靳 團(tuán) 綜述 張清媛 審校
乳腺癌腦轉(zhuǎn)移的信號通路和分子機(jī)制的研究進(jìn)展
靳 團(tuán) 綜述 張清媛 審校
乳腺癌是女性發(fā)病率較高的癌癥之一,經(jīng)常發(fā)生轉(zhuǎn)移的部位是肺、骨、肝臟和中樞神經(jīng)系統(tǒng),其中中樞神經(jīng)系統(tǒng)轉(zhuǎn)移的發(fā)生率大約為15%。目前已知乳腺癌發(fā)生腦轉(zhuǎn)移的信號通路可能有Wnt和Notch通路、EGFR和PTEN通路,與乳腺癌腦轉(zhuǎn)移相關(guān)的受體可能有VEGF和STAT3、微管蛋白和TOP2A、BNC1、GALNT9、CCDC8、HER2、HER3、MMP、FBPS、肌氨酸等。本文對可能導(dǎo)致乳腺癌腦轉(zhuǎn)移的信號通路和分子機(jī)制進(jìn)行綜述,希望為乳腺癌腦轉(zhuǎn)移的靶向治療提供新的思路。
乳腺癌;腦轉(zhuǎn)移;機(jī)制
乳腺癌在導(dǎo)致女性死亡的惡性腫瘤中排名第二位,其中90%是死于轉(zhuǎn)移瘤,經(jīng)常發(fā)生轉(zhuǎn)移的部位是肺、骨、肝臟和中樞神經(jīng)系統(tǒng),其中中樞神經(jīng)系統(tǒng)轉(zhuǎn)移的發(fā)生率大約為15%,尤其是在HER2陽性及三陰性乳腺癌中,中樞神經(jīng)系統(tǒng)轉(zhuǎn)移的比例明顯增高,約為30%~50%[1]。單個(gè)腫瘤細(xì)胞轉(zhuǎn)移至腦部,必須通過血液-腦屏障(BBB)[2]。相關(guān)研究表明,通過BBB之后,乳腺癌細(xì)胞表面的配體需要與內(nèi)皮細(xì)胞上的受體結(jié)合,通過多種信號通路來激活內(nèi)皮細(xì)胞,繼而激活腦組織中各種細(xì)胞,從而使乳腺癌細(xì)胞有選擇性地轉(zhuǎn)移到腦組織中[3]。本文對可能導(dǎo)致乳腺癌腦轉(zhuǎn)移的信號通路和作用機(jī)制進(jìn)行綜述,希望為乳腺癌腦轉(zhuǎn)移的靶向治療提供新的思路。
Wnt 和 Notch通路在正常干細(xì)胞中起到保護(hù)作用,與腫瘤干細(xì)胞也具有相關(guān)性[4]。Nam等[5]用乳腺癌細(xì)胞系MDA-MB-435培養(yǎng)出乳腺癌腦轉(zhuǎn)移瘤模型,發(fā)現(xiàn)腦轉(zhuǎn)移瘤細(xì)胞中高表達(dá)白細(xì)胞介素(IL)1β可激活周圍星形膠質(zhì)細(xì)胞JAG2的表達(dá),這種直接的相互作用導(dǎo)致了星形膠質(zhì)細(xì)胞和腫瘤干細(xì)胞中Notch通路的激活。Notch受體與細(xì)胞內(nèi)配體結(jié)合后形成的蛋白進(jìn)行蛋白水解反應(yīng),產(chǎn)生活化的Notch胞內(nèi)結(jié)構(gòu)域,再從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)到細(xì)胞核中,最終作為一個(gè)轉(zhuǎn)錄激活因子,刺激多種腫瘤相關(guān)基因的表達(dá),促進(jìn)乳腺癌腦轉(zhuǎn)移瘤的增殖。
