高 月,修 洋,趙幻希,劉淑瑩,2
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,吉林 長春 130022)
基于HPLC-ESI-MSn的雜多酸化學(xué)轉(zhuǎn)化原人參三醇型皂苷Re,20(S)-Rf研究
高 月1,修 洋1,趙幻希1,劉淑瑩1,2
(1.長春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長春 130117;2.中國科學(xué)院長春應(yīng)用化學(xué)研究所,吉林 長春 130022)
采用高效液相色譜-電噴霧-多級串聯(lián)質(zhì)譜技術(shù)(HPLC-ESI-MSn)定性分析Keggin型雜多酸(12-磷鎢酸)化學(xué)轉(zhuǎn)化原人參三醇型皂苷Re和20(S)-Rf的產(chǎn)物結(jié)構(gòu)。在負(fù)離子模式下,結(jié)合化合物的保留時(shí)間、碎片離子的質(zhì)荷比、中性丟失以及人參皂苷同分異構(gòu)體的極性差異,分析鑒定了Re的8種主要轉(zhuǎn)化產(chǎn)物為20(S)-Rf2、20(R)-Rf2、20(S)-Rg2、20(R)-Rg2、25-OH-Rg6、25-OH-Rg4、Rg6和Rg4;20(S)-Rf的7種主要轉(zhuǎn)化產(chǎn)物為20(R)-Rf、20(S)-Rf3、20(R)-Rf3、25-OH-Rg8、25-OH-Rg9、Rg8和Rg9。并通過化學(xué)轉(zhuǎn)化方法獲得了苷元結(jié)構(gòu)3β,12β,25-三羥基-達(dá)瑪烷-20(21/22)-烯 (3β, 12β, 25-trihydroxy-dammar-20(22)-ene)。12-磷鎢酸顯示出良好的Re和20(S)-Rf轉(zhuǎn)化率,在90 min和4 h內(nèi)的轉(zhuǎn)化率接近100%。該方法可以快速有效地鑒定人參皂苷結(jié)構(gòu)并區(qū)分其同分異構(gòu)體,能夠?yàn)殡s多酸等固體酸催化劑應(yīng)用于皂苷類中藥有效成分的化學(xué)轉(zhuǎn)化研究奠定基礎(chǔ)。
原人參三醇型皂苷;高效液相色譜-電噴霧-多級串聯(lián)質(zhì)譜(HPLC-ESI-MSn);Keggin型雜多酸
人參(PanaxginsengC. A. Meyer)是五加科(Araliaceae)人參屬(Panax)植物,為中國傳統(tǒng)名貴中藥[1-2]。人參皂苷是人參的主要活性成分,其中Re和20(S)-Rf是固有的主要原人參三醇型皂苷,具有抗腫瘤、抗氧化等活性[3-4]。人參皂苷的天然含量較低,以5年生人參的干燥根為例,人參皂苷只占其總質(zhì)量的4%~5%。稀有人參皂苷具有相對分子質(zhì)量小、生物活性高等特點(diǎn),表現(xiàn)出良好的藥理活性,但稀有皂苷在人參中的含量甚微,許多皂苷在自然界中并不存在,只存在于紅參等炮制品中[5-7]。通過化學(xué)或生物方法實(shí)現(xiàn)去糖基化反應(yīng)減少人參皂苷的糖基數(shù)量或改變其皂苷元結(jié)構(gòu),進(jìn)而制備具有更高生物利用度與藥理活性的稀有皂苷,現(xiàn)已成為人參理論和應(yīng)用研究的重點(diǎn)?;瘜W(xué)轉(zhuǎn)化方法常用的催化劑為硫酸、三氟乙酸等無機(jī)和有機(jī)酸,這些液體酸可以高效地催化皂苷中的糖苷鍵水解,并且成本低廉,但在使用時(shí)卻面臨腐蝕反應(yīng)器、催化劑難以回收、殘留酸不易處理等問題[8]。
雜多酸(Heteropoly Acid,HPA)是由雜原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb等)按一定的結(jié)構(gòu)通過氧原子配位橋聯(lián)而組成的一類含氧多酸[9]。通常具有極強(qiáng)的質(zhì)子酸性、簡便的分離方法和可調(diào)節(jié)的結(jié)構(gòu)組成,是一類可循環(huán)利用并且環(huán)境友好的固體酸催化劑,已在工業(yè)催化中得到了廣泛應(yīng)用[10-13]。
