• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    孕期不良環(huán)境所致的子代多種疾病易感及其宮內(nèi)編程機制

    2017-03-28 11:18:26焦哲瀟
    關(guān)鍵詞:子代外源編程

    汪 暉,焦哲瀟

    (1.武漢大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系,湖北武漢 430071;2.發(fā)育源性疾病湖北省重點實驗室,湖北武漢 430071)

    孕期不良環(huán)境所致的子代多種疾病易感及其宮內(nèi)編程機制

    汪 暉1,2,焦哲瀟1,2

    (1.武漢大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系,湖北武漢 430071;2.發(fā)育源性疾病湖北省重點實驗室,湖北武漢 430071)

    汪 暉,博士,二級教授,博士生導(dǎo)師?,F(xiàn)任武漢大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系主任,兼湖北省發(fā)育源性疾病湖北省重點實驗室主任。研究方向為外源物發(fā)育毒性。主持國家自然科學(xué)基金重點及重點國際合作項目3項、教育部科學(xué)研究重大項目等。首次在國際上系統(tǒng)展現(xiàn)了孕期外源物暴露下糖皮質(zhì)激素編程胎兒疾病易感的“宮內(nèi)神經(jīng)內(nèi)分泌代謝編程機制”,為解析國際前沿問題“健康與疾病的發(fā)育起源”,探尋胎源性疾病的早期防治策略,提供了重要的研究依據(jù)。2012年成功承辦了國家基金委“孕期不良環(huán)境與胎源性疾病”學(xué)科發(fā)展戰(zhàn)略研討會。發(fā)表系列SCI論文62篇。

    流行病學(xué)調(diào)查提示,孕期不良環(huán)境可引起子代低出生體重及其成年后多種慢性疾病的易感性增加,如代謝性疾病和神經(jīng)精神性疾病等。然而,其發(fā)生機制尚未見系統(tǒng)的闡明。下丘腦-垂體-腎上腺(HPA)軸是機體應(yīng)激相關(guān)的重要神經(jīng)內(nèi)分泌軸,在出生前、后的應(yīng)激防御應(yīng)答中發(fā)揮著重要的作用,也是宮內(nèi)時期胎兒易受損傷的重要靶位。研究發(fā)現(xiàn),孕期多種不良環(huán)境因素(包括外源環(huán)境和母體健康因素)可通過母體-胎盤-胎兒生物學(xué)單位,多途徑地影響宮內(nèi)胎兒發(fā)育,造成其出生后HPA軸發(fā)育編程改變及成年后多種慢性疾病易感。本綜述結(jié)合本實驗室的最新研究結(jié)果,綜述了國際上有關(guān)孕期不良環(huán)境所致子代成年疾病易感的病因?qū)W和宮內(nèi)編程機制的最新進展,提出宮內(nèi)母源性糖皮質(zhì)激素過暴露可引起子代宮內(nèi)神經(jīng)內(nèi)分泌代謝編程改變,其核心是多器官糖皮質(zhì)激素-胰島素樣生長因子1軸編程,表觀遺傳修飾異常參與其編程過程。

    孕期不良環(huán)境;代謝綜合征;下丘腦-垂體-腎上腺軸;表觀遺傳修飾;宮內(nèi)編程

    早在20世紀(jì)90年代初,英國學(xué)者David Barker基于大規(guī)模流行病學(xué)調(diào)查結(jié)果,提出低出生體重患兒成年后高血壓、糖尿病的發(fā)病率增加和“成人疾病胎兒起源”假說。近10年來,國內(nèi)外學(xué)者開展了大量有關(guān)孕期不良環(huán)境、胎兒出生體重與成年慢性疾病之間的相關(guān)性研究,并基于循證研究的結(jié)果,提出人類疾病起源的新概念——“健康與疾病的發(fā)育起源”(developmental origins of health and dis?ease,DOHaD)[1]。孕期不良環(huán)境所致子代低出生體重及成年多種慢性疾病易感的宮內(nèi)起源機制假說中,至今最為認(rèn)可的還是下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal,HPA)軸介導(dǎo)的“宮內(nèi)內(nèi)分泌發(fā)育編程”假說[2-3]。本文結(jié)合本實驗室近10年系列研究結(jié)果,綜述了國際上有關(guān)孕期不良環(huán)境所致子代成年疾病易感的病因?qū)W及宮內(nèi)編程機制研究的最新進展,提出母源性糖皮質(zhì)激素(glucocorticoid,GC)過暴露所致子代慢性疾病易感的“宮內(nèi)神經(jīng)內(nèi)分泌代謝編程”機制,并指出其核心是多組織器官發(fā)育相關(guān)的“GC-胰島素樣生長因子1(GS-insulin-like growth factor 1,GC-IGF1)軸”編程,其中表觀遺傳修飾參與此編程過程。

    1 孕期不良環(huán)境及其危害

    孕期不良環(huán)境可導(dǎo)致多種不良妊娠結(jié)局發(fā)生,甚至?xí)黾幼哟赡旰蠖喾N慢性疾病易感。孕期不良環(huán)境除了先天遺傳因素外,很大程度上是因為孕期宮內(nèi)環(huán)境欠佳所致,宮內(nèi)環(huán)境主要包括外源暴露環(huán)境和母體健康環(huán)境。

    1.1 不良妊娠結(jié)局及其遠期危害

    孕期不良環(huán)境可引起多種不良妊娠結(jié)局,主要包括流產(chǎn)、死產(chǎn)、畸形、早產(chǎn)和生長遲緩等[4-6]。宮內(nèi)生長遲緩(intrauterine growth retardation,IUGR)是指宮內(nèi)發(fā)育時期,胎兒的正常生長態(tài)勢受到阻滯,應(yīng)有的生長潛能削弱,影響其特定的組織結(jié)構(gòu)和功能發(fā)育。IUGR為常見的發(fā)育毒性之一,主要表現(xiàn)為低出生體質(zhì)質(zhì)量。大量流行病學(xué)調(diào)查表明,IUGR不僅可引起胎兒窘迫、新生兒窒息和圍產(chǎn)兒死亡,其危害還將延續(xù)至出生后,導(dǎo)致子代出生后體格和智力發(fā)育低下,成年后多種慢性疾病的易感性增加,包括代謝性疾病和神經(jīng)精神性疾?。?-10]。例如,流行病學(xué)和臨床研究已經(jīng)在不同國家、不同種族人群中證實了低出生體質(zhì)量或IUGR與成人代謝綜合征(metabolic syndrome,MS)之間的相關(guān)性[11]。傳統(tǒng)觀點認(rèn)為,糖尿病的病因與成年后環(huán)境和不良生活習(xí)慣有關(guān),但近20年來的流行病學(xué)調(diào)查顯示,糖尿病與胎兒宮內(nèi)發(fā)育的不良因素暴露密切相關(guān)[12]。流行病學(xué)調(diào)查還表明,低出生體質(zhì)量可影響骨生長發(fā)育并持續(xù)到成年;成年骨質(zhì)疏松的發(fā)生存在宮內(nèi)發(fā)育編程[13-15]。本室前期研究及流行病學(xué)調(diào)查也提示,孕期不良宮內(nèi)環(huán)境與子代罹患抑郁癥風(fēng)險增加密切相關(guān)[10,16-19]。有數(shù)據(jù)顯示,腎小球硬化的發(fā)生與低出生體質(zhì)量有關(guān)[20-21]。大量的動物實驗也已證實,宮內(nèi)不良環(huán)境所致的IUGR子代成年后多種疾病的易感性增加,包括非酒精性脂肪肝(non-alcoholic fatty liver,NAFL)[22]、糖尿病[23]和心血管疾?。?4]等。

    1.2 孕期不良外源環(huán)境和母體環(huán)境

    孕期外源環(huán)境主要包括外源物暴露和微生物感染等。已知孕期外源物暴露是引起宮內(nèi)有害環(huán)境及不良妊娠結(jié)局的最確切和危險的誘因之一。已證實能引起不良妊娠結(jié)局的外源物主要有:①環(huán)境毒物類。如有機揮發(fā)物[6]、重金屬[25]、煙和空氣污染物[26]等。Walfisch等[27]對約7000名孕婦的調(diào)查研究顯示,40%的產(chǎn)婦在懷孕期間有主動或被動吸煙,且胎兒出生體質(zhì)量和頭圍降低均與吸煙相關(guān)。吸煙還可導(dǎo)致胎兒出生缺陷風(fēng)險增加[28]。流行病學(xué)調(diào)查顯示[29],孕期暴露于三氯乙烯可導(dǎo)致不良妊娠結(jié)局,包括早產(chǎn)、低出生體質(zhì)量和出生缺陷。②藥物類。如地塞米松[30]、咖啡因[31]和可卡因[32]等。有學(xué)者調(diào)查指出,孕期給予倍他米松或地塞米松均會導(dǎo)致胎兒出生體質(zhì)量降低[30]。孕期咖啡因攝入過多可引起胎兒生殖及發(fā)育毒性,如早產(chǎn)、自然流產(chǎn)、生長遲緩及先天畸形等[33]。③食品及飲料類。如酒[5]、咖啡和茶[34]等。通過對7141名孕婦的調(diào)查研究顯示,孕早、晚期飲酒均可導(dǎo)致胎兒出生體質(zhì)量降低或早產(chǎn)[35]。流行病學(xué)調(diào)查顯示,孕期攝入咖啡和茶也可導(dǎo)致胎兒出生體質(zhì)量降低和骨骼發(fā)育遲緩[34]。孕期HIV感染也被證實是影響胎兒正常發(fā)育的重要因素之一[36]。