Takagi等[8]總結(jié)歸納了EGFR通路及下游PTEN通路、哺乳動物雷帕霉素靶蛋白(mTOR)通路、磷脂酰肌醇-3-激酶(PI3K)通路在乳腺癌腦轉(zhuǎn)移中的重要作用,這些通路起到調(diào)控作用的關(guān)鍵蛋白主要有以下幾種:表皮生長因子受體1(EGFR,或HER1),表皮生長因子受體2(HER2),表皮生長因子受體3(HER3),磷脂酰肌醇-3-激酶催化亞基α(PIK3CA),Akt。進(jìn)一步的研究表明EGFR/HER2激酶抑制劑TAK-285可滲透大鼠血腦屏障,并且具有抗腫瘤活性,將TAK-285轉(zhuǎn)化為臨床藥物,有望應(yīng)用于治療HER2過度表達(dá)的乳腺癌腦轉(zhuǎn)移病例。目前,EGFR抑制劑吉非替尼和厄洛替尼可用于晚期非小細(xì)胞肺癌的治療,HER2受體靶向藥物曲妥珠單抗可用于原發(fā)性乳腺癌的治療,但這些靶向藥物在乳腺癌腦轉(zhuǎn)移治療中是否有效仍需進(jìn)一步臨床試驗(yàn),PIK3CA、Akt尚無相對應(yīng)的可用于臨床治療的靶向藥物。另一些研究表明,HER3可激活PI3K途徑,HER3/HER2的配體外源生長因子(HRG)在人腦中高表達(dá),HRG已被證明能誘導(dǎo)HER2/HER3陽性乳腺癌細(xì)胞系跨越腦微血管內(nèi)皮細(xì)胞屏障,抑制HRG的生成可抑制乳腺癌腦轉(zhuǎn)移的發(fā)生,因此HRG抑制劑也可作為一個(gè)具有潛力的腫瘤靶向藥物[7,9]。
乳腺癌腦轉(zhuǎn)移瘤的形成是由乳腺癌細(xì)胞的特性和宿主因素來決定的[10]。Lee等[11]的研究表明,血管內(nèi)皮生長因子(VEGF)及信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(STAT3)在乳腺癌腦轉(zhuǎn)移瘤的增殖中起到了重要的作用。乳腺癌細(xì)胞可釋放VEGF,誘導(dǎo)腦轉(zhuǎn)移瘤中新生血管的生成,同時(shí)VEGF與血管內(nèi)皮細(xì)胞表面的受體結(jié)合后,可以激活細(xì)胞表面的VEGF受體VEGFR2,進(jìn)而激活內(nèi)皮細(xì)胞下游信號分子STAT3、PI3K和MEK-ERK[11]。STAT3等可作用于腫瘤腦轉(zhuǎn)移的微環(huán)境,反過來控制腦血管內(nèi)皮細(xì)胞表面VEGF受體VEGFR2的表達(dá),內(nèi)皮細(xì)胞上VEGFR2可以促進(jìn)乳腺癌細(xì)胞遷移入血腦屏障,從而促進(jìn)腦轉(zhuǎn)移瘤的生長[12]。目前,VEGFR2抑制劑阿帕替尼,現(xiàn)用于晚期胃癌及晚期非鱗非小細(xì)胞肺癌的治療,VEGFR1、2、3抑制劑索拉非尼,用于治療不能手術(shù)的肝癌、腎惡性腫瘤,也用于胃腸道間質(zhì)瘤的治療,但這兩種靶向藥物針對乳腺癌腦轉(zhuǎn)移的治療仍需進(jìn)一步的臨床研究。
Kanojia等[13]評估了一組腦的主要標(biāo)志物,發(fā)現(xiàn)在乳腺癌腦轉(zhuǎn)移的細(xì)胞系中過表達(dá)的神經(jīng)元標(biāo)記物βⅡ微管蛋白(TUBB3),并且它的表達(dá)與遠(yuǎn)處轉(zhuǎn)移顯著相關(guān)。在乳腺癌細(xì)胞模型(MDA-Br,GLIM2和MDA-MB-468)上進(jìn)行TUBB3基因敲除,乳腺癌細(xì)胞的侵襲能力顯著降低,該細(xì)胞模型的增殖速度顯著降低[13]。在人乳腺癌MCF-7細(xì)胞系中進(jìn)行的研究發(fā)現(xiàn),TUBB3及TOP2A 表達(dá)降低時(shí)可降低細(xì)胞增殖速度、促進(jìn)細(xì)胞凋亡的發(fā)生,同時(shí)發(fā)現(xiàn)在臨床上,與TUBB3陰性乳腺癌患者相比,TUBB3陽性的乳腺癌患者其無病生存期(DFS)和總生存期(OS)明顯縮短。但目前TUBB3與乳腺癌腦轉(zhuǎn)移相關(guān)性的研究尚處于體外實(shí)驗(yàn)階段,仍需進(jìn)行TUBB3與乳腺癌腦轉(zhuǎn)移患者臨床病理及多種因素的相關(guān)性研究。