本工作擬將Keggin型12-磷鎢酸H3PW12O40·10H2O應(yīng)用于人參皂苷的化學(xué)轉(zhuǎn)化中,系統(tǒng)地研究在12-磷鎢酸產(chǎn)生的酸性溶液中原人參三醇型皂苷Re和20(S)-Rf的轉(zhuǎn)化途徑,并利用高效液相色譜-電噴霧-多級串聯(lián)質(zhì)譜技術(shù)(HPLC-ESI-MSn)分析鑒定轉(zhuǎn)化產(chǎn)物的結(jié)構(gòu)及反應(yīng)物的轉(zhuǎn)化效率,希望為人參皂苷的化學(xué)轉(zhuǎn)化與制備開拓新的途徑。
1.1 主要儀器與試劑
Dionex Ultimate 3000-LTQ XL液相色譜-質(zhì)譜聯(lián)用儀:美國Thermo公司產(chǎn)品。
人參皂苷Re和20(S)-Rf標(biāo)準(zhǔn)品:購自吉林大學(xué);12-磷鎢酸H3PW12O40·10H2O:購自上海源葉生物科技有限公司;乙腈、甲酸:均為色譜純,購自美國Tedia公司。
1.2 實(shí)驗(yàn)過程
精密稱取1.02 mg和1.04 mg人參皂苷Re和20(S)-Rf標(biāo)準(zhǔn)品,分別溶解于5 mL 12-磷鎢酸調(diào)節(jié)的1.44 g/L水溶液中。于80 ℃水浴搖床中反應(yīng)2 h后,在冰浴中迅速冷卻降溫終止反應(yīng),以等體積的無水乙醚重復(fù)萃取溶液中的12-磷鎢酸3次,將萃取液置于真空干燥箱中烘干得到催化劑。取200 μL反應(yīng)液,用去離子水定容至1 mL,過0.25 μm濾膜,待測。
1.3 實(shí)驗(yàn)條件
1.3.1 色譜條件 Thermo Syncronis C18色譜柱(2.1 mm×100 mm×1.7 μm);流動(dòng)相:0.1%甲酸水溶液(A),乙腈(B);梯度洗脫:0~5 min(30%B),5~8 min(30%~32%B),8~10 min(32%~35%B),10~25 min(35%~37%B),25~27 min(37%~25%B),27~30 min(25%B);流速0.2 mL/min;柱溫35 ℃;柱平衡時(shí)間20 min;進(jìn)樣量5 μL。
1.3.2 質(zhì)譜條件 負(fù)離子掃描模式,ESI源毛細(xì)管溫度320 ℃,鞘氣流速35 arb unit,輔助氣流速10 arb unit,吹掃氣流速30 arb unit,毛細(xì)管電壓—3 200 V,全掃描模式的質(zhì)量掃描范圍m/z100~1 400,多級串聯(lián)模式的質(zhì)量掃描范圍m/z200~1 000。
2.1 人參皂苷Re的化學(xué)轉(zhuǎn)化
人參皂苷Re在12-磷鎢酸中的化學(xué)轉(zhuǎn)化產(chǎn)物的總離子流圖示于圖1,共檢測出9種產(chǎn)物,依次命名為峰1~9。利用HPLC-ESI-MSn技術(shù)對峰1~9進(jìn)行串聯(lián)質(zhì)譜分析,碎片離子采用Costello規(guī)則命名[14]。結(jié)合標(biāo)準(zhǔn)品的保留時(shí)間、碎片離子質(zhì)荷比和人參皂苷同分異構(gòu)體的極性差異等信息,對9種化合物進(jìn)行結(jié)構(gòu)鑒定。