    孕期母體環(huán)境主要指母體的營養(yǎng)狀況和疾病狀態(tài)。產(chǎn)婦的飲食可以通過營養(yǎng)物質(zhì)的量直接影響胎兒的生長發(fā)育,也可通過胎兒內(nèi)分泌系統(tǒng)間接對其產(chǎn)生影響。三大營養(yǎng)素包括糖類、蛋白質(zhì)和脂肪在孕期缺乏均可導(dǎo)致不良妊娠結(jié)局的發(fā)生[37-38]。孕期不良環(huán)境也可通過引起母體的生理與病理變化而影響胎兒發(fā)育。已有文獻報道,孕期母體急、慢性應(yīng)激均可影響子代HPA軸發(fā)育,造成其成年個體HPA軸功能異常及行為學(xué)改變[39-40]。我們前期及其他實驗室研究也表明,多種外源物作為應(yīng)激因子(如咖啡因、尼古丁、乙醇和地塞米松)可改變孕鼠的應(yīng)激狀態(tài),使孕鼠腎上腺甾體合成功能發(fā)生變化[41-44],包括增加皮質(zhì)醇和兒茶酚胺的分泌和釋放[45],從而加重機體的應(yīng)激狀態(tài)。母體肝是外源物代謝的主要器官,其代謝功能改變對其自身藥物利用的有效程度及胎兒的生長發(fā)育起著不可缺少的作用。研究發(fā)現(xiàn),在健康成人咖啡因半衰期為4~5 h,在孕早期可達10 h,孕晚期延長至18 h[34];母體肝的疾病也會明顯地延長咖啡因的半衰期[46]。我們前期研究也發(fā)現(xiàn),煙霧暴露的孕鼠肝抗氧化功能發(fā)生改變[47]。作為IUGR發(fā)生的明確誘因,吸煙可通過減弱母體內(nèi)源性抗氧化物質(zhì)(如維生素C、維生素E和谷胱甘肽)的生成[48],影響機體內(nèi)生物大分子的代謝和胎兒發(fā)育的內(nèi)環(huán)境。

    1.3 孕期不良環(huán)境所致母源性GC過暴露

    已知宮內(nèi)基礎(chǔ)GC(在人為皮質(zhì)醇、嚙齒動物為皮質(zhì)酮)的水平是調(diào)節(jié)胎兒組織形態(tài)和功能成熟的關(guān)鍵,但過高GC濃度的暴露可引起胎兒發(fā)育異常(如IUGR)[49]。胎盤在整個孕期承擔(dān)了重要的代謝與排泄功能,是維系胎兒正常發(fā)育的重要器官。胎盤上2型11β-羥類固醇脫氫酶(11β-hydroxyster?oid dehydrogenase 2,11β-HSD2)可氧化滅活過多的母源性GC,保護胎兒免受母體GC干擾[50]。人群和嚙齒類動物研究表明,胎盤11β-HSD2活性易受到孕期多種不良環(huán)境(如外源物、飲食、感染、低氧和應(yīng)激)的影響,導(dǎo)致發(fā)育中胎兒接觸過多的母源性GC[51-55]。臨床研究和動物實驗表明,母體連續(xù)使用促腎上腺皮質(zhì)激素(adrenocorticotropic hormone,ACTH)和人工合成GC(如地塞米松和倍他米松)能使胎兒GC暴露增多,導(dǎo)致出生低體質(zhì)量和多器官發(fā)育不良[56]。本室也通過系列動物實驗證實,孕期咖啡因、尼古丁和乙醇暴露均可通過應(yīng)激反應(yīng),升高母體GC水平并開放胎盤GC屏障,導(dǎo)致胎兒過暴露于母源性GC[42-43,57-58]。另外有研究報道,妊娠期母親在營養(yǎng)限制、情感障礙(抑郁或焦慮)或子癇等情況下,均可導(dǎo)致胎兒暴露于母體高GC水平[59-60]。這些研究均提示,孕期不良環(huán)境所致的胎兒發(fā)育毒性皆伴有母源性GC過暴露,而這很可能是孕期不良環(huán)境所致子代IUGR發(fā)生的啟動因素[61]。

    2 HPA軸相關(guān)宮內(nèi)神經(jīng)內(nèi)分泌代謝編程

    雖然大量的流行病學(xué)證據(jù)提示,孕期不良環(huán)境可引起子代IUGR及成年多種慢性疾病的易感,然而有關(guān)宮內(nèi)胎兒發(fā)育的研究報道甚少,也缺乏系統(tǒng)的理論體系去解析這一普遍現(xiàn)象。已知宮內(nèi)環(huán)境對生命發(fā)育過程具有持久、決定性的影響?!皩m內(nèi)編程(intrauterine programming)”是指宮內(nèi)發(fā)育時期遭受的損傷導(dǎo)致組織結(jié)構(gòu)與功能永久改變的過程[62]。目前最為認(rèn)可的機制是“宮內(nèi)內(nèi)分泌發(fā)育編程”假說[63]。我們基于孕期外源物暴露和攝食限制所致的大鼠IUGR模型,進一步提出“宮內(nèi)神經(jīng)內(nèi)分泌代謝編程”機制,并指出其核心可能是“GC-IGF1軸”編程。

    2.1 HPA軸低基礎(chǔ)活性和高應(yīng)激敏感性編程

    已知HPA軸是機體應(yīng)激反應(yīng)的重要神經(jīng)內(nèi)分泌軸,也是宮內(nèi)時期易受損傷的重要靶位[64]。越來越多的學(xué)者認(rèn)識到,HPA軸編程改變是介導(dǎo)MS胎兒起源的最可能機制[65-66],并與成年多種慢性疾病的易感性增加有關(guān)[2-3,67]。已有研究表明,孕期不良環(huán)境可通過影響胎兒HPA軸及其高位調(diào)節(jié)中樞(如海馬)發(fā)育,導(dǎo)致子代出生后HPA軸功能編程改變,主要表現(xiàn)為HPA軸低基礎(chǔ)活性和高應(yīng)激敏感性編程[68]。

    2.1.1 HPA軸低基礎(chǔ)活性編程

    臨床研究和動物實驗證實,不良宮內(nèi)環(huán)境易使胎兒HPA軸發(fā)育編程改變,主要表現(xiàn)為出生后HPA軸低基礎(chǔ)活性變化[40,69]。腎上腺作為HPA軸的終末效應(yīng)器官,其分泌的GC對維持妊娠、促進胎兒生長和神經(jīng)系統(tǒng)發(fā)育有著重要意義。胎腎上腺也可通過自身的甾體合成功能來調(diào)節(jié)其宮內(nèi)內(nèi)環(huán)境穩(wěn)態(tài)和發(fā)育成熟[70],因此宮內(nèi)時期腎上腺的正常發(fā)育及基礎(chǔ)GC水平是胎兒成熟的關(guān)鍵[71]。本室研究發(fā)現(xiàn),胎兒發(fā)育時期腎上腺已具備合成多種甾體激素的能力[72];孕期外源物(如尼古丁、地塞米松、乙醇和咖啡因)暴露下胎腎上腺功能發(fā)育明顯受損,其甾體合成酶包括甾體合成急性調(diào)節(jié)蛋白(ste?roidogenic acute regulatory protein,StAR)和膽固醇側(cè)鏈裂解酶(P450 cholesterol side chain cleavage,P450scc)的表達均降低[41-43,57];進一步發(fā)現(xiàn),孕期咖啡因和尼古丁暴露通過調(diào)節(jié)多個甾體合成酶系統(tǒng)的轉(zhuǎn)錄激活因子類固醇生成轉(zhuǎn)錄因子(steroidogenic factor 1,SF1)啟動子區(qū)甲基化和組蛋白乙?;揎?,抑制SF1及甾體合成酶系統(tǒng)表達,從而減少胎腎上腺GC的合成[73-74]。我們還發(fā)現(xiàn),孕期咖啡因、尼古丁和乙醇暴露所致的胎鼠腎上腺甾體合成功能降低具有宮內(nèi)編程效應(yīng),還能延續(xù)到出生后甚至成年,表現(xiàn)為低基礎(chǔ)活性[19,75-76],其發(fā)生機制主要與宮內(nèi)母源性高GC所致胎腎上腺“GC-IGF1軸”編程有關(guān)[75-76]。

