• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Cat弱Hopf代數

      2017-04-10 06:10:49
      浙江大學學報(理學版) 2017年2期
      關鍵詞:同態(tài)范疇代數

      陳 笑 緣

      (浙江商業(yè)職業(yè)技術學院, 浙江 杭州 310053 )

      Cat弱Hopf代數

      陳 笑 緣

      (浙江商業(yè)職業(yè)技術學院, 浙江 杭州 310053 )

      首先引入pre-cat弱Hopf代數和cat弱Hopf代數來刻畫具有投射的弱Hopf代數的性質,并建立pre-cat弱Hopf代數的張量范疇,證明了pre-cat弱Hopf代數是cat弱Hopf代數的充要條件,從而推廣了LODAY引入的cat-群和cat Hopf代數的相應結論.

      弱Hopf代數;投射;cat 弱Hopf代數

      定義1 范疇C的一個fork是指圖

      (1)

      其中,f°i=g°i.fork可分指在范疇C中存在態(tài)射h:B→A和p:A→I滿足h°f=idA,h°g=i°p及p°i=idI.

      例1 下式是可分fork,

      (2)

      ∑af(11)SA(fg(f(12)))=

      ∑af(11)SA(f(12))=a;

      ∑a1f(SH(g(a2))g(a3)l)=

      證明 定義I的代數、余代數和對極分別為μI(x?y)=x·y=p(i(x)i(y)),ηI=p(1A),ΔI(x)=∑p(i(x)1)?p(i(x)2),εI(x)=ε(i(x)),SI(x)=pSA(i(x)).

      首先,驗證I是一個代數且i是代數同態(tài).事實上,對任意x,y,z∈I,有

      (x·y)·z=p(h(gi(x)gi(y))i(z))=

      p(h(fi(x)fi(y))i(z))=p((i(x)i(y))i(z))=

      p(i(x)(i(y)i(z)))=x·(y·z);

      x·p(1)=p(i(x)ip(1))=p(i(x)hg(1))=

      p(i(x))=x;

      i(x·y)=h(gi(x)gi(y))=h(fi(x)fi(y))=

      hf(i(x)i(y))=i(x)i(y);

      i(1I)=ip(1A)=hg(1A)=hf(1A)=1A.

      其次,ΔI顯然是余結合的且εI(1I)=ε(i(1A))=1.并且i是余代數同態(tài),因為對任意x∈I有

      (i?i)ΔI(x)=∑ip(i(x)1)?ip(i(x)2)=

      ∑h(gi(x)1)?h(gi(x)2)=∑hf(i(x)1)?

      hf(i(x)2)=∑i(x)1?i(x)2.

      所以只需驗證I是一個弱雙代數.因為對任意x,y,z∈I,有

      ΔI(x)·ΔI(y)=∑p(h(gi(x)1gi(y)1))?p(h(gi(x)2gi(y)2))=∑p(hf(i(x)1)hf(i(y)1))?p(hf(i(x)2)hf(i(y)2))=∑p(i(x)1i(y)1)?p(i(x)2i(y)2)=ΔI(x·y);

      εI(x·y1)εI(y2·z)=∑εA(h(g(i(x))gip(i(y)1)))εA(h(gip(i(y)2))gi(z))=∑εA(hf(i(x)ip(i(y)1)))εA(hf(ip(i(y)2)i(z)))=

      ∑εA(i(x)i(y)1)εA(i(y)2i(z))=

      εA(i(x)i(y)i(z))=εI(x·y·z).

      同理可證εI(x·y2)εI(y1·z)=εI(x·y·z).

      (ΔI(p(1))?p(1))·(p(1)?ΔI(p(1)))=

      (p(1)?ΔI(p(1)))·(ΔI(p(1))?p(1)).

      最后,證明I是弱Hopf代數,i是弱Hopf代數同態(tài).實際上,對任意x∈I,有

      ∑SI(x1)·x2·SI(x3)=

      ∑p(ip(SA(i(x1))i(x2))ip(SA(i(x3))))=

      ∑p(h(SB(gi(x1))gi(x2))hSB(gi(x3)))=

      ∑p(hf(SA(i(x1))i(x2))hf(SA(i(x3))))=

      ∑p(SA(i(x1))i(x2)SA(i(x3)))=

      p(SA(i(x)))=SI(x);

      i(SI(x))=ip(SA(i(x)))=hSA(gi(x))=hf(SA(i(x)))=SA(i(x));

      ∑x1·SI(x2)=

      ∑p(ip(i(x)1)ip(SA(ip(i(x)2))))=

      ∑p(i(x1)hSB(gi(x2)))=

      ∑p(i(x1)hf(SA(i(x2)))=

      ∑p(i(x1)SA(i(x2))=p(i(x)l);

      ∑εI(p(1)1·x)p(1)2=

      ∑εA(ip(11)i(x))p(12)=

      ∑εA(11i(x))p(12)=p(i(x)l),

      因此,x1·SI(x2)=∑εI(p(1)1·x)p(1)2.同理可證SI(x1)·x2=∑εI(x·p(1)2)p(1)1.證畢.

      α°γ=β°γ=idH;

      (3)

      ∑α(a2)?a1=∑α(a1)?a2,a∈A;

      (4)

      ∑β(a2)?a1=∑β(a1)?a2,a∈A.