Pangeni等[15]進(jìn)行了一項(xiàng)研究發(fā)現(xiàn)O-糖基化引發(fā)劑(GALNT9)、微管動力調(diào)節(jié)器(CCDC8)和有廣泛靶點(diǎn)的轉(zhuǎn)錄因子(BNC1)在腦轉(zhuǎn)移的乳腺癌中經(jīng)常出現(xiàn)表達(dá)異常,他們對同一個(gè)患者乳腺癌原發(fā)灶和腦轉(zhuǎn)移灶中調(diào)節(jié)這三個(gè)蛋白的基因進(jìn)行對比,發(fā)現(xiàn)這三個(gè)基因在腦轉(zhuǎn)移灶中甲基化程度高,在原發(fā)灶中甲基化程度很低。BNC1和GALNT9甲基化過程發(fā)生在乳腺癌進(jìn)展和轉(zhuǎn)移的后期,而CCDC8的甲基化發(fā)生在乳腺癌進(jìn)展和轉(zhuǎn)移的早期,GALNT9在腦轉(zhuǎn)移瘤和其他中樞神經(jīng)組織中表達(dá)水平非常高,而在其他組織包括正常乳腺組織中表達(dá)水平低[15]。目前這三個(gè)蛋白尚無靶向藥物,上述研究可以為靶向藥物的研制提供參考。
HER2陽性亞型的乳腺癌其腦轉(zhuǎn)移的風(fēng)險(xiǎn)較高[16]。HER3被認(rèn)為是與HER2高度相關(guān)的一個(gè)信號傳導(dǎo)因子,可以與HER2形成二聚體,可誘導(dǎo)乳腺癌細(xì)胞跨過原發(fā)性腦微血管內(nèi)皮細(xì)胞嚴(yán)密的屏障,從而誘導(dǎo)乳腺癌的腦轉(zhuǎn)移。這一腦轉(zhuǎn)移過程完全取決于HER2、HER3的活性,HER2-HER3二聚體可被曲妥珠單抗藥物阻斷,針對HER3也可以使用HER3單克隆抗體EV20阻斷[9],這一研究為臨床上預(yù)防和治療乳腺癌患者的腦轉(zhuǎn)移提供了新的理論基礎(chǔ)。
星形膠質(zhì)細(xì)胞分泌基質(zhì)金屬蛋白酶(MMP),包括MMP-1、MMP-2和MMP-9[17]。在中樞神經(jīng)系統(tǒng)白血病中,白血病細(xì)胞分泌的MMP-2和MMP-9促進(jìn)緊密連接蛋白的破壞,從而增加細(xì)胞間通透性,白血病細(xì)胞穿過血腦屏障[18]。人們發(fā)現(xiàn)將轉(zhuǎn)移性乳腺癌細(xì)胞與星形膠質(zhì)細(xì)胞共培養(yǎng),乳腺癌細(xì)胞的侵襲能力提高,從而導(dǎo)致乳腺癌發(fā)生腦轉(zhuǎn)移的幾率大大增加[3]。雖然星形膠質(zhì)細(xì)胞可通過上調(diào)纖維蛋白溶酶來防御侵襲性轉(zhuǎn)移,促進(jìn)FasL死亡信號的旁分泌,但這種反應(yīng)可能導(dǎo)致轉(zhuǎn)移性乳腺癌細(xì)胞中高表達(dá)絲氨酸蛋白酶抑制劑和絲氨酸蛋白酶抑制劑B2,反而促進(jìn)了腫瘤在腦組織中的侵襲,導(dǎo)致乳腺癌腦轉(zhuǎn)移的發(fā)生和發(fā)展[3]。
