yīng)。
盡管,主流觀點(diǎn)認(rèn)為旅游業(yè)發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)具有積極貢獻(xiàn)[13-14],但也有與此相左的論點(diǎn)[15-16]。該種爭(zhēng)論始于20世紀(jì)90年代,焦點(diǎn)在于理論解析和實(shí)證檢驗(yàn)兩方面。假設(shè)理論差異在于研究視角的不同,那么實(shí)證檢驗(yàn)結(jié)論的迥異則會(huì)受到截面異質(zhì)性的干擾[17]。因此,為了提高旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)之間非線性關(guān)系的估計(jì)效率,本文引入由González等所發(fā)展的面板平滑轉(zhuǎn)換回歸(panel smooth transition regression, PSTR)模型對(duì)旅游業(yè)經(jīng)濟(jì)影響非線性效應(yīng)進(jìn)行實(shí)證檢驗(yàn)[18]。PSTR模型是以捕捉面板數(shù)據(jù)的截面異質(zhì)性為主要研究目的的非線性回歸模型,可以有效刻畫(huà)面板數(shù)據(jù)的截面異質(zhì)性,因而更符合社會(huì)經(jīng)濟(jì)的現(xiàn)實(shí)情境。
本文對(duì)旅游經(jīng)濟(jì)研究文獻(xiàn)的補(bǔ)充和推進(jìn)主要體現(xiàn)在如下諸端:第一,在研究視角上,已有對(duì)旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)的經(jīng)驗(yàn)研究主要停留在線性模型基礎(chǔ)上,然而,無(wú)論是對(duì)兩者關(guān)系的實(shí)踐發(fā)現(xiàn),抑或理論判斷,旅游業(yè)發(fā)展與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系更加貼近經(jīng)濟(jì)現(xiàn)實(shí)。鑒于此,從旅游業(yè)經(jīng)濟(jì)影響非線性效應(yīng)這一視角切入,檢驗(yàn)與評(píng)估旅游業(yè)發(fā)展影響經(jīng)濟(jì)增長(zhǎng)的關(guān)系與效應(yīng),對(duì)如何制定旅游產(chǎn)業(yè)政策以提升經(jīng)濟(jì)貢獻(xiàn)具有重要的現(xiàn)實(shí)意義。第二,在研究方法上,PSTR模型進(jìn)一步放松了非線性面板門(mén)檻回歸(panel threshold regression, PTR)模型的嚴(yán)格約束條件,在有效刻畫(huà)截面異質(zhì)性特征的同時(shí),允許估計(jì)參數(shù)隨轉(zhuǎn)換變量進(jìn)行平滑變化,相比傳統(tǒng)的面板固定效應(yīng)或隨機(jī)效應(yīng)模型估計(jì)更具效率。第三,在研究?jī)?nèi)容上,豐富了旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)方面的研究文獻(xiàn),尤其是拓展了旅游導(dǎo)向型經(jīng)濟(jì)增長(zhǎng)(tourism-led growth, TLG)假說(shuō)的研究體系,基于中國(guó)省際面板數(shù)據(jù),藉以探索旅游業(yè)發(fā)展影響經(jīng)濟(jì)增長(zhǎng)的內(nèi)在機(jī)理,從而為“TLG在中國(guó)是否有效”的學(xué)術(shù)論證提供一種經(jīng)驗(yàn)解釋。
1 文獻(xiàn)評(píng)述與理論探索
歷史上,經(jīng)濟(jì)繁榮主要依賴于農(nóng)業(yè)和制造業(yè)部門(mén)增長(zhǎng),然而,旅游業(yè)在經(jīng)濟(jì)活動(dòng)中常被低估,并且被認(rèn)為是非增長(zhǎng)導(dǎo)向部門(mén)(non-growth oriented sector),很少受到經(jīng)濟(jì)學(xué)者和政策制定者的青睞[19]。然而,當(dāng)前旅游業(yè)已成為全球快速增長(zhǎng)的服務(wù)業(yè) 部門(mén)之一,其發(fā)展速度已經(jīng)超過(guò)了全球整體經(jīng)濟(jì)增速[20]。旅游業(yè)發(fā)展可通過(guò)溢出效應(yīng)和外部性對(duì)經(jīng)濟(jì)活動(dòng)產(chǎn)生積極影響,進(jìn)而促進(jìn)地區(qū)經(jīng)濟(jì)增長(zhǎng)[21]。
關(guān)于旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的研究文獻(xiàn),早期主要集中探討旅游業(yè)收入的經(jīng)濟(jì)貢獻(xiàn),最初思想主要來(lái)源于McKinnon的“旅游創(chuàng)匯說(shuō)”[22]。隨后,Gray通過(guò)測(cè)算發(fā)現(xiàn),美國(guó)對(duì)世界其他地區(qū)的人均旅游需求收入彈性為5.13,加拿大則為6.6,從而初步證實(shí)了國(guó)際旅游收入對(duì)經(jīng)濟(jì)增長(zhǎng)的貢獻(xiàn)潛力[23]。再者,旅游需求只有轉(zhuǎn)換為旅游支出,并借助消費(fèi)的乘數(shù)效應(yīng),才能綜合提升旅游業(yè)發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)的拉動(dòng)作用[24]。于是,如何測(cè)度旅游消費(fèi)支出變動(dòng)所產(chǎn)生的經(jīng)濟(jì)效應(yīng)成為旅游經(jīng)濟(jì)學(xué)研究的一個(gè)重要分支,代表性研究方法包括投入產(chǎn)出分析[25]、一般均衡模型[26]和旅游衛(wèi)星賬戶[27]。
為了尋求旅游業(yè)經(jīng)濟(jì)貢獻(xiàn)的理論支撐,探析旅游業(yè)發(fā)展影響經(jīng)濟(jì)增長(zhǎng)的溢出途徑便成為應(yīng)然性的研究關(guān)照。第一,旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的直接貢獻(xiàn)表現(xiàn)在提供外匯收入、創(chuàng)造就業(yè)崗位和增加稅收收入[28-30]。第二,地區(qū)間旅游業(yè)投資競(jìng)爭(zhēng)效應(yīng)提升了旅游相關(guān)企業(yè)生產(chǎn)率,進(jìn)而規(guī)模經(jīng)濟(jì)擴(kuò)大,生產(chǎn)成本降低,有益于經(jīng)濟(jì)增長(zhǎng)[31]。第三,旅游業(yè)通過(guò)對(duì)其關(guān)聯(lián)產(chǎn)業(yè)的間接誘導(dǎo)效應(yīng)帶動(dòng)經(jīng)濟(jì)增長(zhǎng)[32]。第四,旅游業(yè)也是技術(shù)知識(shí)擴(kuò)散、研發(fā)投入和人力資本積累的重要因素[33-34]。除此以外,在Feder的經(jīng)濟(jì)模型中,出口導(dǎo)向型增長(zhǎng)(export-led growth)假說(shuō)為旅游業(yè)促進(jìn)經(jīng)濟(jì)增長(zhǎng)開(kāi)辟了另一種認(rèn)識(shí)視角[35]。既有出口導(dǎo)向型增長(zhǎng)文獻(xiàn)主要關(guān)注可貿(mào)易品與經(jīng)濟(jì)發(fā)展之間的關(guān)系,并未考慮到非貿(mào)易品。但是,隨著非貿(mào)易品與經(jīng)濟(jì)增長(zhǎng)之間關(guān)系的理論模型逐漸成為近期研究熱點(diǎn)[36],基于這一新的認(rèn)識(shí)視角,旅游業(yè)作為一種非貿(mào)易品的出口部門(mén)[37],某種程度上就引申出了旅游業(yè)是否會(huì)相應(yīng)地促進(jìn)經(jīng)濟(jì)增長(zhǎng)的問(wèn)題。沿著國(guó)際旅游業(yè)與貿(mào)易之間關(guān)系的研究脈絡(luò),Gray和Keintz最早對(duì)兩者關(guān)系進(jìn)行了探索[38-39],包括最近的大部分研究[40-41],均支持旅游業(yè)和貿(mào)易之間存在協(xié)整關(guān)系。
旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系貌似硬幣的正反面。旅游業(yè)作為經(jīng)濟(jì)增長(zhǎng)的工具同樣會(huì)受到質(zhì)疑[42-43]。Sánchez-Rivero等指出,一國(guó)旅游業(yè)不會(huì)自動(dòng)引發(fā)經(jīng)濟(jì)增長(zhǎng),除非有鼓勵(lì)這一過(guò)程的條件[44]。例如,需要強(qiáng)化旅游業(yè)部門(mén)人力資本投資[24]、增加公共安全支出[45]和實(shí)施環(huán)境保護(hù)政策[46]等。