    2.1.2 HPA軸高應(yīng)激敏感性編程

    應(yīng)激反應(yīng)的敏感性改變是HPA軸功能異常的主要表現(xiàn)之一。越來越多的研究提示,孕期不良環(huán)境可編程性地改變子代HPA軸應(yīng)激敏感性[77]。然而,其宮內(nèi)發(fā)生機制并不清楚。已知HPA軸的上游活性主要表現(xiàn)在下丘腦的室旁核(paraventricular nucleus,PVN)區(qū)神經(jīng)內(nèi)分泌小細胞(parvocellu?lar neuroendocrine,PNC)活性上。當(dāng)機體受到應(yīng)激刺激時,下丘腦PNC分泌促腎上腺皮質(zhì)激素釋放激素(corticotropin-releasing hormone,CRH)和精氨酸加壓素(arginine vasopressin,AVP),以啟動機體的應(yīng)激反應(yīng)。CRH和AVP迅速刺激垂體的ACTH分泌,并進一步促使腎上腺分泌GC。本室前期研究發(fā)現(xiàn)[44,78-79],孕期多種外源物(如咖啡因、尼古丁和乙醇)暴露的成年子代ACTH和皮質(zhì)酮在基礎(chǔ)狀態(tài)下降低,但給予慢性應(yīng)激后卻顯著高于對照組,即應(yīng)激后血ACTH和CORT變化率增加。提示,這些子代存在HPA軸高應(yīng)激敏感性。有趣的是,在孕期乙醇暴露所致的子代HPA軸宮內(nèi)編程過程中,無論是在宮內(nèi)HPA軸功能發(fā)育抑制狀態(tài)下,還是在出生后HPA軸低基礎(chǔ)活性和高應(yīng)激敏感性下,下丘腦PVN區(qū)均存在局部興奮性潛能增加,表現(xiàn)為興奮性遞質(zhì)谷氨酸轉(zhuǎn)運體—囊泡谷氨酸轉(zhuǎn)運體(glutamate transporter,VGluT)表達升高,而抑制性遞質(zhì)谷氨酸脫羧酶(glutamic acid decarboxyl?ase,GAD)表達降低,致使VGluT/GAD表達比增加[80]。提示,這些外源物孕期暴露可永久性改變子代下丘腦PVN的調(diào)定點與敏感度,引起子代HPA軸高應(yīng)激敏感性變化。

    已知下丘腦PVN區(qū)的活性和功能狀態(tài)主要受海馬和杏仁核的調(diào)控。其中,海馬不僅可抑制HPA軸的應(yīng)激反應(yīng),還可促進應(yīng)激狀態(tài)下亢進的HPA軸恢復(fù)到基礎(chǔ)水平[81]。海馬中GC受體(GC receptor,GR),鹽皮質(zhì)激素受體(mineralocorticoid receptor,MR)均有大量分布。MR對GC的親和力是GR對GC親和力的10倍以上[82],當(dāng)機體內(nèi)GC水平較低時,海馬局部GC幾乎全部與MR結(jié)合,以調(diào)控HPA軸的基礎(chǔ)活性,使GR處于空載狀態(tài);而當(dāng)機體內(nèi)GC水平升高,使得MR處于飽和狀態(tài)時,GC與海馬GR結(jié)合,進一步通過Glu-GABA突觸聯(lián)系介導(dǎo)途徑,抑制PVN區(qū)的CRH神經(jīng)元,從而抑制HPA軸的過度活化[83]。已知海馬GR是對GC最易感和易損的神經(jīng)靶位,過量的GC可通過過度活化海馬GR介導(dǎo)局部神經(jīng)元的損傷改變[84]。此外,MR和GR的表達失衡也參與介導(dǎo)了HPA軸的功能紊亂。已有研究證實,海馬區(qū)域MR/GR表達比的降低,可使海馬在應(yīng)激狀態(tài)下對HPA軸的負(fù)反饋調(diào)節(jié)能力減弱,這可能是HPA軸高應(yīng)激敏感性發(fā)生的主要原因[85]。綜上,孕期不良環(huán)境所致的宮內(nèi)母源性高GC可過度活化海馬GR,引起神經(jīng)元功能發(fā)育異常,進而影響海馬對HPA軸的負(fù)反饋調(diào)控作用,致使下丘腦局部的興奮性潛能增加;這些改變可延續(xù)到出生后,表現(xiàn)為慢性應(yīng)激下出現(xiàn)的HPA軸高敏感性。其中,海馬結(jié)構(gòu)損傷和調(diào)控功能的編程異??赡苁墙閷?dǎo)子代HPA軸高應(yīng)激敏感性的重要機制[80]。

    2.2 GC-IGF1軸宮內(nèi)編程

    2.2.1 胎兒發(fā)育與GC-IGF1軸編程

    IGF1信號通路是機體內(nèi)分泌調(diào)節(jié)系統(tǒng)的核心,參與調(diào)控宮內(nèi)時期各組織和器官的分化、發(fā)育及代謝等過程[86-87]。IGF1與其受體IGF1R結(jié)合后,一方面磷酸化MEK/ERK,啟動MAPK調(diào)節(jié)細胞增殖和凋亡,另一方面磷酸化PI3K/Akt,通過固醇調(diào)節(jié)元件結(jié)合蛋白-1c(sterol regulatory element binding protein-1c,SREBP1c)等轉(zhuǎn)錄因子,調(diào)節(jié)細胞糖、脂代謝功能。研究發(fā)現(xiàn),從著床開始,幾乎所有胚胎組織即可檢測到IGF1的表達[88]。宮內(nèi)時期,IGF1主要來自于肝,途經(jīng)血液調(diào)控全身組織和器官發(fā)育,而組織器官局部的IGF1自分泌或旁分泌調(diào)控機制則是在胚胎發(fā)育中、晚期才初步建立,并在出生后逐步完善。已證實,肝IGF1或IGF1R敲除可顯著降低胎兒體質(zhì)量和體長[89-90]。因此,宮內(nèi)時期肝IGF1水平?jīng)Q定了胎兒的出生體質(zhì)量、器官結(jié)構(gòu)與功能發(fā)育狀況[86-88]。出生后,肝IGF1表達持續(xù)升高,到青春期達到高峰,之后維持一定水平,到老年期逐漸下降,這與機體的發(fā)育和成熟相吻合[88,91]。研究表明,胚胎發(fā)育時期IGF1是誘導(dǎo)干細胞(包括胚胎干細胞和間充質(zhì)干細胞)富集和功能分化的重要因子,在器官發(fā)生和結(jié)構(gòu)分化中起著重要作用[92-94]。因此,IUGR患兒的低IGF1狀態(tài)可能誘導(dǎo)器官發(fā)生、發(fā)育障礙(如干細胞儲備不足),而青春期肝IGF1表達過度激活又是IUGR子代出生后在營養(yǎng)條件好的情況下出現(xiàn)追趕性生長的主要因素,而追趕性生長又可進一步加重組織器官功能異常及糖脂代謝紊亂(如干細胞池耗竭)[95-98]。

    至今,宮內(nèi)時期肝組織IGF1表達調(diào)控機制尚未闡明。已發(fā)現(xiàn),GC是調(diào)節(jié)胎兒生長發(fā)育的關(guān)鍵因子,廣泛應(yīng)用于早產(chǎn)兒的“催熟”[99-100]。大量研究發(fā)現(xiàn),孕期不良環(huán)境所致的IUGR胎兒存在母源性GC過暴露、肝低IGF1表達的現(xiàn)象,且伴隨以肝為核心的全身性糖、脂代謝紊亂[22,79,98,101-104]。大量研究表明,GC可抑制多種組織或細胞內(nèi)IGF1表達,并引起機體糖脂代謝功能增強、全身脂肪分布異常[105-106]。我們發(fā)現(xiàn),孕期咖啡因或乙醇暴露的胎鼠和哺乳期仔鼠,血皮質(zhì)酮水平顯著升高的同時,血和多種組織(如肝、腎上腺)的IGF1水平顯著降低;斷奶后直至成年的仔鼠血皮質(zhì)酮水平逐步降低的同時,血和多種組織(如肝、腎上腺)IGF1水平卻逐步升高;斷奶后如給予高脂飲食,引起子代血皮質(zhì)酮水平進一步降低的同時,血和組織(肝、腎上腺)IGF1水平進一步升高。這種血GC和多組織IGF1水平之間的良好負(fù)相關(guān),提示宮內(nèi)母源性高GC編程了胎兒多組織IGF1及其下游信號通路的功能變化(即所謂“GC-IGF1軸”編程)[22,75-76,98]。