在負(fù)離子模式一級質(zhì)譜圖中,人參皂苷的準(zhǔn)分子離子以[M-H]-和[M+HCOO]-形式存在,根據(jù)標(biāo)準(zhǔn)品比對可以確定峰3為反應(yīng)物Re。根據(jù)Re的[M+HCOO]-離子m/z991和[M-H]-離子m/z945,推斷Re的相對分子質(zhì)量為946。在Re[M-H]-離子的二級串聯(lián)質(zhì)譜圖中,主要觀察到Y(jié)1β、Y0α、Z0α、Y0β/Y1β’、Z1β和Y0β’離子,示于圖2。Y和Z離子代表糖苷鍵斷裂后的電荷保留在還原端的碎片。Y1β和Y0α分別由母離子去除一分子鼠李糖取代基(Rha,146 u)和一分子葡萄糖取代基(Glc,162 u)產(chǎn)生,說明Re結(jié)構(gòu)中有2個(gè)糖基取代位點(diǎn)。Y0α的豐度顯著高于Y1β,說明C-20位Glc比C-6位Rha更容易失去。C-3位糖苷鍵B/Y斷裂產(chǎn)生Y0β離子。Y0β’是原人參三醇型皂苷元的特征[M-H]-離子。B1α和C1α是糖苷鍵B/Y和C/Z斷裂時(shí),電荷保留在非還原端的離子,進(jìn)一步證明了Glc的存在。0,2X0β離子由Rha結(jié)合Glc的鍵0和鍵2斷裂產(chǎn)生的碎片離子所形成(164 u+41 u),表明Re的1個(gè)糖基取代基為Rha與Glc相連接的二糖,并且Rha為端基,另一個(gè)為Glc單糖。
圖1 人參皂苷Re(a)和20(S)-Rf(b)化學(xué)轉(zhuǎn)化產(chǎn)物的總離子流圖Fig.1 Total ion chromatograms of chemical transformation for ginsenoside Re (a) and 20(S)-Rf (b)
峰4、5、6、7的相對分子質(zhì)量均為784,是Re去糖基化反應(yīng)的產(chǎn)物。峰4和5、峰6和7分別具有相近的保留時(shí)間,因此推斷這4種同分異構(gòu)體具有兩種結(jié)構(gòu)。4種產(chǎn)物[M+HCOO]-離子的二級串聯(lián)質(zhì)譜圖具有相同的子離子Y1β、Z1β和Y0β,表明這4種產(chǎn)物具有相同的糖基取代基,示于圖3。從四級串聯(lián)質(zhì)譜圖可以看出,Y0β進(jìn)一步碎裂產(chǎn)生m/z417和m/z391離子,即這4種產(chǎn)物的皂苷元結(jié)構(gòu)存在差異,示于圖4。Y0β中性丟失58 u產(chǎn)生m/z417離子,58 u對應(yīng)分子式C3H6O,即連接了2個(gè)甲基的叔醇結(jié)構(gòu),說明皂苷元發(fā)生水合反應(yīng)生成C-25位的叔醇。此外,可以推斷Re去糖基化產(chǎn)生的C-20位羥基發(fā)生脫水反應(yīng),抵消水合反應(yīng)導(dǎo)致的+18 u質(zhì)量差異,生成結(jié)構(gòu)為3β,12β,25-三羥基-達(dá)瑪烷-20(21/22)-烯的同分異構(gòu)體。由于Δ20(21)的皂苷極性強(qiáng)于Δ20(22),因此歸屬峰4和5分別為人參皂苷25-OH-Rg6和25-OH-Rg4。峰6和峰7中,Y0β與m/z391離子的84 u中性丟失表明其為人參皂苷20(S)-Rg2和20(R)-Rg2。無論是人參皂苷Rg2、25-OH-PPT,還是具有相似結(jié)構(gòu)的二醇型皂苷25-OH-PPD,都顯示出良好的抑制癌細(xì)胞生長、降低血糖濃度等生物活性,并且相對于反應(yīng)物Re,轉(zhuǎn)化得到的稀有皂苷具有更高的生物利用度[15-16]。
峰1和峰2是相對分子質(zhì)量為802的同分異構(gòu)體。其[M-H]-離子(m/z801)與Re(m/z945)相差144 u(162 u—18 u),可以推斷峰1和峰2是Re的去糖基化反應(yīng)產(chǎn)物。二級串聯(lián)質(zhì)譜圖示于圖5a,可以看出,Y0β與Re有+18 u的質(zhì)量差異,說明皂苷元發(fā)生了水合反應(yīng)。結(jié)合原人參三醇型皂苷的結(jié)構(gòu)特征,可以確定水合反應(yīng)發(fā)生在皂苷元C-24(25)位的雙鍵。由于20(S)型人參皂苷的極性強(qiáng)于其20(R)型的差向異構(gòu)體[17],因此確定峰1和峰2分別為人參皂苷20(S)-Rf2和20(R)-Rf2。相應(yīng)的,峰8和峰9為Re去糖基化反應(yīng)后在C-20位發(fā)生脫水反應(yīng)生成的Δ20(21)和Δ20(22)同分異構(gòu)體,即人參皂苷Rg6和Rg4,示于圖5b。