對(duì)旅游業(yè)正面影響經(jīng)濟(jì)增長(zhǎng)的經(jīng)典批判當(dāng)屬Copeland的“去工業(yè)化”學(xué)說(shuō)[47]和Chao等的“荷蘭病”效應(yīng)[48],兩種觀點(diǎn)的理論進(jìn)路相似。Copeland認(rèn)為旅游業(yè)擴(kuò)張?jiān)黾恿朔琴Q(mào)易品消費(fèi),貿(mào)易條件得到改善,但資源配置從可貿(mào)易部門(mén)(資本密集型)到非貿(mào)易部門(mén)(勞動(dòng)密集型)的資本縮減過(guò)程,導(dǎo)致實(shí)際匯率升值,進(jìn)而削弱了可貿(mào)易部門(mén)的外部競(jìng)爭(zhēng)力,最終出現(xiàn)去工業(yè)化(de-industrialization)現(xiàn)象[47]。資本和勞動(dòng)力要素從傳統(tǒng)貿(mào)易部門(mén)流向非貿(mào)易部門(mén),實(shí)際匯率升值,就會(huì)產(chǎn)生一種經(jīng)濟(jì)“病”,即“荷蘭病”,旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的短期積極效應(yīng)會(huì)引起長(zhǎng)期經(jīng)濟(jì)體萎靡[49]。Chao等認(rèn)為旅游業(yè)擴(kuò)張分別通過(guò)資源效應(yīng)和消費(fèi)效應(yīng)引發(fā)“荷蘭病”,一方面,旅游業(yè)作為繁榮部門(mén)(booming sector)需要來(lái)自其他部門(mén)的資源要素保持生產(chǎn);另一方面,旅游業(yè)擴(kuò)張改善了貿(mào)易條件,外匯收入的增加刺激了對(duì)非貿(mào)易品的消費(fèi)需求,抬升了非貿(mào)易品相對(duì)價(jià)格,進(jìn)而又引起非貿(mào)易部門(mén)對(duì)資本和勞動(dòng)需求的擴(kuò)大,使得傳統(tǒng)貿(mào)易部門(mén)凋敝[48]。最終,實(shí)際匯率升值和國(guó)內(nèi)商品價(jià)格上升,競(jìng)爭(zhēng)力受到削弱,經(jīng)濟(jì)縮水。Capó等就研究發(fā)現(xiàn)在西班牙著名的旅游島嶼,即巴里阿里群島和加納利群島(the Balearic and Canary Islands)存在“荷蘭病”效應(yīng)[50]。
倘若旅游業(yè)擴(kuò)展會(huì)致使地區(qū)經(jīng)濟(jì)發(fā)生“荷蘭病”,則會(huì)對(duì)社會(huì)福利產(chǎn)生負(fù)面影響。Chao 等揭示出旅游業(yè)在短期和中期可能會(huì)增加居民整體福利,這是由于旅游業(yè)抬高了非貿(mào)易品價(jià)格[48],但從長(zhǎng)遠(yuǎn)來(lái)看,福利卻在下降,因?yàn)檫@是一個(gè)長(zhǎng)期資本消耗過(guò)程。對(duì)此,Holzner以1970—2007年世界134個(gè)國(guó)家為研究樣本,對(duì)旅游依賴型國(guó)家(tourism-dependent countries)是否存在“荷蘭病”效應(yīng)進(jìn)行了實(shí)證檢驗(yàn)[51]。結(jié)果發(fā)現(xiàn),上述國(guó)家并不存在發(fā)生荷蘭病效應(yīng)的危險(xiǎn)。相反,旅游依賴型國(guó)家不僅未出現(xiàn)實(shí)際匯率升值和去工業(yè)化情況,卻經(jīng)歷了高于平均樣本國(guó)家的經(jīng)濟(jì)增速。
旅游業(yè)發(fā)展影響經(jīng)濟(jì)增長(zhǎng)的理論爭(zhēng)端必然會(huì)掀起相應(yīng)的實(shí)證檢驗(yàn)。肇自Ghali對(duì)夏威夷旅游業(yè)產(chǎn)出彈性的估計(jì)[52],從實(shí)證角度對(duì)旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間關(guān)系的切實(shí)研究要始于Lanza和Pigliaru的探索[9],尤其是以Balaguer和Cantavella-Jordà所提出的旅游導(dǎo)向型增長(zhǎng)(tourism-led growth, TLG)假說(shuō)為標(biāo)志[10],諸多實(shí)證文獻(xiàn)開(kāi)始關(guān)涉此話題,并分別利用時(shí)間序列或面板數(shù)據(jù)計(jì)量經(jīng)濟(jì)模型對(duì)單一國(guó)家或多個(gè)國(guó)家TLG假說(shuō)真實(shí)性進(jìn)行實(shí)證檢驗(yàn)。旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間主要存在4種實(shí)證關(guān)系[53]:支持旅游導(dǎo)向型增長(zhǎng)假說(shuō)[54-62];支持經(jīng)濟(jì)驅(qū)動(dòng)型旅游業(yè)增長(zhǎng)(economic-driven tourism growth, EDTG)假說(shuō)[63-65];旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間存在雙向因果關(guān)系[66-70];旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間不存在因果關(guān)系[71-73]。
綜上可知,一個(gè)基本的事實(shí)是,主流觀點(diǎn)支持旅游導(dǎo)向型增長(zhǎng)假說(shuō),并得到了Pablo-Romero和Molina的述評(píng)佐證,其在對(duì)關(guān)于旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)關(guān)系的87篇國(guó)外文獻(xiàn)進(jìn)行綜述后發(fā)現(xiàn),支持TLG假說(shuō)的文獻(xiàn)比率為63%,僅有4篇文獻(xiàn)并未證實(shí)兩者之間存在關(guān)系[5]。進(jìn)一步深入到TLG假說(shuō)文獻(xiàn)內(nèi)部,可以發(fā)現(xiàn),Lanza等的實(shí)證貢獻(xiàn)推進(jìn)了TLG假說(shuō)研究?jī)?nèi)容的深入[74]。Lanza等是第一篇采用面板數(shù)據(jù)模型對(duì)TLG假說(shuō)進(jìn)行研究的實(shí)證文獻(xiàn),在對(duì)1977—1992年13個(gè)世界經(jīng)濟(jì)合作與發(fā)展組織(OECD)國(guó)家旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)關(guān)系進(jìn)行實(shí)證檢驗(yàn)后發(fā)現(xiàn),旅游專業(yè)化程度在長(zhǎng)期并沒(méi)有不利于經(jīng)濟(jì)增長(zhǎng),主要是因?yàn)橐月糜螛I(yè)為基礎(chǔ)的經(jīng)濟(jì)體(tourism-based economy)相對(duì)較低的生產(chǎn)率增速可以通過(guò)逐步提高旅游專業(yè)化得以彌補(bǔ)[74]。自此,后續(xù)文獻(xiàn)開(kāi)始轉(zhuǎn)向旅游專業(yè)化如何影響旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系方面,其中,以Gunduz和Hatemi-J為代表,指出旅游業(yè)占一國(guó)經(jīng)濟(jì)總量的比重是旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的重要決定因素,旅游專業(yè)化程度越高,旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的影響力越大[56],這一觀點(diǎn)隨后得到Kaplan和?elik、Sequeira和Nunes、Adamou和Chloride以及Brida等的研究支持[75-78]。
既然旅游專業(yè)化會(huì)影響旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系,這就意味著,隨著旅游專業(yè)化程度的變化,旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系則會(huì)呈現(xiàn)出非線性特征。Brau等首先實(shí)證捕捉到此種門(mén)檻效應(yīng),其通過(guò)將143個(gè)國(guó)家1980—2003年平均人口小于100萬(wàn)且旅游平均專業(yè)化水平高于10%的國(guó)家定義為“小國(guó)”,運(yùn)用虛擬變量回歸發(fā)現(xiàn),人口規(guī)模小的國(guó)家只有在旅游專業(yè)化程度很高的情況下才會(huì)支持TLG假說(shuō)[79]。Sequeira和Nunes則通過(guò)動(dòng)態(tài)面板估計(jì)發(fā)現(xiàn),當(dāng)同時(shí)將經(jīng)濟(jì)體規(guī)模和旅游專業(yè)化作為分組變量時(shí),一國(guó)經(jīng)濟(jì)是否增長(zhǎng)并非是由經(jīng)濟(jì)體規(guī)模決定,而是受到其旅游專業(yè)化的影響[76]。Po和Huang進(jìn)一步運(yùn)用較為先進(jìn)的面板門(mén)檻回歸(panel threshold regression, PTR)方法,將入境旅游專業(yè)化作為門(mén)檻變量,通過(guò)對(duì)88個(gè)國(guó)家1995—2005年面板數(shù)據(jù)研究發(fā)現(xiàn),入境旅游專業(yè)化存在兩個(gè)門(mén)檻值,只有入境旅游專業(yè)化低于4.05%或高于4.73%時(shí),入境旅游才對(duì)經(jīng)濟(jì)增長(zhǎng)具有顯著正向關(guān)系[80]。Chang等的研究邏輯與Po和Huang相同,同樣支持入境旅游專業(yè)化對(duì)經(jīng)濟(jì)增長(zhǎng)影響的門(mén)檻效應(yīng)[81]。緊接著,Pan等拓展了Po和Huang以及Chang等的研究方法,首次引入面板平滑轉(zhuǎn)換回歸模型對(duì)15個(gè)OECD國(guó)家1995—2010年TLG假說(shuō)進(jìn)行重新檢驗(yàn),并以匯率收益率和通貨膨脹率為轉(zhuǎn)換變量,實(shí)證發(fā)現(xiàn)入境旅游與經(jīng)濟(jì)增長(zhǎng)之間存在非線性關(guān)系[82]。