    基于上述,我們在國際上首次提出孕期不良環(huán)境所致子代IUGR及成年代謝性疾病易感的“GCIGF1軸”編程機制(圖1):即孕期不良環(huán)境所致的母源性高GC暴露可通過負(fù)向調(diào)節(jié)IGF1表達及下游信號通路,誘導(dǎo)多組織器官的結(jié)構(gòu)與功能發(fā)育呈GC依賴性編程改變,主要表現(xiàn)為宮內(nèi)IUGR發(fā)生和出生后體質(zhì)量追趕性生長,并因此造成各臟器功能發(fā)育異常及全身糖脂代謝功能紊亂。

    2.2.2 GC-IGF1軸編程介導(dǎo)多組織器官發(fā)育

    圖1 孕期外源物暴露所致的子代宮內(nèi)糖皮質(zhì)激素-胰島素樣生長因子1(GC-IGF1)軸編程機制.HPA:下丘腦-垂體-腎上腺;GC:糖皮質(zhì)激素.

    已有大量研究證實,孕期不良環(huán)境可導(dǎo)致IUGR個體多組織結(jié)構(gòu)與功能發(fā)育異[72,100,107-108]?!肮?jié)儉表型”是指由于胎兒時期個體對不良宮內(nèi)環(huán)境的調(diào)節(jié)與適應(yīng),引起機體的組織結(jié)構(gòu)、功能和代謝等改變,以適應(yīng)于不良環(huán)境的表型變化[109]。該假說認(rèn)為,胎兒在發(fā)育過程中,當(dāng)遇到不利生長環(huán)境時,為了維持其生存和發(fā)育,胎兒會改變自身的新陳代謝過程,將有限的能量進行重新分配,限制次要器官(如骨、腎、性腺)的能量消耗,以確保重要器官(如腦和肝)的發(fā)育,即胎兒變得“節(jié)儉”,這種改變會持續(xù)很長時間,甚至是永久性的[110]。如果出生后營養(yǎng)供應(yīng)高于出生前的預(yù)期,子代將出現(xiàn)早期的生長加速和后期的脂肪堆積。子代宮內(nèi)的不良生長加之出生后早期快速的追趕性生長,使得多臟器發(fā)育毒性及其相關(guān)疾病的風(fēng)險增大[111]。

    腎上腺和肝是GC-IGF1軸相關(guān)的兩個重要器官。腎上腺作為HPA軸的終末器官,也是GC合成和分泌的主要器官。本室研究發(fā)現(xiàn),孕期乙醇或咖啡因暴露下的腎上腺甾體合成功能降低,與母源性高GC激活腎上腺組織局部GC活化系統(tǒng)(包括11β-HSD,GR和C/EBPa)而抑制IGF1及其下游信號通路功能有關(guān),即存在腎上腺“GC-IGF1軸編程”改變;這種“GC-IGF1軸編程”也可導(dǎo)致出生時母體GC撤離后的腎上腺GC活化系統(tǒng)滅活而增強IGF1信號通路功能,致使腎上腺功能(如GC合成功能)逐漸增強甚至超過正常,后者可增加MS及其相關(guān)代謝性疾病的易感性[75-76]。肝是機體最大、最重要的代謝器官之一,IGF1、胰島素、瘦素和脂聯(lián)素等代謝性激素均可與肝細胞膜上相關(guān)受體結(jié)合,通過各級信號傳導(dǎo)機制而調(diào)控糖脂代謝功能[91,112]。肝是胎兒血循環(huán)中IGF1的主要來源[113]。宮內(nèi)時期生長激素-IGF1軸還未建立,肝IGF1水平并非由生長激素所調(diào)控[114],可能主要受血GC的調(diào)控,GC可抑制肝IGF1的表達及分泌[115]。我們前期研究發(fā)現(xiàn),孕期外源物暴露可導(dǎo)致IUGR胎鼠肝臟GC-IGF1軸發(fā)生改變,表現(xiàn)為血GC升高而血IGF1降低,可能與高GC抑制肝IGF1的表達及分泌有關(guān);出生后脫離了母源性高GC環(huán)境的抑制,子代IGF1呈現(xiàn)逆轉(zhuǎn)性升高[22,98],表現(xiàn)為肝IGF1表達及分泌的升高。因此,肝GC-IGF1軸的建立對胎兒的生長、發(fā)育及成熟具有關(guān)鍵作用,也是IUGR子代出現(xiàn)體質(zhì)量追趕性生長的主要原因。

    3 宮內(nèi)神經(jīng)內(nèi)分泌代謝編程與表觀遺傳修飾

    表觀遺傳是指DNA序列不發(fā)生變化,但基因表達卻發(fā)生了可遺傳的改變[116]。表觀遺傳修飾主要形式有DNA甲基化、組蛋白修飾和非編碼RNA。表觀遺傳修飾存在于正常胚胎或胎兒發(fā)育過程中[117],且對外源環(huán)境因素(如外源物)敏感[118]。異常的表觀遺傳修飾可引起脂肪肝、高血壓和糖尿病等疾?。?02,119-121]。研究發(fā)現(xiàn),環(huán)境與遺傳互作相關(guān)疾?。ㄈ鏘UGR和MS)存在表觀遺傳修飾異常[122]。

    3.1 宮內(nèi)神經(jīng)內(nèi)分泌代謝編程及其多代遺傳效應(yīng)

    研究已證明,宮內(nèi)不良環(huán)境可致子代HPA軸功能發(fā)育受損,且可持續(xù)至下一代[123-124]。流行病學(xué)研究顯示,在1944-1945年荷蘭大饑荒期間出生的女性生育子代較正常女性子代身材矮小、健康狀況欠佳,而男性生育的子代發(fā)生肥胖和慢性代謝性疾病的概率增大[8-9]。在動物模型上也觀察到了孕期不良因素致子代糖代謝異常的可遺傳現(xiàn)象。如孕期營養(yǎng)受限或高脂飲食會影響大鼠子代(F1代)的胰島素敏感性和胰島β細胞功能。即便子代出生后不良因素已去除,該影響仍會遺傳至第二代(F2代),表現(xiàn)為β細胞數(shù)量減少、糖耐量降低等“糖尿病樣反應(yīng)”[125]。跨代遺傳過程中存在親源性和性別差異現(xiàn)象,可能與印記基因(如Igf-2)的表遺傳修飾改變有關(guān)[126-127]。近期有研究發(fā)現(xiàn),小鼠妊娠期糖尿病可導(dǎo)致F1和F2代糖代謝異常和Igf-2高甲基化,同時雄性F1代精子中Igf-2的表達減少[127];高GC作用下,GR與GC結(jié)合并被激活,激活的GC/GR復(fù)合體可與DNA甲基轉(zhuǎn)移酶(DNA methyltransfer?ases,DNMT)啟動子區(qū)的糖皮質(zhì)激素反應(yīng)元件結(jié)合,上調(diào)DNMT的表達[128]。提示,GC通過與GR結(jié)合,過度激活DNMT而引起IGF-2異常甲基化。我們的研究也發(fā)現(xiàn)[101],孕期咖啡因暴露所致的宮內(nèi)神經(jīng)內(nèi)分泌代謝編程改變可持續(xù)至F2代,且F2代仍然對MS及相關(guān)代謝性疾病易感性較強,具體表現(xiàn)為慢性應(yīng)激下的血糖升高和血甘油三酯(triglyceride,TG)降低,且TCH/HDL-C和LDL-C/HDL-C的比值升高。