圖2 人參皂苷Re的裂解規(guī)律(a)和m/z 945離子的二級串聯(lián)質(zhì)譜圖(b)Fig.2 Fragmentation (a) and MS/MS spectrum of the ion at m/z 945 (b) of ginsenoside Re
圖3 人參皂苷25-OH-Rg6(a)和20(S)-Rg2(b)的[M+HCOO]-m/z 829離子的二級串聯(lián)質(zhì)譜圖Fig.3 MS/MS spectra of the [M+HCOO]- ion at m/z 829 of ginsenosides 25-OH-Rg6 (a) and 20(S)-Rg2 (b)
圖4 人參皂苷25-OH-Rg6(a)和20(S)-Rg2(b)的m/z 475離子的四級串聯(lián)質(zhì)譜圖Fig.4 MS4 spectra of the ion at m/z 475 from the [M+HCOO]- ion of ginsenosides 25-OH-Rg6 (a) and 20(S)-Rg2 (b)
圖5 人參皂苷20(S)-Rf2(a)和Rg6(b)的[M+HCOO]-離子的二級串聯(lián)質(zhì)譜圖Fig.5 MS/MS spectra of the [M+HCOO]- ion of ginsenosides 20(S)-Rf2 (a) and Rg6 (b)
在12-磷鎢酸中,Re首先發(fā)生C-20位的去糖基化反應(yīng),這可能是由于C-20位的去糖基化反應(yīng)可以生成相對于C-6位活性更高的叔醇結(jié)構(gòu),示于圖6a。去糖基化反應(yīng)產(chǎn)物可以通過C-24(25)雙鍵和C-20叔醇結(jié)構(gòu)的連續(xù)水合以及脫水反應(yīng)進(jìn)一步轉(zhuǎn)化,生成稀有皂苷。
2.2 人參皂苷20(S)-Rf的化學(xué)轉(zhuǎn)化
人參皂苷20(S)-Rf在12-磷鎢酸中化學(xué)轉(zhuǎn)化產(chǎn)物的總離子流圖示于圖1b,8種產(chǎn)物依次命名為峰10~17。其中,反應(yīng)物20(S)-Rf的相對分子質(zhì)量為800,在二級串聯(lián)質(zhì)譜圖中主要觀察到Y(jié)1β、Z1β和Y0β離子,示于圖7。0,2X0β和B1β離子的存在說明了取代糖基為Glc-Glc。葡萄糖環(huán)斷裂產(chǎn)生的2,5A1β也出現(xiàn)在譜圖中。通過對峰14進(jìn)行二級串聯(lián)質(zhì)譜分析并與標(biāo)準(zhǔn)品保留時(shí)間比對,可以確認(rèn)峰14是未完全轉(zhuǎn)化的反應(yīng)物20(S)-Rf。峰15是峰14的同分異構(gòu)體,具有相似的串聯(lián)質(zhì)譜圖,并且保留時(shí)間相近,因此可以確認(rèn)峰15為20(S)-Rf的差向異構(gòu)體20(R)-Rf。峰10和11、峰12和13、峰16和17分別為相對分子質(zhì)量818、800、782的3對同分異構(gòu)體,其二級串聯(lián)質(zhì)譜圖示于圖8。通過分析Re轉(zhuǎn)化產(chǎn)物的譜圖,可以將這6種產(chǎn)物分別歸屬為20(S)-Rf3和20(R)-Rf3、25-OH-Rg9和25-OH-Rg8、Rg9和Rg8。
20(S)-Rf的轉(zhuǎn)化途徑示于圖6b。由于20(S)-Rf在C-20位沒有糖基取代基,因此沒有發(fā)生去糖基化反應(yīng)。而是首先發(fā)生了C-20位的差向異構(gòu)化反應(yīng),生成差向異構(gòu)體20(R)-Rf,然后繼續(xù)通過C-20和C-24(25)位的脫水及水合反應(yīng)轉(zhuǎn)化生成稀有皂苷。在現(xiàn)有的實(shí)驗(yàn)條件下,Re和20(S)-Rf在C-6位的二糖取代基并沒有被轉(zhuǎn)化,轉(zhuǎn)化反應(yīng)主要發(fā)生在C-20位的烯烴鏈與糖基取代基上。s