正如Pablo-Romero和Molina所言,主流文獻(xiàn)目前主要停留在旅游專業(yè)化是旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的決定因素這一研究共識(shí),毫不諱言,眾多學(xué)者無(wú)論是理論探索,還是實(shí)證檢驗(yàn),都為此做出了重要貢獻(xiàn),但對(duì)這種影響機(jī)制是如何發(fā)生,影響效應(yīng)到底如何變化卻知之甚少[5]。在拓展對(duì)旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)因果關(guān)系的認(rèn)識(shí)視域中,隨著復(fù)雜精妙的計(jì)量統(tǒng)計(jì)技術(shù)的應(yīng)用,對(duì)非線性行為認(rèn)知的逐漸加深有益于動(dòng)態(tài)刻畫(huà)TLG假說(shuō)的實(shí)踐內(nèi)涵[83]。盡管已有文獻(xiàn)證實(shí)TLG假說(shuō)在中國(guó)真實(shí)有效[84],但卻鮮有文獻(xiàn)對(duì)中國(guó)旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系進(jìn)行有說(shuō)服力的實(shí)證研究。
本文是對(duì)Po和Huang以及Chang等研究?jī)?nèi)容的推進(jìn)和深化,主要體現(xiàn)在平滑式面板非線性計(jì)量方法的應(yīng)用方面。盡管Hansen面板門(mén)檻回歸模型摒棄了對(duì)門(mén)檻變量進(jìn)行主觀分組的傳統(tǒng)非線性檢驗(yàn)手段,轉(zhuǎn)向?qū)﹂T(mén)檻變量異質(zhì)性信息進(jìn)行內(nèi)生分組,來(lái)考察不同門(mén)檻區(qū)間內(nèi)估計(jì)參數(shù)的跳躍轉(zhuǎn)換[85],但這種在門(mén)檻值前后發(fā)生的估計(jì)參數(shù)突變的假定,顯然并不符合宏觀經(jīng)濟(jì)變量之間因果關(guān)系漸進(jìn)連續(xù)的客觀事實(shí)。鑒于此,與Pan等研究緊密相關(guān),本文選擇使用目前較為前沿的非線性計(jì)量經(jīng)濟(jì)模型,即PSTR模型來(lái)實(shí)證檢驗(yàn)旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的非線性關(guān)系。一方面,PSTR模型允許截面異質(zhì)性,同時(shí)還可以捕捉既有文獻(xiàn)所一直忽視的旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)影響關(guān)系的時(shí)變性;另一方面,PSTR模型進(jìn)一步放松了PTR模型的限制條件,但又與Pan等研究不同,本文重點(diǎn)識(shí)別旅游業(yè)處于不同發(fā)展階段時(shí),旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系變化形態(tài),所以引入一個(gè)連續(xù)的以旅游業(yè)(國(guó)內(nèi)旅游和入境旅游)發(fā)展水平作為轉(zhuǎn)換變量的一般轉(zhuǎn)換函數(shù)來(lái)替代PTR模型中特殊的離散轉(zhuǎn)換函數(shù),從而允許模型中旅游業(yè)經(jīng)濟(jì)影響效應(yīng)隨轉(zhuǎn)換變量的變化而連續(xù)地平滑轉(zhuǎn)換,這一點(diǎn)顯然與不斷變化的宏觀經(jīng)濟(jì)現(xiàn)實(shí)更為契合。
2 方法、模型與變量
2.1 研究方法
由González等提出[18],經(jīng)由Fouquau等完善的面板平滑轉(zhuǎn)換回歸(PSTR)模型是經(jīng)典的檢驗(yàn)變量之間非線性關(guān)系的前沿計(jì)量技術(shù)[86],通過(guò)放松Hansen所開(kāi)發(fā)的PTR模型的約束條件擴(kuò)展而來(lái),與傳統(tǒng)的面板數(shù)據(jù)固定和隨機(jī)效應(yīng)模型相比,PSTR模型不僅可以有效刻畫(huà)模型參數(shù)的截面異質(zhì)性,可以有效克服內(nèi)生性所導(dǎo)致的參數(shù)估計(jì)量偏誤問(wèn)題,尤其是允許模型參數(shù)隨轉(zhuǎn)換變量做緩慢平滑的非線性轉(zhuǎn)換。
式中,c是一個(gè)m維的轉(zhuǎn)換發(fā)生的位置參數(shù)向量,[γ]是平滑參數(shù),決定轉(zhuǎn)換函數(shù)的轉(zhuǎn)換速度,[γ>0]。
可見(jiàn),在PSTR模型中,變量估計(jì)系數(shù)由線性部分[β0]和非線性部分[β1?g(?)]共同構(gòu)成。顯然,模型存在兩種機(jī)制,當(dāng)[g(?)=0]時(shí),模型存在低機(jī)制(low regime);當(dāng)[g(?)=1]時(shí),模型存在高機(jī)制(high regime)。同時(shí),隨著轉(zhuǎn)換函數(shù)值[0,1]之間平滑移動(dòng)時(shí),模型估計(jì)系數(shù)會(huì)以c為中心在[β0~β0+β1]之間單調(diào)轉(zhuǎn)換。
2.2 模型設(shè)定
基于經(jīng)典的旅游業(yè)經(jīng)濟(jì)增長(zhǎng)模型[88],并根據(jù)前述理論分析,為了深入揭示在不同旅游專業(yè)化階段,中國(guó)TLG假說(shuō)有效的復(fù)雜機(jī)制,本文通過(guò)構(gòu)建旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的PSTR模型來(lái)對(duì)兩者之間的非線性關(guān)系進(jìn)行實(shí)證檢驗(yàn),計(jì)量模型設(shè)定如下:
經(jīng)濟(jì)增長(zhǎng)水平采用人均實(shí)際GDP對(duì)數(shù)衡量。旅游業(yè)發(fā)展水平采用旅游專業(yè)化衡量,即省份旅游總收入占GDP比值[17]。相關(guān)控制變量:短期內(nèi)投資水平提高有助于經(jīng)濟(jì)增長(zhǎng)[89],采用投資規(guī)模占GDP比值來(lái)衡量投資份額([invest]);經(jīng)濟(jì)增長(zhǎng)來(lái)自人力資本的積累[90],人力資本([lnhuman])是經(jīng)濟(jì)增長(zhǎng)的重要決定因素,采用人均勞動(dòng)受教育年限衡量;政府支出可以反映“看得見(jiàn)的手”對(duì)經(jīng)濟(jì)增長(zhǎng)的干預(yù)程度[91],采用政府支出占GDP比值衡量政府規(guī)模(govern);出口貿(mào)易可以通過(guò)促進(jìn)技術(shù)進(jìn)步推動(dòng)經(jīng)濟(jì)增長(zhǎng)[90],采用進(jìn)出口貿(mào)易總額占GDP比值衡量貿(mào)易開(kāi)放(open);產(chǎn)業(yè)結(jié)構(gòu)變遷與經(jīng)濟(jì)增長(zhǎng)密切相關(guān)[92],采用第三產(chǎn)業(yè)就業(yè)人員比重衡量產(chǎn)業(yè)結(jié)構(gòu)(indstu)。
2.3 數(shù)據(jù)來(lái)源
考慮到數(shù)據(jù)可得性與一致性,本文使用1999—2013年中國(guó)大陸30個(gè)省、市、自治區(qū)(西藏剔除)省級(jí)面板數(shù)據(jù)。旅游產(chǎn)業(yè)數(shù)據(jù)來(lái)源于《中國(guó)旅游年鑒(2000—2014)》,其他原始數(shù)據(jù)分別來(lái)源于《中國(guó)統(tǒng)計(jì)年鑒(2000—2014)》、中經(jīng)網(wǎng)統(tǒng)計(jì)數(shù)據(jù)庫(kù)和CEIC中國(guó)經(jīng)濟(jì)數(shù)據(jù)庫(kù)。
3 實(shí)證結(jié)果分析
應(yīng)用PSTR模型實(shí)證檢驗(yàn)旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系,需要遵循3個(gè)步驟:(1)檢驗(yàn)?zāi)P头蔷€性;(2)確定平滑參數(shù)[γ]和位置參數(shù)c;(3)模型穩(wěn)健性檢驗(yàn)。
3.1 模型非線性檢驗(yàn)
在建立PSTR模型之前,首先對(duì)方程(3)進(jìn)行非線性檢驗(yàn),以考察是否存在非線性機(jī)制轉(zhuǎn)換效應(yīng),即對(duì)原假設(shè)[H0:γ=0]進(jìn)行檢驗(yàn),由于模型包含未識(shí)別參數(shù)[γ]和c,故而無(wú)法對(duì)模型進(jìn)行傳統(tǒng)的非線性檢驗(yàn)。為了檢驗(yàn)截面異質(zhì)性,González等建議遵循Luukkonen等的做法[93],考慮設(shè)置同質(zhì)性零假設(shè)[H0:γ=0],并在[γ=0]處用轉(zhuǎn)換函數(shù)一階泰勒展開(kāi)式替代,從而構(gòu)造出輔助回歸方程:
式中,T為時(shí)間長(zhǎng)度,N為截面?zhèn)€數(shù),k為外生變量個(gè)數(shù),[SSR0]和[SSR1]分別為接受和拒絕原假設(shè)的殘差平方和。經(jīng)檢驗(yàn),[LMF]統(tǒng)計(jì)量為6.35,并在1%水平上顯著拒絕[H*0],所以接受模型存在非線性的假設(shè)。