    3.2 宮內(nèi)神經(jīng)內(nèi)分泌代謝編程的表觀遺傳機制

    由于表現(xiàn)遺傳的不穩(wěn)定性表觀遺傳機制對宮內(nèi)不良外源環(huán)境(如外源物)是非常敏感的[129]。已證實,孕期外源物暴露可改變胎兒表觀遺傳修飾模式,影響其生長發(fā)育[130]。盡管宮內(nèi)不良環(huán)境暴露所致表觀遺傳修飾改變多有證實,但其潛在的發(fā)生機制仍尚未闡明,且是近年來的研究熱點,尤其是HPA軸功能發(fā)育相關(guān)基因的表遺傳修飾改變[131-132]。研究發(fā)現(xiàn),孕期高水平GC暴露可致雄性子代器官表遺傳改變[133],GC過暴露編程的靶點可能是胎海馬的GR和MR[134]。我們的前期研究也發(fā)現(xiàn),咖啡因可導(dǎo)致海馬11β-HSD2的表遺傳修飾及表達改變,從而增強GC所致的海馬GR高表達變化[57]。我們通過整體和細胞實驗證實,孕期外源物暴露(咖啡因、尼古?。┛赏ㄟ^下調(diào)胎腎上腺甾體合成酶系統(tǒng)(包括StAR/P450scc,3β-HSD,P450c21,P450c11)而抑制甾體合成功能,其發(fā)生機制與轉(zhuǎn)錄因子SF-1啟動子區(qū)的表遺傳修飾異常(組蛋白去乙?;停ɑ颍〥NA甲基化)及表達降低有關(guān)[73-74]。Lillycrop等[135]發(fā)現(xiàn),IUGR大鼠肝GR和過氧化體增殖物激活型受體α(peroxisome proliferator acti?vated receptor α,PPARα)啟動子區(qū)也存在低甲基化,同時GR及其下游基因磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxkinase,PEPCK)、PPARα的表達升高,由此可增加IUGR子代成年后高血壓和肝胰島素抵抗的風(fēng)險性。有學(xué)者發(fā)現(xiàn),7周齡的IUGR大鼠出現(xiàn)了約1400個位點的甲基化改變,且主要集中于調(diào)控胰腺β細胞分化、胰島素分泌、細胞凋亡等基因附近,提示DNA甲基化參與了糖尿病易感基因的表達調(diào)控,并增加了IUGR患者糖尿病的發(fā)病風(fēng)險[136]。動物實驗也發(fā)現(xiàn),IUGR大鼠肝H3K9,H3K14和H3K18的乙酰化水平明顯升高,這些差異出生后仍持續(xù)存在[137]。Wolfe等[138]認(rèn)為,組蛋白去乙?;缚赡芤矃⑴c了IUGR大鼠的肝脂肪積聚,其肝組蛋白去乙酰化酶表達出生后持續(xù)降低,下游轉(zhuǎn)錄因子表達也相應(yīng)改變,由此可能與肝脂肪變性有關(guān)。

    4 胎源性疾病的發(fā)生機制

    至今,孕期不良環(huán)境所致的子代成年后多種慢性疾病易感及其發(fā)生機制尚缺乏完整、系統(tǒng)的理論體系。越來越多的文獻提示,GC參與的宮內(nèi)編程改變可能增加了包括MS在內(nèi)的一系列成年慢性疾病的易感性[2,70]。

    4.1 胎源性疾病的“兩種編程”和“兩次打擊”機制

    近10年來,我們在孕期外源物(如咖啡因、尼古丁、乙醇、地塞米松)暴露所致的大鼠IUGR模型上,基于胎源性NAFL、糖尿病、腎小球硬化、骨質(zhì)疏松癥、骨關(guān)節(jié)炎等疾病宮內(nèi)發(fā)生機制的研究進展,提出孕期外源物暴露所致成年子代慢性疾病發(fā)生的“兩種編程”和“兩次打擊”機制(圖2)。我們認(rèn)為,孕期外源物暴露所致的母源性高GC水平作為“第一次打擊”,可引起子代多種組織或器官功能的“兩種編程”改變:“第一種編程”是各組織或器官功能的特征性改變(功能增強或降低),這種變化可從宮內(nèi)一直延續(xù)到出生后甚至成年,與子代“節(jié)儉表型”編程有關(guān);“第二種編程”為多種胎組織臟器的“GCIGF1軸”編程改變,這種編程可引起子代宮內(nèi)低IGF1而出生后高IGF1水平改變,導(dǎo)致IUGR及出生后營養(yǎng)過剩狀況下的追趕性生長,是IUGR個體面對不同生活環(huán)境而出現(xiàn)的整體適應(yīng)性和代償性變化。這兩種編程相互作用,導(dǎo)致機體多組織或器官發(fā)育異常及成年后多種慢性疾病易感。而出生后的環(huán)境因素變化或不良生活習(xí)慣(如高脂飲食、慢性應(yīng)激或過度運動)作為“第二次打擊”,可加速或加重子代慢性疾病的發(fā)生。

    圖2 孕期外源物暴露所致子代慢性疾病發(fā)生的“兩種編程”和“兩次打擊”機制.

    4.2 胎源性脂肪肝和骨關(guān)節(jié)炎及其發(fā)生機制

    IUGR是胎兒面對宮內(nèi)不良環(huán)境產(chǎn)生即刻適應(yīng)反應(yīng)的一個典型例子。IUGR患兒除了圍生期并發(fā)癥(如死亡)的發(fā)病率升高外,出生后多種慢性疾?。ㄈ绱x性疾?。┑囊赘行陨?,其發(fā)生機制與孕期不良環(huán)境所致子代宮內(nèi)神經(jīng)內(nèi)分泌代謝編程改變有關(guān)[2-3]。

    NAFL是一類肝組織學(xué)改變與酒精性肝病類似但無過量飲酒史的臨床胎兒病理綜合征。臨床和動物實驗證據(jù)提示,NAFL的發(fā)生與低出生體質(zhì)量有關(guān),NAFL存在發(fā)育起源[108,139]。Rueda-Clausen等[108]發(fā)現(xiàn),高脂飲食下的IUGR大鼠,其代謝紊亂及脂代謝異常的易感性增加,不僅表現(xiàn)為腹內(nèi)脂肪增多、脂肪細胞體積增大、血漿TG含量上升,而且肝TG積聚。TG的積聚和肝脂代謝的紊亂都會導(dǎo)致脂肪肝的易感性增加,甚至表明已經(jīng)進入了單純脂肪肝的階段。研究表明,肝脂質(zhì)從頭合成在NAFL發(fā)生中起關(guān)鍵作用[140],并可能介導(dǎo)了胎源性NAFL的發(fā)生[107]。其過程主要受到脂質(zhì)生成轉(zhuǎn)錄因子—SREBP1和脂質(zhì)合成關(guān)鍵酶—脂肪酸合酶的調(diào)控[141]。此外,肝線粒體氧化及脂質(zhì)輸出障礙也參與了NAFL的進展[142-143]。我們在孕期外源物暴露和攝食限制[144]所致子代胎源性NAFL發(fā)生模型上,提出其“兩種編程”和“兩次打擊”機制[22,98,145]:“第一種編程”為母源性高GC所致的子代胎肝細胞脂質(zhì)從頭合成功能增加,具體表現(xiàn)為脂質(zhì)合成酶FASN、ACCa及其轉(zhuǎn)錄激活因子SREBP1c表達增加,而脂質(zhì)輸出酶MTTP表達降低,導(dǎo)致子代肝脂質(zhì)合成功能增強并延續(xù)至成年;“第二種編程”為母源性高GC誘導(dǎo)子代“GC-IGF1軸編程”相關(guān)的糖、脂代謝功能變化,引起宮內(nèi)低IGF1水平而出生后高IGF1水平改變,由此增強子代出生后全身性糖脂代謝功能,加速糖脂代謝紊亂及NAFL易感。出生后的高脂飲食作為“第二次打擊”誘導(dǎo)或加重了NAFL的發(fā)生。

    骨關(guān)節(jié)炎(osteoarthritis,OA)是一種以關(guān)節(jié)軟骨退行性變?yōu)橹饕±硖卣鞯穆躁P(guān)節(jié)疾病。流行病學(xué)資料顯示,低出生體重者成年后發(fā)生OA的比例明顯較高[146-147]。提示,OA存在胎兒起源[148]。文獻結(jié)果提示,關(guān)節(jié)軟骨組織主要形成于胚胎時期,宮內(nèi)關(guān)節(jié)軟骨發(fā)育異??赡苁浅赡闛A易感的重要原因之一[149];軟骨質(zhì)量的高低與OA發(fā)生具有明顯相關(guān)性[150-151]。本室研究證實,孕期外源物(如咖啡因、尼古丁和乙醇)暴露可引起胎鼠軟骨IGF1信號通路及基質(zhì)合成減少,這些功能變化可一直延續(xù)到出生后甚至成年,造成OA易感[102,152-153];進一步發(fā)現(xiàn),IUGR子代出生后在高脂飲食下出現(xiàn)血膽固醇水平升高,導(dǎo)致關(guān)節(jié)軟骨局部膽固醇蓄積,從而進一步降低關(guān)節(jié)軟骨質(zhì)量并誘發(fā)OA[154-156]。綜上,孕期咖啡因暴露可引起子代OA易感性增加,并存在“兩種編程”和“二次打擊”機制:“第一種編程”為宮內(nèi)高GC所致胎關(guān)節(jié)軟骨IGF1低功能編程,導(dǎo)致軟骨發(fā)育不良;“第二種編程”為肝“GC-IGF1軸編程”所致的成年子代高膽固醇血癥,后者可增加軟骨細胞局部的膽固醇蓄積。綜上,這“兩種編程”構(gòu)成了對關(guān)節(jié)軟骨的“第一次打擊”,導(dǎo)致關(guān)節(jié)軟骨質(zhì)量低下及OA易感性增加,在成年“第二次打擊”(如高脂飲食和過度運動)下,誘導(dǎo)或加重OA發(fā)生。