肌氨酸在前列腺癌中是一個(gè)敏感的腫瘤標(biāo)志物,與腫瘤的進(jìn)展和轉(zhuǎn)移過程相關(guān)[19-20]。既往的研究表明肌氨酸代謝相關(guān)蛋白在乳腺癌HER2分子亞型中高表達(dá),抑制肌氨酸的合成可抑制乳腺癌的生長[21-22]。Cha等[23]評估了轉(zhuǎn)移性乳腺癌組織中肌氨酸、甘氨酸N-甲基轉(zhuǎn)移酶(GNMT)、肌氨酸脫氫酶(SARDH)和過氧化物酶肌氨酸氧化酶(PIPOX)的表達(dá)水平,發(fā)現(xiàn)在乳腺癌的腦轉(zhuǎn)移灶和肺轉(zhuǎn)移灶中GNMT和肌氨酸通常為高表達(dá),而PIPOX則表現(xiàn)為低表達(dá),提示這些蛋白與乳腺癌的腦轉(zhuǎn)移和肺轉(zhuǎn)移顯著相關(guān),但具體機(jī)制仍需深入研究。
與良性腫瘤細(xì)胞相比,惡性腫瘤細(xì)胞消耗更多的營養(yǎng)物質(zhì)和能量[24]。腫瘤細(xì)胞普遍存在增強(qiáng)的糖酵解途徑,俗稱“Warburg效應(yīng)”,以彌補(bǔ)正常的糖代謝途徑產(chǎn)生能量及營養(yǎng)物質(zhì)的不足[25]。研究表明,乳腺癌腦轉(zhuǎn)移細(xì)胞中糖異生作用增強(qiáng),同時(shí)氧化谷氨酰胺和支鏈氨基酸的能力增加,將表達(dá)FBPS的基因沉默后,乳腺癌腦轉(zhuǎn)移細(xì)胞的活性下降[26]。在臨床中,與原發(fā)性乳腺癌患者相比,乳腺癌腦轉(zhuǎn)移患者FBPS和糖原的表達(dá)增多[26]。FBPS和糖原是人體正常代謝不可缺少的物質(zhì),因此很難研究出具有針對性的藥物,用以治療乳腺癌的腦轉(zhuǎn)移。
既往的研究表明,在卵巢癌組織中,氧化還原緩沖系統(tǒng)如硫氧還蛋白、谷胱甘肽和抗氧化系統(tǒng)(例如過氧化氫酶和超氧化物歧化酶)均有不同程度的過表達(dá)或低表達(dá)[27]?;钚匝?ROS)可以氧化還原各種腫瘤轉(zhuǎn)移的信號通路上敏感的蛋白,激活關(guān)鍵信號轉(zhuǎn)導(dǎo)蛋白的翻譯后修飾,研究發(fā)現(xiàn)在乳腺癌的轉(zhuǎn)移瘤(包括腦轉(zhuǎn)移瘤)中ROS相關(guān)蛋白的表達(dá)顯著增加[28]。Kim等[29]的研究表明,乳腺癌腦轉(zhuǎn)移灶中過氧化氫酶的位點(diǎn)具有特異性,與骨轉(zhuǎn)移灶相比,腦轉(zhuǎn)移灶中過氧化氫酶的表達(dá)較高,同時(shí)ROS相關(guān)蛋白的表達(dá)與患者的預(yù)后相關(guān)。ROS在乳腺癌腦轉(zhuǎn)移灶中具有一定的特異性,因此,ROS抑制劑或許可以作為乳腺癌腦轉(zhuǎn)移患者治療的靶向藥物[30]。
近年來,隨著人們對乳腺癌機(jī)制及治療的深入研究,乳腺癌患者的生存年限也隨之延長,因此乳腺癌腦轉(zhuǎn)移的發(fā)病率也隨之增加。人體血腦屏障的存在極大地阻礙了化療藥物對腦腫瘤的殺傷作用,現(xiàn)有的乳腺癌腦轉(zhuǎn)移主要的治療方法仍為手術(shù)和放療。研究乳腺癌腦轉(zhuǎn)移的機(jī)制,對人們尋找新的小分子靶向藥物及化療藥物提供了極為有意義的幫助,更多的腦轉(zhuǎn)移相關(guān)靶點(diǎn)能夠?yàn)槿橄侔┠X轉(zhuǎn)移患者帶來新的希望。
1 Rippaus N,Taggart D,Williams J,et al.Metastatic site-specific polarization of macrophages in intracranial breast cancer metastases[J].Oncotarget,2016,7(27):41473-41487.