3.2 模型參數(shù)估計(jì)
通過(guò)檢驗(yàn)發(fā)現(xiàn)異質(zhì)性存在,則應(yīng)考慮PSTR模型參數(shù)估計(jì),要比線性模型能更好地克服參數(shù)異質(zhì)性問(wèn)題,從而得到穩(wěn)定可靠的估計(jì)結(jié)果。PSTR模型的參數(shù)估計(jì)主要采用非線性最小二乘法(nonlinear least squares, NLS)得到估計(jì)值[94]。其中,轉(zhuǎn)換函數(shù)的斜率系數(shù)[γ]和位置參數(shù)c可采用網(wǎng)格搜索法(grid search arithmetic)或模擬退火法(simulated annealing arithmetic)得到。鑒于網(wǎng)格搜索法受限于搜索精度,本文首先采用模擬退火法獲得平滑參數(shù)[γ]和位置參數(shù)c的初始值,然后采用NLS方法對(duì)方程(3)進(jìn)行估計(jì)。
以旅游專業(yè)化為門(mén)檻變量的PSTR模型估計(jì)結(jié)果顯示,PSTR模型發(fā)生非線性轉(zhuǎn)換的位置參數(shù)c為0.073,表明以旅游專業(yè)化衡量的旅游業(yè)發(fā)展門(mén)檻值為0.073,模型存在兩個(gè)機(jī)制。其中,旅游專業(yè)化低于門(mén)檻值([TRi,t≤0.073])時(shí),轉(zhuǎn)換函數(shù)[g(TRi,t;γ,c)]取值趨于0,并且共有166個(gè)觀測(cè)值,占全部觀測(cè)值比重為36.9%;旅游專業(yè)化高于門(mén)檻值([TRi,t>0.073])時(shí),轉(zhuǎn)換函數(shù)[g(TRi,t;γ,c)]取值趨于1,并且共有284個(gè)觀測(cè)值,占全部觀測(cè)值比重為63.1%。模型在旅游業(yè)經(jīng)濟(jì)影響效應(yīng)機(jī)制之間平滑的斜率系數(shù)[γ]為27.23,表明模型在低高機(jī)制之間轉(zhuǎn)換速度相對(duì)較快,并呈現(xiàn)平滑漸進(jìn)變化趨勢(shì)(圖2)。簡(jiǎn)言之,當(dāng)旅游業(yè)處于不同發(fā)展階段時(shí),旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系出現(xiàn)了平滑轉(zhuǎn)換。
PSTR模型同時(shí)報(bào)告出,[TR]估計(jì)系數(shù)[β0]為1.585,在1%水平上顯著,而[TR×g(?)]估計(jì)系數(shù)[β1]為-0.531,在5%水平上顯著,表明旅游業(yè)經(jīng)濟(jì)影響效應(yīng)具有動(dòng)態(tài)性和非線性。當(dāng)轉(zhuǎn)換函數(shù)[g(TRi,t;γ,c)=0]時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為1.585([β0]),模型處于高機(jī)制;當(dāng)轉(zhuǎn)換函數(shù)[g(TRi,t;γ,c)=1]時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為1.054([β0+β1]),模型處于低機(jī)制,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)在低與高機(jī)制之間以旅游專業(yè)化門(mén)檻值0.073為中心,隨著自身狀態(tài)變量的變動(dòng),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)在[1.054,1.585]之間平滑轉(zhuǎn)換。結(jié)合圖3決定,旅游專業(yè)化與旅游業(yè)經(jīng)濟(jì)影響效應(yīng)顯著負(fù)相關(guān),即盡管旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)依然具有正向促進(jìn)作用,但隨著旅游業(yè)專業(yè)化程度不斷增高,旅游業(yè)發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)影響的邊際效應(yīng)遞減。具體而言,當(dāng)旅游業(yè)發(fā)展水平較低時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于高影響狀態(tài),當(dāng)旅游業(yè)發(fā)展跨越門(mén)檻值0.073時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)開(kāi)始逐漸從高影響狀態(tài)向低影響狀態(tài)轉(zhuǎn)換,并最終持續(xù)處于低影響狀態(tài)。
這一研究結(jié)論與Adamou和Clerides對(duì)1980—2005年全球162個(gè)國(guó)家旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間非線性關(guān)系的實(shí)證發(fā)現(xiàn)基本一致,在旅游專業(yè)化初期階段,旅游業(yè)會(huì)較大幅度推動(dòng)經(jīng)濟(jì)增長(zhǎng),但推動(dòng)效果會(huì)逐漸減弱,即當(dāng)旅游專業(yè)化達(dá)到一定程度之后,其會(huì)弱化旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的貢獻(xiàn)率[77]。究其原因,第一,單純的旅游產(chǎn)業(yè)刺激政策很難在長(zhǎng)期保持旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的持續(xù)貢獻(xiàn),這是因?yàn)槁糜萎a(chǎn)品吸引力具有時(shí)間衰減規(guī)律,如果目的地旅游產(chǎn)品創(chuàng)新能力缺乏或者旅游產(chǎn)業(yè)結(jié)構(gòu)調(diào)整滯后,都可能會(huì)引起旅游客源消費(fèi)市場(chǎng)的“心理倦?。╬sychological tiredness)”效應(yīng)[5];第二,旅游業(yè)盲目快速擴(kuò)張,最直接的后果是旅游投資扭曲引致資源配置效率降低,初級(jí)觀光旅游產(chǎn)品“產(chǎn)能過(guò)?!敝率孤糜尾块T(mén)生產(chǎn)要素邊際生產(chǎn)率下降,旅游業(yè)產(chǎn)出規(guī)模報(bào)酬遞減最終導(dǎo)致旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的貢獻(xiàn)下降。第三,鑒于某些外部影響因素,諸如公共投資、人力資本、經(jīng)濟(jì)資本和產(chǎn)業(yè)結(jié)構(gòu)可能會(huì)影響旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間的關(guān)系,如果旅游業(yè)在發(fā)展過(guò)程中脫離于上述相關(guān)宏觀經(jīng)濟(jì)變量的外部約束,同樣會(huì)減弱旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的影響效應(yīng)。
在控制變量對(duì)經(jīng)濟(jì)增長(zhǎng)的影響方面,投資率、人力資本和產(chǎn)業(yè)結(jié)構(gòu)均對(duì)經(jīng)濟(jì)增長(zhǎng)存在顯著正向效應(yīng),這與既有理論預(yù)期相符。需要指出的是,貿(mào)易開(kāi)放并未對(duì)經(jīng)濟(jì)增長(zhǎng)產(chǎn)生顯著促進(jìn)效應(yīng),這與陸銘和陳釗的經(jīng)驗(yàn)結(jié)果相一致[95],表明貿(mào)易開(kāi)放是否成為促進(jìn)中國(guó)經(jīng)濟(jì)增長(zhǎng)的持續(xù)動(dòng)力有待商榷,可能的原因是由于國(guó)際金融危機(jī)、人民幣匯率升值和出口產(chǎn)品創(chuàng)新附加值低等原因所共同導(dǎo)致的出口貿(mào)易受挫有關(guān)。政府規(guī)模對(duì)經(jīng)濟(jì)增長(zhǎng)存在顯著正向效應(yīng),這與王小魯?shù)鹊难芯拷Y(jié)論相反[96],但與張杰等在幾乎相同樣本期內(nèi)(1999—2012)所得出的實(shí)證結(jié)論一致[97]。對(duì)比既有研究結(jié)論表明,在不同發(fā)展階段,維持中國(guó)經(jīng)濟(jì)增長(zhǎng)的動(dòng)力正在發(fā)生顯著變化,猶如經(jīng)濟(jì)開(kāi)放度和政府干預(yù)。
在普通面板模型線性估計(jì)中,旅游專業(yè)化估計(jì)系數(shù)為1.107,由于遺漏了旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系,導(dǎo)致旅游業(yè)經(jīng)濟(jì)影響效應(yīng)傾向于低估旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的線性影響效應(yīng),同時(shí)高估旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的整體影響效應(yīng),處于旅游業(yè)經(jīng)濟(jì)影響效應(yīng)低機(jī)制與高機(jī)制之間。因而,相比于普通面板模型線性估計(jì),PSTR模型更好地刻畫(huà)了旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的動(dòng)態(tài)影響。