    5 結(jié)語

    綜上所述,孕期不良環(huán)境可對子代產(chǎn)生深遠的影響,包括出生后HPA軸低基礎(chǔ)活性與高應(yīng)激敏感性變化、成年后多種慢性疾病易感性增加。其發(fā)生機制可能主要與宮內(nèi)神經(jīng)內(nèi)分泌代謝編程所致的重要基因/器官表觀遺傳修飾及功能發(fā)育異常有關(guān)。然而,胎兒宮內(nèi)及出生后不同時期HPA軸功能變化的特點、具體機制、性別差異和跨代遺傳的關(guān)鍵點均尚未完全闡明。隨著孕期不良環(huán)境與胎源性疾病的研究深入,轉(zhuǎn)化醫(yī)學(xué)也在不斷地推動胎源性疾病基礎(chǔ)研究成果向臨床實踐或應(yīng)用的轉(zhuǎn)化[157]。胎源性疾病的轉(zhuǎn)化研究是為了闡明疾病的胎兒起源機制,并尋找各種生物標(biāo)志物;基于胎腎上腺功能改變的發(fā)育毒性早期評價系統(tǒng),開展孕期有害環(huán)境因子評估;基于神經(jīng)內(nèi)分泌代謝編程改變的孕前和孕期風(fēng)險評估技術(shù),開展出生缺陷一級、二級預(yù)防;基于神經(jīng)內(nèi)分泌代謝編程改變的早期診斷技術(shù),實現(xiàn)代謝性疾病早期防治;尋找引起胎盤GC屏障開放的因素,做到合理規(guī)避。另一方面,我們也可利用出生后早期的發(fā)育可塑性,給予藥物干預(yù)逆轉(zhuǎn)宮內(nèi)不良環(huán)境編程(如出生后早期給予瘦素干預(yù)[158]);出生后要合理飲食,保證生長發(fā)育所需營養(yǎng),但又避免追趕性生長。

    [1]Uauy R,Kain J,Corvalan C.How can the devel?opmental origins of health and disease(DO?HaD)hypothesis contribute to improving health in developing countries?[J].Am J Clin Nutr,2011,94(6 Suppl):1759S-1764S.

    [2]Reynolds RM.Corticosteroid-mediated program?ming and the pathogenesis of obesity and diabe?tes[J].J Steroid Biochem Mol Biol,2010,122(1-3):3-9.

    [3]Zhang C,Xu D,Luo H,Lu J,Liu L,Ping J,et al. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis program?ming alteration[J].Toxicology,2014,325:74-84.

    [4]RossnerP Jr, Tabashidze N, DostalM,Novakova Z,Chvatalova I,Spatova M,et al. Genetic,biochemical,and environmental fac?tors associated with pregnancy outcomes in new?borns from the czech republic[J].Environ Health Perspect,2011,119(2):265-271.

    [5]Nykjaer C,Alwan NA,Greenwood DC,Simpson N A,Hay A W,White K L,et al.Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes:evidence from a British cohort[J]. J Epidemiol Community Health,2014,68(6):542-549.

    [6]Longnecker MP,Klebanoff MA,Zhou H,Brock JW. Association between maternal serum concentra?tion of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth[J].Lan?cet,2001,358(9276):110-114.

    [7]Nomura Y,Wickramaratne PJ,Pilowsky DJ,Newcorn JH,Bruder-Costello B,Davey C,et al. Low birth weight and risk of affective disorders and selected medical illness in offspring at high and low risk for depression[J].Compr Psychiatry,2007,48(5):470-478.

    [8]Veenendaal MV,Painter RC,De Rooij SR,Bossuyt PM,Van Der Post JA,Gluckman PD,et al.Transgenerational effects of prenatal expo?sure to the 1944-45 Dutch famine[J].BJOG,2013,120(5):548-553.

    [9]Painter RC,Osmond C,Gluckman P,Hanson M,PhillipsDI,Roseboom TJ.Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life[J]. BJOG,2008,115(10):1243-1249.

    [10]O′connor MJ,Shah B,Whaley S,Cronin P,Gunderson B,Graham J.Psychiatric illness in a clinical sample of children with prenatal alcohol exposure[J].Am J Drug Alcohol Abuse,2002,28(4):743-754.

    [11]Gupta M,Gupta R,Pareek A,Bhatia R,Kaul V. Low birth weight and insulin resistance in mid and late childhood[J].Indian Pediatr,2007,44(3):177-184.

    [12] Iliadou A,Cnattingius S,Lichtenstein P.Low birth weight and type 2 diabetes:a study on 11 162 Swedish twins[J].Int J Epidemiol,2004,33(5):948-953.

    [13]Dennison EM,Syddall HE,Sayer AA,Gilbody HJ,Cooper C.Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade:the Hertfordshire cohort study[J].Pediatr Res,2005,57(4):582-586.

    [14]Sliwa E,Dobrowolski P,Piersiak T.Bone devel?opment of suckling piglets after prenatal,neona?tal or perinatal treatment with dexamethasone[J].J Anim Physiol Anim Nutr(Berl),2010,94(3):293-306.

    [15]Yin J,Dwyer T,Riley M,Cochrane J,Jones G. The association between maternal diet during pregnancy and bone mass of the children at age 16[J].Eur J Clin Nutr,2010,64(2):131-137.

    [16]O′reilly EJ,Mirzaei F,F(xiàn)orman MR,Ascherio A. Diethylstilbestrol exposure in utero and depres?sion in women[J].Am J Epidemiol,2010,171(8):876-882.

    [17]Fujimoto T,Kubo K,Aou S.Prenatal exposure to bisphenol A impairs sexual differentiation of ex?ploratory behavior and increases depression-like behavior in rats[J].Brain Res,2006,1068(1):49-55.

    [18]Hellemans KG,Verma P,Yoon E,Yu WK,Young AH,Weinberg J.Prenatal alcohol exposure and chronic mild stress differentially alter depres?sive-and anxiety-like behaviors in male and female offspring[J].Alcohol Clin Exp Res,2010,34(4):633-645.

    [19]Liu L,Liu F,Kou H,Zhang BJ,Xu D,Chen B,et al.Prenatal nicotine exposure induced a hypo?thalamic-pituitary-adrenal axis-associated neuro?endocrine metabolic programmed alteration in in?trauterine growth retardation offspring rats[J]. Toxicol Lett,2012,214(3):307-313.

    [20]Ikezumi Y,Suzuki T,Karasawa T,Yamada T,Hasegawa H,Nishimura H,et al.Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulo?sclerosis[J].Am J Nephrol,2013,38(2):149-157.

    [21]Wei Z,Song L,Wei J,Chen T,Chen J,Lin Y,et al.Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring[J].Toxicol Lett,2012,212(2):212-221.

    [22]Wang L,Shen L,Ping J,Zhang L,Liu Z,Wu Y,et al.Intrauterine metabolic programming altera?tion increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring[J].Toxicol Lett,2014,224(3):311-318.

    [23]De Blasio MJ,Dodic M,Jefferies AJ,Moritz KM,Wintour EM,Owens JA.Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring[J]. Am J Physiol Endocrinol Metab,2007,293(1):E75-E82.

    [24]Riviere G,Michaud A,Breton C,Vancamp G,Laborie C,Enache M,et al.Angiotensin-convert?ing enzyme 2(ACE2)and ACE activities display tissue-specific sensitivity to undernutrition-pro?grammed hypertension in the adult rat[J].Hyper?tension,2005,46(5):1169-1174.

    [25]Jelliffe-Pawlowski LL,Miles SQ,Courtney JG,Materna B,Charlton V.Effect of magnitude and timing of maternal pregnancy blood lead(Pb)levels on birth outcomes[J].J Perinatol,2006,26(3):154-162.

    [26] Shah PS,Balkhair T,Knowledge Synthesis Group on Determinants of Preterm/LBW births. Air pollution and birth outcomes:a systematic review[J].Environ Int,2011,37(2):498-516.

    [27]Walfisch A,Nikolovski S,Talevska B,Hallak M. Fetal growth restriction and maternal smoking in the macedonian roma population:a causality dilemma[J].Arch Gynecol Obstet,2013,287(6):1131-1136.