2 Lyle LT,Lockman PR,Adkins CE,et al.Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer[J].Clin Cancer Res,2016,22(21):5287-5299.
3 Medress Z,Hayden GM.Molecular and genetic predictors of breast-to-brain metastasis:review and case presentation[J].Cureus,2015,7(1):e246.
4 Shima H,Yamada A,Ishikawa T,et al.Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?[J].Gland Surg,2017,6(1):82-88.
5 Nam D,Jeon HS,Kim M,et al.Activation of notch signaling in a xenograft model of brain metastasis[J].Clin Cancer Res,2008,14(13):4059-66.
6 Witzel I,Oliveiraferrer L,Pantel K,et al.Breast cancer brain metastases:biology and new clinical perspectives[J].Breast Cancer Res,2016,18(1):1-9.
7 Soffietti R,Ruda R,Trevisan E.Brain metastases:current management and new developments[J].Curr Opin Oncol,2008,20(6):676-684.
8 Takagi S,Banno H,Hayashi A,et al.HER2 and HER3 cooperatively regulate cancer cell growth and determine sensitivity to the novel investigational EGFR/HER2 kinase inhibitor TAK-285[J].Oncoscience,2014,1(3):196-204.
9 Momeny M,Saunus JM,Marturana F,et al.Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines[J].Oncotarget,2014,6(6):3932.
10 Altundag K.Tumor types,breast tumor subtypes and extension of systemic disease may influence outcome in cancer patients with brain metastases[J].J Neurooncol,2017[Epub ahead of print].
11 Lee HT,Xue J,Chou PC,et al.Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells[J].Oncotarget,2015,6(12):10016-10029.
12 Langsenlehner U,Hofmann G,Renner W,et al.Association of vascular endothelial growth factor-A gene polymorphisms and haplotypes with breast cancer metastases[J].Acta Oncol,2015,54(3):368-376.
13 Kanojia D,Morshed RA,Zhang L,et al.βⅢ-tubulin regulates breast cancer metastases to the brain[J].Mol Cancer Ther,2015,14(5):1152-1161.
14 Yang Z,Liu Y,Shi C,et al.Suppression of PTEN/AKT signaling decreases the expression of TUBB3 and TOP2A with subsequent inhibition of cell growth and induction of apoptosis in human breast cancer MCF-7 cells via ATP and caspase-3 signaling pathways[J].Oncol Rep,2017,37(2):1011-1019.
15 Pangeni RP,Channathodiyil P,Huen DS,et al.The GALNT9,BNC1 and CCDC8 genes are frequently epigenetically dysregulated in breast tumours that metastasise to the brain[J].Clinical Epigenetics,2015,7:57.
16 Hedayatizadeh-Omran A,Rafiei A,Alizadeh-Navaei R,et al.Role of HER2 in brain metastasis of breast cancer:a systematic review and meta-analysis[J].Asian Pac J Cancer Prev,2015,16(4):1431-1434.