PTR模型主要采用的是網(wǎng)格搜索法,通過(guò)迭代,直到殘差平方和最小時(shí)的最優(yōu)估計(jì)所對(duì)應(yīng)的門(mén)檻值則為初始值,q為0.067。表1中PTR模型估計(jì)結(jié)果顯示,旅游業(yè)經(jīng)濟(jì)增長(zhǎng)影響效應(yīng)存在基于旅游專業(yè)化的正向非單調(diào)性“門(mén)檻效應(yīng)”,即旅游業(yè)經(jīng)濟(jì)增長(zhǎng)影響效應(yīng)存在非線性。當(dāng)旅游專業(yè)化低于門(mén)檻值0.067時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為2.022;當(dāng)旅游專業(yè)化高于門(mén)檻值0.067時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為1.227。由此發(fā)現(xiàn),當(dāng)旅游業(yè)處于不同發(fā)展水平時(shí),旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的影響效應(yīng)不同,表現(xiàn)出顯著門(mén)檻特征。此外,通過(guò)構(gòu)建上述門(mén)檻值與虛擬變量的乘積項(xiàng),當(dāng)[TRi,t≤q]([TRi,t>q])時(shí),虛擬變量定義為[D1]([D2]),并對(duì)乘積項(xiàng)進(jìn)行普通面板模型估計(jì),發(fā)現(xiàn)乘積項(xiàng)的估計(jì)系數(shù)和顯著性均與PTR模型估計(jì)結(jié)果基本一致。因此,無(wú)論是PTR模型估計(jì),還是虛擬變量乘積項(xiàng)估計(jì),均表明PSTR模型對(duì)旅游業(yè)經(jīng)濟(jì)影響效應(yīng)的非線性估計(jì)結(jié)果具有穩(wěn)健性。
3.3 模型穩(wěn)健性分析
本文采用旅游業(yè)發(fā)展水平另一代理變量,旅游人次比作為度量指標(biāo)[36],進(jìn)行PSTR模型穩(wěn)健性檢驗(yàn),估計(jì)結(jié)果列于表2。首先,以旅游人次比作為門(mén)檻變量的PSTR模型估計(jì)結(jié)果顯示,位置參數(shù)c為7.305,表明當(dāng)旅游人次比低于門(mén)檻值([TPi,t≤7.305]),且[g(TPi,t;γ,c)=0]時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為0.026,模型處于高機(jī)制;當(dāng)旅游人次比高于門(mén)檻值([TPi,t>7.305]),且[g(TPi,t;γ,c)=1]時(shí),旅游業(yè)經(jīng)濟(jì)影響效應(yīng)為0.008,模型處于低機(jī)制,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)在低與高機(jī)制之間以人次比門(mén)檻值7.305為中心,隨著自身狀態(tài)變量的變動(dòng),在[0.008,0.026]之間平滑轉(zhuǎn)換。平滑參數(shù)[γ]為1.287,結(jié)合圖4,表明模型在位置參數(shù)前后機(jī)制轉(zhuǎn)換速度較慢,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)在低與高機(jī)制之間轉(zhuǎn)換速率為1.287。當(dāng)采用旅游人次比度量旅游業(yè)發(fā)展水平時(shí),隨著旅游業(yè)處于不同發(fā)展階段,尤其是當(dāng)旅游人次比跨越門(mén)檻值之后,由圖5所示,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)開(kāi)始由高影響狀態(tài)向低影響狀態(tài)轉(zhuǎn)換,旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)影響的邊際效應(yīng)開(kāi)始降低。綜上分析,旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的非線性PSTR模型估計(jì)結(jié)果具有穩(wěn)健性,在旅游業(yè)不同發(fā)展階段,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)并非線性,而是在低與高機(jī)制之間平滑轉(zhuǎn)換。
表2中PTR模型結(jié)果顯示,同樣采用最優(yōu)網(wǎng)格搜索法確定門(mén)檻值,當(dāng)旅游人次比低于門(mén)檻值7.637時(shí),旅游人次比估計(jì)系數(shù)為0.027,且在1%水平上統(tǒng)計(jì)顯著;當(dāng)旅游人次比高于門(mén)檻值7.637時(shí),旅游人次比估計(jì)系數(shù)為0.004,但統(tǒng)計(jì)不顯著。鑒于此,循上邏輯,首先定義基于PTR模型門(mén)檻值的虛擬變量,再通過(guò)對(duì)旅游人次比與虛擬變量的乘積項(xiàng)進(jìn)行固定效應(yīng)模型估計(jì),結(jié)果發(fā)現(xiàn)當(dāng)旅游人次比低于門(mén)檻值7.637時(shí),旅游人次比估計(jì)系數(shù)為0.026,當(dāng)旅游人次比高于門(mén)檻值7.637時(shí),旅游人次比估計(jì)系數(shù)為0.006,并且分別在1%和10%水平上統(tǒng)計(jì)顯著,進(jìn)而佐證了以旅游人次比為門(mén)檻變量,PSTR模型對(duì)旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間非線性關(guān)系進(jìn)行檢驗(yàn)的穩(wěn)健性。在普通面板模型線性估計(jì)中,旅游人次比估計(jì)系數(shù)為0.008,并且統(tǒng)計(jì)顯著,同樣由于未考慮旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系,導(dǎo)致旅游業(yè)經(jīng)濟(jì)影響效應(yīng)極大低估了旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的線性影響效應(yīng),同時(shí)與旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的整體影響效應(yīng)相近,相比來(lái)看,PSTR模型估計(jì)更能客觀地反映出旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)影響的非線性變化。此外,控制變量估計(jì)系數(shù)符號(hào)和顯著性也基本穩(wěn)健。
4 結(jié)論與啟示
追尋著Pablo-Romero和Molina對(duì)旅游業(yè)和經(jīng)濟(jì)增長(zhǎng)之間關(guān)系的述評(píng)方向[5],隨著對(duì)旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)理論認(rèn)識(shí)的深化,以及實(shí)證計(jì)量技術(shù)的進(jìn)步,如何往前推進(jìn)TLG假說(shuō)的研究視域,尤其是深入、客觀和精確地揭橥旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)影響效應(yīng)的非線性變化成為當(dāng)前國(guó)際旅游經(jīng)濟(jì)學(xué)需要破解和厘清的核心問(wèn)題。盡管Pan等首次將非線性經(jīng)典PSTR模型應(yīng)用到TLG假說(shuō)實(shí)證檢驗(yàn)[82],但其與本文研究?jī)?nèi)容相比,仍存在兩點(diǎn)局限:一是,研究對(duì)象主要是世界經(jīng)濟(jì)合作與發(fā)展組織(OECD)國(guó)家,卻忽視了世界上最大的發(fā)展中國(guó)家;二是,主要考察的是政策變量(匯率收益率和通貨膨脹率)作為轉(zhuǎn)換變量時(shí),入境旅游與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系,但并未識(shí)別旅游業(yè)處于不同發(fā)展階段時(shí),由于其狀態(tài)變量的變化所導(dǎo)致的旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系。
本文基于中國(guó)1999—2013年省級(jí)面板數(shù)據(jù),采用非線性面板平滑轉(zhuǎn)換回歸模型,對(duì)旅游業(yè)與經(jīng)濟(jì)增長(zhǎng)之間的非線性關(guān)系進(jìn)行實(shí)證檢驗(yàn),有效克服了普通面板數(shù)據(jù)模型因遺漏了非線性因素而導(dǎo)致的無(wú)法捕捉旅游業(yè)經(jīng)濟(jì)影響效應(yīng)的動(dòng)態(tài)機(jī)制轉(zhuǎn)換,從而使得估計(jì)結(jié)論更符合經(jīng)濟(jì)現(xiàn)實(shí)情境。旅游業(yè)發(fā)展水平對(duì)旅游業(yè)經(jīng)濟(jì)影響效應(yīng)具有正向非線性特征影響,即在旅游業(yè)不同發(fā)展階段,旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)均具有顯著正向促進(jìn)效應(yīng),但旅游業(yè)發(fā)展水平則與旅游業(yè)經(jīng)濟(jì)影響效應(yīng)顯著負(fù)相關(guān),隨著旅游業(yè)發(fā)展水平的提高,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于高機(jī)制,當(dāng)旅游業(yè)發(fā)展跨越門(mén)檻值之后,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于低機(jī)制,旅游業(yè)規(guī)模的擴(kuò)張反而會(huì)弱化旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的邊際貢獻(xiàn),同時(shí)以位置參數(shù)為中心,旅游業(yè)經(jīng)濟(jì)影響效應(yīng)在高低機(jī)制之間平滑轉(zhuǎn)換,當(dāng)以旅游專業(yè)化度量旅游業(yè)發(fā)展水平時(shí),平滑轉(zhuǎn)換速率要高于以旅游人次比度量旅游業(yè)發(fā)展水平時(shí)。