圖6 12-磷鎢酸化學(xué)轉(zhuǎn)化人參皂苷Re(a)和20(S)-Rf(b)的轉(zhuǎn)化途徑Fig.6 Chemical transformation pathways of ginsenoside Re (a) and 20(S)-Rf (b) by H3PW12O40
圖7 人參皂苷20(S)-Rf的裂解規(guī)律(a)和[M-H]-離子m/z 945的二級串聯(lián)質(zhì)譜圖(b)Fig.7 Fragmentation (a) and MS/MS spectrum of the ion at m/z 945 (b) of ginsenoside Re
圖8 人參皂苷20(S)-Rf3(a),25-OH-Rg9(b)和Rg9(c)的[M-H]-離子的二級串聯(lián)質(zhì)譜圖Fig.8 MS/MS spectrum of the [M-H]- ion of ginsenosides 20(S)-Rf3 (a), 25-OH-Rg9 (b) and Rg9 (c)
人參皂苷Re和20(S)-Rf的轉(zhuǎn)化率與反應(yīng)時(shí)間的關(guān)系示于圖9??梢钥闯?,12-磷鎢酸對這2種皂苷都具有良好的轉(zhuǎn)化活性。Re的轉(zhuǎn)化率隨反應(yīng)時(shí)間迅速增加,15 min時(shí),轉(zhuǎn)化率達(dá)到45%,并于90 min后接近100%;而20(S)-Rf的轉(zhuǎn)化率低于Re,反應(yīng)開始4 h后轉(zhuǎn)化率接近100%。相對于生物轉(zhuǎn)化方法來說,12-磷鎢酸對原人參三醇型皂苷具有較高的轉(zhuǎn)化率,但是產(chǎn)物的選擇性仍需提高。
圖9 人參皂苷Re和20(S)-Rf轉(zhuǎn)化率隨時(shí)間的變化Fig.9 Conversion of ginsenoside Re and 20(S)-Rf versus reaction time
本研究采用高效液相色譜-電噴霧-多級串聯(lián)質(zhì)譜技術(shù)對12-磷鎢酸化學(xué)轉(zhuǎn)化原人參三醇型皂苷Re、20(S)-Rf得到的多種稀有皂苷進(jìn)行了結(jié)構(gòu)和轉(zhuǎn)化途徑解析。Re的轉(zhuǎn)化產(chǎn)物為20(S)-Rf2、20(R)-Rf2,20(S)-Rg2、20(R)-Rg2、25-OH-Rg6、25-OH-Rg4、Rg6和Rg4;20(S)-Rf的轉(zhuǎn)化產(chǎn)物為20(R)-Rf、20(S)-Rf3、20(R)-Rf3、25-OH-Rg9、25-OH-Rg8、Rg8和Rg9。實(shí)驗(yàn)結(jié)果表明,HPLC-ESI-MSn技術(shù)可以快速鑒定人參皂苷結(jié)構(gòu),12-磷鎢酸可以有效地轉(zhuǎn)化主要人參皂苷為多種稀有皂苷,且雜多酸等固體酸催化劑具有化學(xué)轉(zhuǎn)化皂苷類天然產(chǎn)物的潛在應(yīng)用價(jià)值。
[1] SHIN K C, SEO M J, OH H J, et al. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides byβ-glucosidase from thermus thermophilus and its application to the production of ginsenoside F2from gypenoside ⅩⅦ[J]. Biotechnology Letters, 2014, 36(6): 1 287-1 293.
[2] 李春梅,于擎,孫樂,等. RRLC-Q-TOF-MS法研究人參皂苷Rh1對映異構(gòu)體在大鼠體內(nèi)的藥代動(dòng)力學(xué)行為[J]. 質(zhì)譜學(xué)報(bào),2014,35(6):509-515.