17 Wu K,F(xiàn)ukuda K,Xing F,et al.Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer[J].J Biol Chem,2015,290(15):9842-9854.
18 Liu J,Jin X,Liu KJ,et al.Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage[J].J Neurosci,2012,32(9):3044-3057.
19 Khan AP,Rajendiran TM,Bushra A,et al.The role of sarcosine metabolism in prostate cancer progression[J].Neoplasia,2013,15(5):491-501.
20 Lucarelli G,Ditonno P,Bettocchi C,et al.Serum sarcosine is a risk factor for progression and survival in patients with metastatic castration-resistant prostate cancer[J].Future Oncol,2013,9(6):899-907.
21 Yoon JK,Kim DH,Koo JS.Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer[J].J Transl Med,2014,12:149.
22 Baum CE,Price DK,F(xiàn)igg WD.Sarcosine as a potential prostate cancer biomarker and therapeutic target[J].Cancer Biol Ther,2010,9(5):341-342.
23 Cha YJ,Kim dH,Jung WH,et al.Expression of sarcosine metabolism-related proteins according to metastatic site in breast cancer[J].Int J Clin Exp Pathol,2014,7(11):7824-7833.
24 Ward PS,Thompson CB.Metabolic reprogramming:a cancer hallmark even warburg did not anticipate[J].Cancer cell,2012,21(3):297-308.
25 Locasale JW,Cantley LC.Metabolic flux and the regulation of mammalian cell growth[J].Cell Metab,2011,14(4):443-451.
26 Chen J,Lee HJ,Wu X,et al.Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain[J].Cancer Res,2015,75(3):554-565.
27 Woolston CM,Deen S,Al-Attar A,et al.Redox protein expression predicts progression-free and overall survival in ovarian cancer patients treated with platinum-based chemotherapy[J].Free Radic Biol Med,2010,49(8):1263-1272.
28 Yang W,Zou L,Huang C,et al.Redox regulation of cancer metastasis:molecular signaling and therapeutic opportunities[J].Drug Dev Res,2014,75(5):331-341.
29 Kim HM,Jung WH,Koo JS.Expression of reactive oxygen species-related proteins in metastatic breast cancer is dependent on the metastatic site[J].Int J Clin Exp Pathol,2014,7(12):8802-8812.
30 Gorrini C,Harris IS,Mak TW.Modulation of oxidative stress as an anticancer strategy[J].Nat Rev Drug Discov,2013,12(12):931-947.
Researchpropressinsignalingpathwaysandmolecularmechanismsofbrainmetastasesinbreastcancer
JINTuan,ZHANGQingyuan
Department of Medical Oncology,Harbin Medical University Cancer Hospital,Harbin 150081,China
Breast cancer is one of the highest incidence of cancer in women,most frequent sites of metastasis are the lung,bone,liver,and central nervous system.The incidence of central nervous system metastasis is about 15%.At present,there are Wnt and Notch pathways,EGFR and PTEN pathways,which may be related to the brain metastases in breast cancer.There may be related to VEGF and Stat3,tubulin and TOP2A,BNC1,GALNT9,CCDC8,HER2,HER3,MMP,F(xiàn)BPS,sarcosine and other factors.This paper summarizes the signaling pathways and molecular mechanisms that may lead to brain metastases in breast cancer,and we hope to provide new ideas for targeted therapy of brain metastases in breast cancer.
Breast cancer;Brain metastases;Mechanisms
哈爾濱醫(yī)科大學(xué)附屬腫瘤醫(yī)院腫瘤內(nèi)科(哈爾濱 150081)
靳團(tuán),女,(1990-),碩士研究生,從事乳腺癌轉(zhuǎn)移機(jī)制的研究。
張清媛,E-mail:zqyxsci@126.com
R737.9
A
10.11904/j.issn.1002-3070.2017.05.016
(收稿:2017-03-08)