本文研究結(jié)論為地區(qū)實(shí)施旅游業(yè)促進(jìn)經(jīng)濟(jì)增長(zhǎng)的經(jīng)濟(jì)政策提供了理論基礎(chǔ)。首先,TLG假說(shuō)在中國(guó)客觀有效,表明旅游業(yè)發(fā)展對(duì)經(jīng)濟(jì)增長(zhǎng)的綜合貢獻(xiàn)能力值得信任,鼓勵(lì)旅游業(yè)發(fā)展可以作為促進(jìn)區(qū)域經(jīng)濟(jì)增長(zhǎng)的有效工具。其次,在保持旅游業(yè)規(guī)模擴(kuò)張的同時(shí),還需注重內(nèi)在發(fā)展質(zhì)量,尤其是提升旅游業(yè)發(fā)展效率,核心要義是優(yōu)化旅游產(chǎn)業(yè)結(jié)構(gòu)。質(zhì)言之,現(xiàn)代旅游產(chǎn)品愈發(fā)具有技術(shù)知識(shí)密集型特點(diǎn),突破大眾觀光旅游的粗放型發(fā)展模式窠臼,通過(guò)優(yōu)化資源要素配置和提升產(chǎn)品創(chuàng)新能力來(lái)共同引領(lǐng)旅游業(yè)內(nèi)涵式集約化發(fā)展,才能穩(wěn)健地發(fā)揮旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的持續(xù)貢獻(xiàn)。另外,鑒于當(dāng)前中國(guó)旅游業(yè)發(fā)展仍主要依賴資源要素驅(qū)動(dòng),在旅游業(yè)發(fā)展未跨越門(mén)檻值階段,由資源比較優(yōu)勢(shì)所帶來(lái)的“要素紅利”和規(guī)模經(jīng)濟(jì)使得旅游業(yè)經(jīng)濟(jì)影響效應(yīng)處于高機(jī)制,然而,隨著旅游資源消耗殆盡,旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)的邊際效應(yīng)則會(huì)隨著時(shí)間推移而逐漸減弱。因此,為了推動(dòng)旅游業(yè)經(jīng)濟(jì)影響效應(yīng)由低機(jī)制再向高機(jī)制轉(zhuǎn)換,一方面,可以通過(guò)鼓勵(lì)與旅游業(yè)相關(guān)的經(jīng)濟(jì)活動(dòng)來(lái)培育旅游業(yè)與其關(guān)聯(lián)產(chǎn)業(yè)之間的產(chǎn)業(yè)融合,以拓寬旅游業(yè)對(duì)經(jīng)濟(jì)增長(zhǎng)的影響渠道和傳導(dǎo)路徑;另一方面,在充分重視經(jīng)濟(jì)增長(zhǎng)的決定因素時(shí),還需調(diào)整和強(qiáng)化相關(guān)宏觀經(jīng)濟(jì)變量對(duì)旅游業(yè)發(fā)展的溢出效應(yīng),進(jìn)而為旅游業(yè)影響經(jīng)濟(jì)增長(zhǎng)提供有利外部性條件。
參考文獻(xiàn)(References)
[1] World Travel and Tourism Council. Travel and tourism economic impact [EB/OL]. www.wttc.org/research/economic-research, 2015-04-01. [世界旅行及旅游理事會(huì). 旅行及旅游的經(jīng)濟(jì)影響[EB/OL]. www.wttc.org/research/economic-research, 2015-04-01.]
[2] Archer B. The impact of international tourism on the economy of Bermuda, 1994 [J]. Journal of Travel Research, 1995, 34(2): 27-30.
[3] Archer B, Fletcher J. The economic impact of tourism in the Seychelles [J]. Annals of Tourism Research, 1996, 23(1): 32-47.
[4] Sahli M, Nowak J J. Does inbound tourism benefit developing countries? A trade theoretic approach [J]. Journal of Travel Research, 2007, 45(4): 426-434.
[5] Pablo-Romero M P, Molina J A. Tourism and economic growth: A review of empirical literature [J]. Tourism Management Perspectives, 2013, 8(1): 28-41.
[6] Arslanturk Y, Balcilar M, Ozdemir Z A. Time-varying linkages between tourism receipts and economic growth in a small open economy [J]. Economic Modelling, 2011, 28(1): 664-671.
[7] Balcilar M, Eyden R V, Gupta I L R. Time-varying linkages between tourism receipts and economic growth in South Africa [J]. Applied Economics, 2014, 46(36): 4381-4398.
[8] Dwyer L, Forsyth P, Spurr R. Tourisms contribution to a state economy: A multi-regional general equilibrium analysis [J]. Tourism Economics, 2003, 9(4): 431-448.
[9] Lanza A, Pigliaru F. Tourism and Sustainable Economic Development [M]. New York: Springer, 2000: 57-69.
[10] Balaguer J, Cantavella-Jordá M. Tourism as a long-run economic growth factor: The Spanish case [J]. Applied Economics, 2002, 34(7): 877-884.
[11] Lean H H, Tang C F. Is the tourism-led growth hypothesis stable for Malaysia? A note [J]. International Journal of Tourism Research, 2010, 12(4): 375-378.
[12] Tang C F, Tan E C. How stable is the tourism-led growth hypothesis in Malaysia? Evidence from disaggregated tourism markets [J]. Tourism Management, 2013, 21(8): 1579-1591.
[13] Khan H, Phang S Y, Toh R S. The multiplier effect: Singapores hospitality industry [J]. Cornell Hospitality Quarterly, 1995, 36(1): 64-69.
[14] Lee C, Kwon K. Importance of secondary impact of foreign tourism receipts on the South Korean economy [J]. Journal of Travel Research, 1995, 34(2): 50-54.
[15] Forsyth P, Dwyer L, Clarke H. Problems in use of economic instruments to reduce adverse environmental impacts of tourism [J]. Tourism Economics, 1995: 265-282.
[16] Palmer T, Riera A. Tourism and environmental taxes. With special reference to the “Balearic ecotax” [J]. Tourism Management, 2003, 24(6): 665-674.
[17] Lee C C, Chang C P. Tourism development and economic growth: A closer look at panels [J]. Tourism Management, 2008, 29(1): 180-192.