    [28]Yang W,Zeng L,Cheng Y,Chen Z,Wang X,Li X,et al.The effects of periconceptional risk factor exposure and micronutrient supplementa?tion on birth defects in Shaanxi Province in Western China[J].PLoS One,2012,7(12):e53429.

    [29]Forand SP,Lewis-Michl EL,Gomez MI.Adverse birth outcomes and maternal exposure to trichlo?roethylene and tetrachloroethylene through soil vapor intrusion in New York State[J].Environ Health Perspect,2012,120(4):616-621.

    [30]Bar-Lev MR, Maayan-Metzger A, Matok I,Heyman Z,Sivan E,Kuint J.Short-term outcomes in low birth weight infants following antenatal ex?posure to betamethasone versus dexamethasone[J].Obstet Gynecol,2004,104(3):484-488.

    [31]Dobson NR,Patel RM,Smith PB,Kuehn DR,Clark J,Vyas-Read S,et al.Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants[J].J Pediatr,2014,164(5):992-998 e993.

    [32]Singer LT,Salvator A,Arendt R,Minnes S,F(xiàn)arkas K,Kliegman R.Effects of cocaine/polydrug exposure and maternal psychological distress on infant birth outcomes[J].Neurotoxicol Teratol,2002,24(2):127-135.

    [33]Brent RL,Christian MS,Diener RM.Evaluation of the reproductive and developmental risks of caffeine[J].Birth Defects Res B Dev Reprod Tox?icol,2011,92(2):152-187.

    [34]Bakker R,Steegers EA,Obradov A,Raat H,Hofman A,Jaddoe VW.Maternal caffeine intake from coffee and tea,fetal growth,and the risks of adverse birth outcomes:the Generation R study[J].Am J Clin Nutr,2010,91(6):1691-1698.

    [35]Jaddoe VW,Bakker R,Hofman A,Mackenbach JP,Moll HA,Steegers E A,et al.Moderate alco?hol consumption during pregnancy and the risk of low birth weight and preterm birth.The genera?tion R study[J].Ann Epidemiol,2007,17(10):834-840.

    [36]Lopez M,Palacio M,Gonce A,Hernandez S,Barranco FJ,Garcia L,et al.Risk of intrauterine growth restriction among HIV-infected pregnant women:a cohort study[J].Eur J Clin Microbiol Infect Dis,2015,34(2)223-230.

    [37]Diderholm B.Perinatal energy metabolism with reference to IUGR&SGA:studies in pregnant women&newborn infants[J].Indian J Med Res,2009,130(5):612-617.

    [38]Enke U,Seyfarth L,Schleussner E,Markert UR. Impact of PUFA on early immune and fetal devel?opment[J].Br J Nutr,2008,100(6):1158-1168.

    [39]Emack J,Matthews SG.Effects of chronic maternal stress on hypothalamo-pituitary-adrenal(HPA)function and behavior:no reversal by environ?mental enrichment[J].Horm Behav,2011,60(5):589-598.

    [40]Glover V,O′connor T G,O′donnell K.Prenatal stress and the programming of the HPA axis[J]. Neurosci Biobehav Rev,2010,35(1):17-22.

    [41]Xu D,Liang G,Yan YE,He WW,Liu YS, Chen LB,et al.Nicotine-induced over-exposure to maternal glucocorticoid and activated glucocorticoid metabolism causes hypothalamic-pituitaryadrenal axis-associated neuroendocrine metabolic alterations in fetal rats[J].Toxicol Lett,2012,209(3):282-290.

    [42]Xu D,Chen M,Pan XL,Xia LP,Wang H.Dexa?methasone induces fetal developmental toxicity through affecting the placental glucocorticoid barrier and depressing fetal adrenal function[J].Environ Toxicol Pharmacol,2011,32(3):356-363.

    [43]Liang G,Chen M,Pan XL,Zheng J,Wang H. Ethanol-induced inhibition of fetal hypothalamicpituitary-adrenal axis due to prenatal overexpo?sure to maternal glucocorticoid in mice[J].Exp Toxicol Pathol,2011,63(7-8):607-611.

    [44]Xu D,Wu Y,Liu F,Liu YS,Shen L,Lei YY,et al. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caf?feine ingestion[J].ToxicolApplPharmacol,2012,264(3):395-403.

    [45]Yeomans MR,Mobini S,Chambers L.Additive effects of flavour-caffeine and flavour-flavour pair?ings on liking for the smell and flavour of a novel drink[J].Physiol Behav,2007,92(5):831-839.

    [46]Thorn CF,Aklillu E,Mcdonagh EM,Klein TE,Altman RB.PharmGKB summary:caffeine path?way[J].Pharmacogenet Genomics,2012,22(5):389-395.

    [47]Li Y,Wang H.In utero exposure to tobacco and alcohol modifies neurobehavioral development in mice offspring:consideration a role of oxidative stress[J].Pharmacol Res,2004,49(5):467-473.

    [48]Dietrich M,Block G,Norkus EP,Hudes M,Traber MG,Cross CE,et al.Smoking and expo?sure to environmental tobacco smoke decrease some plasma antioxidants and increase gammatocopherol in vivo after adjustment for dietary anti?oxidant intakes[J].Am J Clin Nutr,2003,77(1):160-166.

    [49] Fowden AL,Li J,F(xiàn)orhead AJ.Glucocorticoids and the preparation for life after birth:are there long-term consequences of the life insurance?[J].Proc Nutr Soc,1998,57(1):113-122.

    [50] Chapman K,Holmes M,Seckl J.11beta-hydroxys?teroid dehydrogenases:intracellular gate-keepers of tissue glucocorticoid action[J].Physiol Rev,2013,93(3):1139-1206.

    [51]Lesage J,Blondeau B,Grino M,BréantB,Dupouy JP.Maternal undernutrition during late gestation induces fetal overexposure to glucocor?ticoids and intrauterine growth retardation,and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat[J].Endocrinology,2001,142(5):1692-1702.

    [52]Reynolds RM.Glucocorticoid excess and the developmental origins of disease:two decades of testing the hypothesis-2012 Curt Richter Award Winner[J].Psychoneuroendocrinology,2013,38(1):1-11.

    [53]Morrison JL,Botting KJ,Soo PS,Mcgillick EV,Hiscock J,Zhang S,et al.Antenatal steroids and the IUGR fetus:are exposure and physiologi?cal effects on the lung and cardiovascular system the same as in normally grown fetuses?[J].J Pregnancy,2012,2012:839656.

    [54]Lesage J,Blondeau B,Grino M,Breant B,Dupouy J P.Maternal undernutrition during late gestation induces fetal overexposure to glucocor?ticoids and intrauterine growth retardation,and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat[J].Endocrinology,2001,142(5):1692-1702.

    [55] Langley-Evans SC,Phillips GJ,Benediktsson R,Gardner DS,Edwards CR,Jackson AA,et al. Protein intake in pregnancy,placental glucocorti?coid metabolism and the programming of hyper?tension in the rat[J].Placenta,1996,17(2-3):169-172.

    [56]Newnham JP,Moss TJ,Nitsos I,Sloboda DM. Antenatal corticosteroids:the good,the bad and the unknown[J].Curr Opin Obstet Gynecol,2002,14(6):607-612.

    [57] Xu D,Zhang B,Liang G,Ping J,Kou H,Li X,et al.Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypotha?lamic-pituitary-adrenal axis inhibition in fetal rats[J].PLoS One,2012,7(9):e44497.

    [58]Chen M,Wang T,Liao ZX,Pan XL,F(xiàn)eng YH,Wang H.Nicotine-induced prenatal overexposure to maternal glucocorticoid and intrauterine growth retardation in rat[J].Exp Toxicol Pathol,2007,59(3-4):245-251.

    [59]Li C,Mcdonald TJ,Wu G,Nijland MJ,Nathan?ielsz PW.Intrauterine growth restriction alters term fetal baboon hypothalamic appetitive pep?tide balance[J].J Endocrinol,2013,217(3):275-282.

    [60]Li C,Shu ZJ,Lee S,Gupta MB,Jansson T,Nathanielsz PW,et al.Effects of maternal nutrient restriction,intrauterine growth restriction,and glucocorticoid exposure on phosphoenolpyruvate carboxykinase-1 expression in fetal baboon hepa?tocytes in vitro[J].J Med Primatol,2013,42(4):211-219.

    [61]Moisiadis VG,Matthews SG.Glucocorticoids and fetal programming part 2:Mechanisms[J].Nat Rev Endocrinol,2014,10(7):403-411.

    [62]Meaney MJ,Szyf M,Seckl JR.Epigenetic mech?anisms of perinatal programming of hypothalamicpituitary-adrenal function and health[J].Trends Mol Med,2007,13(7):269-277.

    [63]Xita N,Tsatsoulis A.Fetal origins of the metabolic syndrome[J].Ann NY Acad Sci,2010,1205:148-155.