LI Chunmei, YU Qing, SUN Le, et al. The pharmacokinetics studies of ginsenoside Rh1 enantiomers in rats by RRLC-Q-TOF-MS[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(6): 509-515(in Chinese).
[3] 馬增春,肖勇,趙佳偉,等. 人參皂苷Re對H9c2心肌細(xì)胞CYP450酶的影響[J]. 中國藥理通報(bào),2016,32(4):494-498.
MA Zengchun, XIAO Yong, ZHAO Jiawei, et al. Effect of ginsenoside Re on cytochrome P450 in H9c2 cells[J]. Chinese Pharmacological Bullet, 2016, 32(4): 494-498(in Chinese).
[4] 周青,項(xiàng)光剛,劉超群,等. 人參皂苷Rf誘導(dǎo)骨肉瘤細(xì)胞DNA損傷和修復(fù)受訓(xùn)的人成纖維細(xì)胞研究[J]. 遼寧年醫(yī)藥大學(xué)學(xué)報(bào),2016,(6):35-38.
ZHOU Qing, XIANG Guanggang, LIU Chaoqun, et al. Ginsenosides-Rf induces DNA damage in human osteosarcoma cells and reduces DNA damage in human fibroblasts[J]. Journal of Liaoning University of TCM, 2016,(6): 35-38(in Chinese).
[5] 周思思,馬增春,梁乾德,等. 基于UPLC-TOF-MS分析人參麥冬配伍后皂苷類成分的變化[J]. 質(zhì)譜學(xué)報(bào),2013,34(2):88-95.
ZHOU Sisi, MA Zengchun, LIANG Qiande, et al. UPLC-TOF-MS based profiling approach to evaluate ginsenoside composition in combination of ginseng and radix ophiopogonis[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(2): 88-95(in Chinese).
[6] YANG H J, YOO G J, KIM H S, et al. Implication of the stereoisomers of ginsenoside derivatives in the antiproliferative effect of HSC-T6 cells[J]. Journal of Agricultural & Food Chemistry, 2012, 60(47): 11 759-11 764.
[7] LEE S M, SHON H J. Ginsenosides from heat processed ginseng[J]. Chemical & Pharmaceutical Bulletin, 2009, 57(1): 92-94.
[8] 姚華,金永日,楊潔. 密閉式微波講解法促進(jìn)常見人參皂苷向稀有人參皂苷轉(zhuǎn)化的規(guī)律[J]. 高等學(xué)?;瘜W(xué)學(xué)報(bào),2014,35(11):2 317-2 323.
YAO Hua, JIN Yongri, YANG Jie, et al. Conversion rule of rare ginsenosides produced from major ginsenosides by confined microwave promoted degradation method[J]. Chem J Chinese Universities, 2014, 35(11): 2 317-2 323(in Chinese).
[9] SADJADI S, HERAVI M M. Recent advances in applications of POMs and their hybrids in catalysis[J]. Current Organic Chemistry, 2016, 20(999): 1.
[10]IVANOVA S. Hybrid organic-inorganic materials based on polyoxometalates and ionic liquids and their application in catalysis[J]. ISRN Chemical Engineering, 2014, 2014: 963792, 1-13.
[11]HUANG Y B. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15(5): 1 095-1 111.
[12]TIAN J, FANG C, CHENG M, et al. Hydrolysis of cellulose over CsxH3-xPW12O40(x=1-3) heteropoly[J]. Acid Catalysts Chemical Engineering & Technology, 2011, 34(3): 482-486.
[13]LI X, JIANG Y, WANG Y, et al. Effective low-temperature hydrolysis of cellulose catalyzed by concentrated H3PW12O40under microwave irradiation[J]. Rsc Advances. 2012, 2(17): 6 921-6 925.
[14]DOMON B, COSTELLO C E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate J, 1988, 5(4): 397-409.
[15]WANG W, ELIZABETH R, ZHAO Y Q, et al. Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: anticancer activity and mechanisms of action[J]. Cancer Lett, 2009, 278(2): 241-248.
[16]WANG W, RAYBURN E M, ZHAO Y, et al. Experimental therapy of prostate cancer with novel natural product anti-cancer ginsenosides[J]. Prostate, 2008, 68(8): 809-819.