[18] González A, Terasvirta T, Dijk D V. Panel Smooth Transition Regression Models [R]. Stockholm: Stockholm School of Economics, 2005: 1-15.
[19] Papatheodorou A. The demand for international tourism in the Mediterranean region [J]. Applied Economics, 1999, 31(5): 619-630.
[20] Pérez-Rodríguez J V, Ledesma-Rodríguez F, Santana-Gallego M. Testing dependence between GDP and tourisms growth rates [J]. Tourism Management, 2015, 48(3): 268-282.
[21] Marin D. Is the export-led hypothesis valid for industrialized countries? [J]. Review of Economics and Statistics, 1992, 74(4): 678-688.
[22] Mckinnon R. Foreign exchange constraints in economic development and efficient aid allocation [J]. Economic Journal, 1966, 76(301): 388-409.
[23] Gray H P. The demand for international travel by the United States and Canada [J]. International Economic Review, 1966, 7(1): 83-92.
[24] Sinclair M. Tourism and economic development: A survey [J]. Journal of Development Studies, 1998, 34(5): 1-51.
[25] Frechtling D C, Horváth E. Estimating the multiplier effects of tourism expenditures on a local economy through a regional input-output model [J]. Journal of Travel Research, 1999, 37(4): 324-332.
[26] Dwyer L, Forsyth P, Spurr R. Evaluating tourism's economic effects: New and old approaches [J]. Tourism Management, 2004, 25(3): 307-317.
[27] Ivanov S, Webster C. Measuring the impact of tourism on economic growth [J]. Tourism Economics, 2006, 13(3): 379-388.
[28] Belisle F J, Hoy D R. The perceived impact of tourism by residents a case study in Santa Marta, Colombia [J]. Annals of Tourism Research, 1980, 7(1): 83-101.
[29] Davis D, Allen J, Consenza R M. Segmenting local residents by their attitudes, interests, and opinions toward tourism [J]. Journal of Travel Research, 1988, 27(2): 2-8.
[30] Uysal M, Gitelson R. Assessment of economic impacts: Festivals and special events [J]. Festival Management and Event Tourism, 1994, 2(1): 3-10.
[31] Krueger A. Trade policy as an input to development [J]. American Economic Review, 1980, 70(2): 188-292.
[32] Slee B, Farr H, Snowdon P. The economic impact of alternative types of rural tourism [J]. Journal of Agricultural Economics, 1997, 48(3): 179-192.
[33] Braun P. Regional tourism networks: The nexus between ICT diffusion and change in Australia [J]. Information Technology and Tourism, 2003, 6(4): 231-243.
[34] Nowak J J, Sahli M, Cortés-Jiménez I. Tourism, capital good imports and economic growth: Theory and evidence for Spain [J]. Tourism Economics, 2007, 13(4): 515-536.
[35] Feder G. On exports and economic growth [J]. Journal of Development Economics, 1983, 12(1): 59-73.
[36] Kim H J, Chen M H, Jang S C. Tourism expansion and economic development: The case of Taiwan [J]. Tourism Management, 2006, 27(5): 925-933.
[37] Theobald W F. Global Tourism, (the 2nd Edition) [M]. Butterworth & Heinemann, Oxford. 2001: 25.
[38] Gray H P. International Arrivals: International Trade [M]. Lexington, MA: D. C. Heath. 1970.
[39] Keintz R M. A study of the demand for international travel to and from the United States [J]. The American Economist, 1971, 15(1): 137-138.
[40] Kadir N, Jusoff K. The cointegration and causality tests for tourism and trade in Malaysia [J]. International Journal of Economics and Finance, 2010, 2(1): 138-143.
[41] Lionetti S, Gonzalez O. On the relationship between tourism and growth in Latin America [J]. Tourism and Hospitality Research, 2012, 12(1): 15-24.
[42] Brohman J. New directions in tourism for third world development [J]. Annals of Tourism Research, 1996, 23(1): 48-70.
[43] Diagne A K. Tourism development and its impacts in the Senegalese petite c?te: A geographical case study in centre-periphery relations [J]. Tourism Geographies, 2004, 6(4): 472-492.
[44] Sánchez-Rivero M, Pulido-Fernández J I, Cárdenas-García P J. Quantitative Methods in Tourism Economics [M]. Berlin: Physica-Verlag HD, 2013: 235-251.
[45] Dunn H S, Dunn L L. Tourism and popular perceptions: Mapping Jamaican attitudes [J]. Social and Economic Studies, 2002, 51(1): 25-45.
[46] Gursoy D, Rutherford D G. Host attitudes toward tourism: An improved structural model [J]. Annals of Tourism Research, 2004, 31(3): 495-516.
[47] Copeland B R. Tourism, welfare and de-Industrialization in a small open economy [J]. Economica, 1991, 58(232): 515-29.
[48] Chao C C, Hazari B R, Laffargue J P. Tourism, Dutch diseasr and welfare in an open dynamic economy [J]. Japanese Economic Review, 2006, 57(4): 501-515.
[49] Corden W M, Neary J P. Booming sector and deindustrialization in a small open economy [J]. Economic Journal, 1982, 92(368): 825-848.
[50] Capó J, Font A R, Nadal J R. Dutch disease in tourism economies: Evidence from the Balearics and the Canary Islands [J]. Journal of Sustainable Tourism, 2007, 15(6): 615-627.
[51] Holzner M. Tourism and economic development: The beach disease? [J]. Tourism Management, 2011, 32(4): 923-933.
[52] Ghali M A. Tourism and economic growth: An empirical study [J]. Economic Development & Cultural Change, 1976, 24(3): 527-38.
[53] Chatziantoniou I, Filis G, Eeckels B. Oil prices, tourism income and economic growth: A structural VAR approach for European Mediterranean countries [J]. Tourism Management, 2013, 36(3): 331-341.
[54] Blake A, Sinclair M T. Tourism crisis management: US response to September 11 [J]. Annals of Tourism Research, 2003, 30(4): 813-832.
[55] Dritsakis N. Tourism as a long-run economic growth factor: An empirical investigation for Greece using causality analysis [J]. Tourism Economics, 2004, 10(3): 305-316.
[56] Gunduz L, Hatemi-J A. Is the tourism-led growth hypothesis valid for Turkey? [J]. Applied Economics Letters, 2005, 12(8): 499-504.
[57] Katircioglu S T. Revisiting the tourism-led-growth hypothesis for Turkey using the bounds test and Johansen approach for cointegration [J]. Tourism Management, 2009a, 30(1): 17-20.
[58] Akinboade O A, Braimoh L A. International tourism and economic development in South Africa: A granger causality test [J]. International Journal of Tourism Research, 2010, 12(2): 149-163.
[59] Fayissa B, Nsiah C, Tadesse B. Tourism and economic growth in Latin American countries-further empirical evidence [J]. Tourism Economics, 2011, 17(6): 1365-1373.
[60] Tang C F, Abosedra S. Small sample evidence on the tourism-led growth hypothesis in Lebanon [J]. Current Issues in Tourism, 2012, 17(3): 234-246.
[61] Tang C F, Abosedra S. The impacts of tourism, energy consumption and political instability on economic growth in the MENA countries [J]. Energy Policy, 2014, 68(5): 458-464.
[62] Hye Q M A, Khan R E A. Tourism-led growth hypothesis: A case study of Pakistan [J]. Asia Pacific Journal of Tourism Research, 2013, 18(4): 303-313.
[63] Narayan P K. Fijis Tourism demand: The ARDL approach to Cointegration [J]. Tourism Economics, 2004, 10(2): 193-206.
[64] Oh C O. The contribution of tourism development to economic growth in the Korean economy [J]. Tourism Management, 2005, 26(1): 39-44.
[65] Payne J E, Mervar A. The tourism-growth nexus in Croatia [J]. Tourism Economics, 2010, 16(4): 1089-1094.
[66] Durbarry R. Tourism and economic growth: The case of Mauritius [J]. Tourism Economics, 2004, 10(4): 389-401.
[67] Chen C F, Chiou-Wei S C. Tourism expansion, tourism uncertainty and economic growth: New evidence from Taiwan and Korea [J]. Tourism Management, 2009, 30(6): 812-818.
[68] Seetanah B. Assessing the dynamic economic impact of tourism for island economies [J]. Annals of Tourism Research, 2011, 38(1): 291-308.
[69] Apergis N, Payne J E. Tourism and growth in the Caribbean-evidence from a panel error correction model [J]. Tourism Economics, 2012, 18(2): 449-456.