      (5)

      (6)

      γA(βB(b1)lβB(b2))?b3=

      ∑a1γA(SH(αA(a4)))1γA(βB(b1))?αA(a2γA(SH(αA(a4)))2)βB(b2)?b3=

      ∑a1γA(SH(12αA(a2)))γA(βB(b1))?SH(11)βB(b2)?b3=

      hA,B°(idA?((βB?idB)°ΔB))(a?b)=

      hA,B°(((idA?αA)°ΔA)?idB)(a?b)=

      ∑a11γA(SH(αA(12)))?b=

      ∑aγA(11)γA(SH(αA(γA(12))))?b=a?b.

      顯然,映射((idA?αA)°ΔA)?idB和idA?((βB?idB)°ΔB)均為弱Hopf代數同態(tài),由定理1可知A?HB是弱Hopf代數.

      最后,驗證A?HB是pre-cat弱Hopf代數.定義2中的條件(4)和(5)顯然成立,只需證明條件(3)成立.因為對任意h∈H,有

      (βA?εB)°iA,B°γA?HB(h)=

      ∑βA(γA(h1))βAγA(SH(αA(γA(h2))))h3=

      ∑h1SH(h2)h3=h.

      定理2證畢.

      范疇CH的對象是H上的pre-cat弱Hopf代數,態(tài)射是pre-cat弱Hopf代數同態(tài).則有以下結論.

      定理3 范疇CH是monoidal范疇.

      φX=(idX?αX)°ΔX,ψX=(βX?idX)°ΔX):

      A?H?B?H?C,

      (7)

      A?H?B?H?C.

      (8)

      (9)

      (10)

      ∑a1γA(SH(12αA(a2)))γA(x1)?SH(11)x2=

      (2)μA°(βi?iα)=μA°τA,A°(βi?iα).

      證明 (1)?(2)的證明.因為m是代數同態(tài),所以有m°μA?HA((1?a)?(b?1))=μA°(m?m)((1?a)?(b?1)).方便起見,將iA,A(a?Hb)記為∑a*?b*,進一步有,

      μA°(m?m)((1?a)?(b?1))=

      μA°(βi?iα)=μA°τA,A°(βi?iα).

      (2)?(1)的證明.首先證明m是代數同態(tài).事實上,對任意a,b,x,y∈A,有

      μA°(m?m)((a?Hb)?(x?Hy));

      m°ηA?HA=

      ∑11γA(S(αA(12)))=γA(1)=1.

      αA°m(a?Hb)=

      ∑γA(h1)γA(S(αA(γA(h2))))γA(h3)=

      ∑γA(h1)γA(S(h2))γA(h3)=γA(h).

      再者,必須證明m°SA?HA=S°m.事實上,對任意a,b∈A和h∈H,有

      γA(S(βA(S(b2)1)))S(b2)2=

      ∑S(γA(βA(b1)))γA(S(βA(S(b2)1)))S(b2)2×

      ∑a1γA(S(αA(a2))βA(b1))γA(S(βA(b1)))b3=

      因而有

      ∑a1γA(S(αA(a4)))b1γA(S(αA(b2)))×

      γA(S(αA(a2γA(αA(a3)))))c=∑a1γA(S(αA(a3)))b1γA(S(αA(b2)))γA(S(αA(a2))l)c=

      ∑a1γA(S(αA(a2)))b1γA(S(αA(b2)))c=

      定理4證畢.

      [1]LODAYLJ.Spaceswithfinitelymanynontrivialhomotopygroups[J]. J Pure Appl Algebra,1982,24(2):179-202.

      [4] BOHM G, NILL F, SZLACHANYI K. Weak Hopf Algebras (I): Integral theory andC*-structure[J].Journal of Algebra,1999,221(2):385-438.

      [5] BESPALOV Y. Crossed modules and quantum groups in Braided Categories[J]. Appl Categ Structure,1997,5(2):155-204.

      CHEN Xiaoyuan

      (ZhejiangBusinessCollege,Hangzhou310053,China)

      In this paper, we first introduce the notions of pre-cat weak Hopf algebras and cat weak Hopf algebras to characterize the structures of weak Hopf algebras with projections. Then, we give the monoidal category of these objects which generalize the results of cat Hopf algebras and cat-groups introduced by LODAY.

      weak Hopf algebra; projection; cat weak Hopf algebra

      2015-01-21.

      陳笑緣(1963-),ORCID:http://orcid.org/0000-0003-2898-9976,女,教授,主要從事代數學研究,E-mail:cxy5988@sina.com.

      10.3785/j.issn.1008-9497.2017.02.010

      O 153.3

      A

      1008-9497(2017)02-181-05

      Cat weak Hopf algebras. Journal of Zhejiang University(Science Edition), 2017,44(2):181-185

      猜你喜歡
      同態(tài)范疇代數
      批評話語分析的論辯范疇研究
      正合范疇中的復形、余撓對及粘合
      兩個有趣的無窮長代數不等式鏈
      Hopf代數的二重Ore擴張
      關于半模同態(tài)的分解*
      什么是代數幾何
      科學(2020年1期)2020-08-24 08:08:06
      拉回和推出的若干注記
      Clean-正合和Clean-導出范疇
      一種基于LWE的同態(tài)加密方案
      HES:一種更小公鑰的同態(tài)加密算法
      界首市| 横山县| 濮阳县| 郓城县| 潼南县| 同仁县| 富宁县| 永清县| 和林格尔县| 江门市| 凌云县| 云安县| 临武县| 通江县| 灵川县| 三门峡市| 烟台市| 祁阳县| 泉州市| 鞍山市| 东丽区| 龙里县| 宁化县| 霸州市| 申扎县| 上杭县| 高阳县| 勐海县| 奉贤区| 英吉沙县| 当阳市| 乾安县| 太白县| 绥棱县| 琼海市| 冀州市| 肇州县| 邻水| 五原县| 五华县| 民勤县|