[17]YANG H, LI D L, KANG K B, et al. Identification of ginsenoside markers from dry purified extract ofPanaxginsengby a dereplication approach and UPLC-QTOF[J]. Analysis Journal of Pharmaceutical & Biomedical Analysis, 2015, (109): 91-104.
Chemical Transformation of Protopanaxatriol-Type Ginsenosides Re and 20(S)-Rf by Heteropoly Acid Based on HPLC-ESI-MSnAnalysis
GAO Yue1, XIU Yang1, ZHAO Huan-xi1, LIU Shu-ying1,2
(1.JilinGinsengAcademy,ChangchunUniversityofChineseMedicine,Changchun130117,China;2.ChangchunInstituteofAppliedChemistry,ChineseAcademyofScience,Changchun130022,China)
The chemical transformations of protopanaxatriol-type ginsenosides Re and 20(S)-Rf were performed using Keggin-type heteropoly acid catalysis dodeca tungstophosphoric acid. All the transformed products were identified based on a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MSn) method in association with the comparison of retention time to authentic standard. Each of the generated ginsenosides had isomeric counterparts, all of which were further differentiated through their multiple tandem mass spectra as well as the polarity difference. The molecular mass of ginsenosides could be obtained based on the deprotonated molecular [M-H]-ions and formic acid adducted ions [M+HCOO]-. Based on the neutral loss information, the kind of the saccharide substitution was recognized rapidly. And the constituents of the saccharide were also identified on the basis of the fragment ions from glycosidic bond cleavage and rearrangement after cross-ring cleavage. Ginsenoside Re was transformed into 8 products, i.e. 20(S)-Rf2, 20(R)-Rf2, 20(S)-Rg2, 20(R)-Rg2, 25-OH-Rg6, 25-OH-Rg4, Rg6and Rg4, while 7 products were derived from ginsenoside 20(S)-Rf, i.e. 20(R)-Rf, 20(S)-Rf3, 20(R)-Rf3, 25-OH-Rg8, 25-OH-Rg9, Rg8and Rg9. Based on the established HPLC method, all the products were well separated. Moreover, the specific aglycone structure of 3β, 12β, 25-trihydroxy-dammar-20(22)-ene was obtained for the first time through chemical transformation, which has been proved to be safe and effective therapeutic agents. Chemical transformation pathways of ginsenoside Re and 20(S)-Rf were also summarized, which involved deglycosylation, hydration, dehydration, and epimerization reactions. Deglycosylation at C-20 position was thought to occur prior to the other three reactions during the transformation of ginsenoside Re, whereas since there is no saccharide substitutions at C-20 position of 20(S)-Rf, epimerization occurred firstly in the dodeca tungstophosphoric acid dissolved strongly acidic aqueous phase. The double bond between C-24 and C-25 tends to be hydrated, while the tertiary alcohol at C-20 is reactive for dehydration. All the transformation process could be deduced through the analysis of tandem mass spectra. Furthermore, the conversion of ginsenoside Re approximately reached to 100% within 90 min. Especially, the conversion was up to 45% within 15 min. While for 20(S)-Rf, it lasted for 4 h to reach 100% conversion. The conversion of Re was superior to most of that resulting from biotransformation. All the results indicate that HPLC-ESI-MSnis an effective method for the rapid identification of ginsenosides. Heteropoly acid catalysts open up a clean, economical and environmentally benign process in the chemical transformation of saponin-type active components in traditional Chinese medicine.
protopanaxatriol-type ginsenosides; high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MSn); Keggin-type heteropoly acid
2016-08-29;
2016-11-24
吉林省科技發(fā)展計(jì)劃青年科研基金項(xiàng)目(20160520123JH);吉林省科技發(fā)展計(jì)劃產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟項(xiàng)目(20160309002YY)資助
高 月(1991—),女(滿族),吉林人,碩士研究生,中藥學(xué)專業(yè)。E-mail: 284296526@qq.com
劉淑瑩(1943—),女(漢族),黑龍江人,研究員,從事中藥化學(xué)和有機(jī)質(zhì)譜學(xué)研究。E-mail: syliu@ciac.ac.cn
修 洋(1983—),男(漢族),吉林人,助理研究員,從事中藥化學(xué)和有機(jī)質(zhì)譜學(xué)研究。E-mail: ys830805@sina.com
O657.63
A
1004-2997(2017)02-0203-08
10.7538/zpxb.2016.0142