[70] Ridderstaat J, Croes R, Nijkamp P. Tourism development, quality of life and exogenous shocks: A systemic framework [J]. International Journal of Society Systems Science, 2013, 5(4): 321-336.
[71] Eugenio-Martin J L, Morales M N, Scarpa R. Tourism and Economic Growth in Latin American Countries: A Panel Data Approach [R]. Canary Islands: Universidad of Las Palmas de Gran Canaria, 2004: 1-20.
[72] Tang C H, Jang S C. The tourism-economy causality in the United States: A sub-industry level examination [J]. Tourism Management, 2009, 30(4): 553-558.
[73] Katircioglu S T. Testing the Tourism-led Growth Hypothesis: The case of Malta [J]. Acta Oeconomica, 2009b, 59(3): 331-343.
[74] Lanza A, Temple P, Urga G. The implications of tourism specialisation in the long run: an econometric analysis for 13 OECD economies [J]. Tourism Management, 2003, 24(3): 315-321.
[75] Kaplan M, C?elik T. The Impact of Tourism on Economic Performance: The case of Turkey [J]. International Journal of Applied Economics and Finance, 2010, 4(4): 254-259.
[76] Sequeira T N, Nunes P M. Does tourism influence economic growth? A dynamic panel data approach [J]. Applied Economics, 2008, 40(18): 2431-2441.
[77] Adamou A, Clerides S. Prospects and limits of tourism-led growth: The international evidence [J]. Review of Economic Analysis, 2010, 2(3): 287-303.
[78] Brida J G, Punzo L F, Risso W A. Tourism as a factor of growth: The case of Brazil [J]. Tourism Economics, 2011, 17(6): 1375-1386.
[79] Brau R, Lanza A, Pigliaru F. How fast are small tourism countries growing? Evidence from the data for 1980-2003 [J]. Tourism Economics, 2007, 13(4): 603-613.
[80] Po W C, Huang B N. Tourism development and economic growth: A nonlinear approach [J]. Physica A Statistical Mechanics and Its Applications, 2008, 387(22): 5535-5542.
[81] Chang C L, Khamkaew T, McAleer M. IV estimation of a panel threshold model of tourism specialization and economic development [J].Tourism Economics, 2012, 18(1): 5-41.
[82] Pan S C, Liu S Y, Wu P C. Re-testing the tourism-led growth hypothesis using panel smooth transition regression models [J]. Tourism Economics, 2014, 20(1): 39-50.
[83] Sugihara G, May R, Ye H. Detecting causality in complex ecosystems [J]. Science, 2012, 338(6106): 496-500.
[84] Zhao Lei. Tourism development and economic growth: Empirical evidence from China [J]. Tourism Tribune, 2015, 30(4): 33-49. [趙磊. 旅游發(fā)展與經(jīng)濟(jì)增長(zhǎng)——來(lái)自中國(guó)的經(jīng)驗(yàn)證據(jù)[J]. 旅游學(xué)刊, 2015, 30(4): 33-49.]
[85] Hansen B E. Threshold effects in non-dynamic panels: Estimation, testing, and inference [J]. Journal of Econometrics, 1997, 93(2): 345-368.
[86] Fouquau J, Hurlin C, Rabaud I. The Feldstein-Horioka puzzle: A panel smooth transition regression approach [J]. Economic Modelling, 2007, 25(2): 284-299.
[87] Granger C W. Ter?svirta T. Modelling Non-linear Economic Relationships [M]. Oxford: Oxford University Press, 1993: 15-26.
[88] Ekanayake E M, Long A E. Tourism development and economic growth in developing countries [J]. International Journal of Business & Finance Research, 2012, 6(1): 61-63.
[89] Mankiw N G, Romer D, Weil D N. A contribution to the empirics of economic growth [J]. Quarterly Journal of Economics, 1992, 107(2): 409-437.
[90] Lucas R E. On the mechanics of economic development [J]. Journal of Monetary Economics, 1988, 22(1): 3-42.
[91] Barro R J. Inequality and growth in a panel of countries [J]. Journal of Economic Growth, 2000, 5(1): 5-32.
[92] Chenery H B. Interactions between industrialization and exports [J]. American Economic Review, 1980, 70(2): 281-287.
[93] Luukkonen R, Saikkonen P, Ter?svirta T. Testing linearity against smooth transition autoregression [J]. Biometrika, 1988, 75(3): 491-499.
[94] Thanh S D. Threshold effects of inflation on growth in the ASEAN-5 countries: A panel smooth transition regression approach [J]. Journal of Economics, Finance and Administrative Science, 2015, 20(38): 41-48.
[95] Lu Ming, Chen Zhao. Fragmented growth: Why economic opening may worsen domestic market segmentation? [J]. Economic Research Journal, 2009, (3): 42-52. [陸銘, 陳釗. 分割市場(chǎng)的經(jīng)濟(jì)增長(zhǎng)——為什么經(jīng)濟(jì)開(kāi)放可能加劇地方保護(hù)?[J]. 經(jīng)濟(jì)研究, 2009, (3): 42-52.]
[96] Wang Xiaolu, Fan Gang, Liu Peng. Transformation of growth pattern and growth sustainability in China [J]. Economic Research Journal, 2009, (1): 44-47. [王小魯, 樊綱, 劉鵬. 中國(guó)經(jīng)濟(jì)增長(zhǎng)方式轉(zhuǎn)換和增長(zhǎng)可持續(xù)性[J]. 經(jīng)濟(jì)研究, 2009, (1): 44-47.]
[97] Zhang Jie, Gao Debu, Xia Yinlei. Do patents economic growth in China: An explanation based on government patent subsidy policy [J]. China Industry Economics, 2016, (1): 83-98. [張杰, 高德步, 夏胤磊. 專利能否促進(jìn)中國(guó)經(jīng)濟(jì)增長(zhǎng)——基于中國(guó)專利資助政策視角的一個(gè)解釋[J]. 中國(guó)工業(yè)經(jīng)濟(jì), 2016, (1): 83-98.]
Abstract: Tourism has become a strategic tool by which to promote economic growth for destinations, due to its importance in creating foreign exchange, offering job opportunities, increasing tax revenue, and balancing payments. The tourism-led growth (TLG) hypothesis has been previously validated by scholars; however, the existing papers focus on the linear relation between tourism and economic growth, which clearly does not conform to the law of tourism economy. In fact, a nonlinear relationship exists between tourism and economic growth through the spillover effect, although there is still no empirical evidence for this. Therefore, this paper applies the panel smooth transition regression (PSTR) model to examine the nonlinear relationship between tourism and economic growth, using tourism as a transition variable for 30 provinces in China during the period of 1999 to 2013. We also check the robustness by using panel threshold regression (PTR). The empirical results indicate that tourism has a significant positive effect on economic growth, thus the tourism-led growth hypothesis is valid in China. In addition, the relationship between tourism and economic growth is nonlinear, and varies inversely with tourism industry specialization. With the development of tourism, the effect of tourism on economic growth is in the high regime; however, the relationship between tourism and economic growth shows a decreasing marginal tendency as the degree of specialization grows, when above the threshold level. This paper enriches the field of research regarding tourism economics, especially the TLG hypothesis. Based on Chinas provincial panel data, this paper explores the inherent mechanism of the effects of tourism on economic growth, then provides empirical evidence for determining whether or not TLG is valid in China.
The conclusions of this paper lay the theoretical foundation for the effects of regional tourism development on economic growth. First, the TLG hypothesis is proven to be valid in China, which signifies that tourism contributes to economic growth. Therefore, tourism is an effectively strategic tool by which to enhance economic growth. Second, while maintaining the expansion of the scale of the tourism industry, attention should be paid to the quality of tourism, especially efficiency. Meanwhile, given the fact that the tourism development modes in China depend heavily on resources, when the level of tourism development is lower than its threshold values, the comparative advantages of tourism resources and economies of scale lead to the effects of tourism on economic growth in the high regime. However, with the depletion of tourism resources, the marginal effects of tourism on economic growth will gradually weaken over time. Therefore, in order to transfer the effects of tourism on economic growth from the low regime to the high regime, several suggestions should be offered. On the one hand, it is necessary to encourage the industrial integration of industries related to the tourism industry, in order to broaden the channels and transmission paths of the effects of tourism development on economic growth; on the other hand, when the determinants of economic growth are fully paid attention to, it is necessary to adjust and strengthen the spillover effects of relative macro-economic variables on tourism development, thus providing the favorable external conditions for the tourism industry to promote economic growth.
Keywords: tourism; economic growth; nonlinearity; panel smooth transition regression
[責(zé)任編輯: 劉 魯;責(zé)任校對(duì):魏云潔]