    [64]Xiong F,Zhang L.Role of the hypothalamic-pitu?itary-adrenal axis in developmental programming of health and disease[J].Front Neuroendocri?nol,2013,34(1):27-46.

    [65]Cohen M,Brown DR,Myers MM.Cardiorespiratory measures before and after feeding challenge in term infants are related to birth weight[J].Acta Paediatr,2009,98(7):1183-1188.

    [66]Schutter DJ.The cerebello-hypothalamic-pituitaryadrenal axis dysregulation hypothesis in depres?sive disorder[J].Med Hypotheses,2012,79(6):779-783.

    [67]Kanaka-Gantenbein C.Fetal origins of adult diabetes[J].Ann NY Acad Sci,2010,1205:99-105.

    [68]Weinstock M.The potential influence of maternal stress hormones on development and mental health of the offspring[J].Brain Behav Immun,2005,19(4):296-308.

    [69]Davis EP,Waffarn F,Sandman CA.Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants[J].Dev Psychobiol,2011,53(2):175-183.

    [70]Harris A, Seckl J.Glucocorticoids,prenatal stress and the programming of disease[J].Horm Behav,2011,59(3):279-289.

    [71]Fowden AL,F(xiàn)orhead AJ.Endocrine mechanisms of intrauterine programming[J].Reproduction,2004,127(5):515-526.

    [72] Ong K.Adrenal function of low-birthweight chil?dren[J].Endocr Dev,2005,8:34-53.

    [73]Yan YE,Liu L,Wang JF,Liu F,Li XH,Qin HQ,et al.Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1(SF-1)deacetylation[J].Toxicol Appl Pharmacol,2014,277(3):231-241.

    [74]Ping J,Wang JF,Liu L,Yan YE,Liu F,Lei YY,et al.Prenatal caffeine ingestion induces aber?rant DNA methylation and histone acetylation of steroidogenic factor 1 and inhibits fetal adrenal ste?roidogenesis[J].Toxicology,2014,321:53-61.

    [75]Huang H,He Z,Zhu C,Liu L,Kou H,Shen L,et al.Prenatal ethanol exposure-induced adrenal developmental abnormality of male offspring rats and its possible intrauterine programming mecha?nisms[J].Toxicol Appl Pharmacol,2015,288(1):84-94.

    [76]He Z,Zhu C,Huang H,Liu L,Wang L,Chen L,et al.Prenatal caffeine exposure-induced adrenal developmental abnormality in male offspring rats and its possible intrauterine programming mecha?nisms[J].Toxicol Res,2016,5(2):388-398.

    [77]Moisiadis VG,Matthews SG.Glucocorticoids and fetal programming part 1:Outcomes[J].Nat Rev Endocrinol,2014,10(7):391-402.

    [78]Xia LP,Shen L,Kou H,Zhang BJ,Zhang L,Wu Y,et al.Prenatal ethanol exposure enhanc?es the susceptibility to metabolic syndrome in off?spring rats by HPA axis-associated neuroendo?crine metabolic programming[J].Toxicol Lett,2014,226(1):98-105.

    [79]Xu D,Xia LP,Shen L,Lei YY,Liu L,Zhang L,et al.Prenatal nicotine exposure enhances the susceptibility to metabolic syndrome in adult off?spring rats fed high-fat diet via alteration of HPA axis-associated neuroendocrine metabolic pro?gramming[J].Acta Pharmacol Sin,2013,34(12):1526-1534.

    [80]Lu J,Wen Y,Li Z,Zhang C,Zhong W,Zhang L,et al.Prenatal ethanol exposure induces an intra?uterine programming of enhanced sensitivity of the hypothalamic-pituitary-adrenal axis in female offspring rats fed with post-weaning high-fat diet[J].Toxicol Res,2015,4(5):1238-1249.

    [81]Tasker JG,Herman JP.Mechanisms of rapid glu?cocorticoid feedback inhibition of the hypothalam?ic-pituitary-adrenal axis[J].Stress,2011,14(4):398-406.

    [82]De Kloet ER,Reul JM,Sutanto W.Corticoste?roids and the brain[J].J Steroid Biochem Mol Biol,1990,37(3):387-394.

    [83]Matthews SG.Early programming of the hypothal?amo-pituitary-adrenal axis[J].Trends Endocrinol Metab,2002,13(9):373-380.

    [84]De Quervain DJ, Aerni A, Schelling G,Roozendaal B.Glucocorticoids and the regulation of memory in health and disease[J].Front Neuro?endocrinol,2009,30(3):358-370.

    [85]DU Z,Han F,Shi YX.Expressions of hippocampalmineralocorticoid receptor(MR) and glucocorticoid receptor(GR)in the single-prolonged stress rats[J].Acta Histochem Cytochem,2008,41(4):89-95.

    [86]Netchine I,Azzi S,Houang M,Seurin D,Perin L,Ricort JM,et al.Partial primary deficiency of insu?lin-like growth factor(IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development[J].J Clin Endocri?nol Metab,2009,94(10):3913-3921.

    [87]Roberts CT,Owens JA,Sferruzzi-Perri AN.Dis?tinct actions of insulin-like growth factors(IGFs)on placental development and fetal growth:les?sons from mice and guinea pigs[J].Placenta,2008,29(Suppl A):S42-S47.

    [88]AgrogiannisGD, SifakisS, PatsourisES,Konstantinidou AE.Insulin-like growth factors in embryonic and fetal growth and skeletal develop?ment(Review)[J].Mol Med Rep,2014,10(2):579-584.

    [89]Walenkamp MJ,Losekoot M,Wit JM.Molecular IGF-1 and IGF-1 receptor defects:from genetics to clinical management[J].Endocr Dev,2013,24:128-137.

    [90]Wallborn T,Wuller S,Klammt J,Kruis T,Kratzsch J,Schmidt G,et al.A heterozygous mu?tation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the en?doplasmic reticulum and results in intrauterine and postnatal growth retardation[J].J Clin Endo?crinol Metab,2010,95(5):2316-2324.

    [91]Netchine I,Azzi S,Le Bouc Y,Savage MO. IGF1 molecular anomalies demonstrate its critical role in fetal,postnatal growth and brain develop?ment[J].Best Pract Res Clin Endocrinol Metab,2011,25(1):181-190.

    [92]Puri G,Kumar K,Singh R,Singh RK,Yasotha T,Ranjan R,et al.Effects of growth factors on establishmentand propagation ofembryonic stem cells from very early stage IVF embryos and their characterization in buffalo[J].Int J StemCells,2012,5(2):96-103.

    [93]Magner NL,Jung Y,Wu J,Nolta JA,Zern MA,Zhou P.Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway[J].Stem Cells,2013,31(10):2095-2103.

    [94]Piecewicz SM,Pandey A,Roy B,Xiang SH,Zetter BR,Sengupta S.Insulin-like growth factors promote vasculogenesis in embryonic stem cells[J].PLoS One,2012,7(2):e32191.

    [95]Jungheim ES,Louden ED,Chi MM,F(xiàn)rolova AI,Riley JK,Moley KH.Preimplantation exposure of mouse embryos to palmitic acid results in fetal growth restriction followed by catch-up growth in the offspring[J].Biol Reprod,2011,85(4):678-683.

    [96]Kamei H,Ding Y,Kajimura S,Wells M,Chiang P,Duan C.Role of IGF signaling in catch-up growth and accelerated temporal development in zebraf?ish embryos in response to oxygen availability[J]. Development,2011,138(4):777-786.

    [97]Tosh DN,F(xiàn)u Q,Callaway CW,Mcknight RA,Mcmillen IC,Ross MG,et al.Epigenetics of pro?grammed obesity:alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs.delayed postnatal catch-up growth[J]. Am J Physiol Gastrointest Liver Physiol,2010,299(5):G1023-G1029.

    [98]Shen L,Liu Z,Gong J,Zhang L,Wang L,Magdalou J,et al.Prenatal ethanol exposure pro?grams an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats[J].Toxicol Appl Pharmacol,2013,274(2):263-273.

    [99]Lunghi L,Pavan B,Biondi C,Paolillo R,Valerio A,Vesce F,et al.Use of glucocorticoids in pregnancy[J].Curr Pharm Des,2010,16(32):3616-3637.

    [100]Marciniak B,Patro-Malysza J,Poniedzialek-Cza?jkowska E,Kimber-Trojnar Z,Leszczynska-Gorzelak B,Oleszczuk J.Glucocorticoids in pregnancy[J].Curr Pharm Biotechnol,2011,12(5):750-757.

    [101]Luo H,Deng Z,Liu L,Shen L,Kou H,He Z,et al. Prenatal caffeine ingestion induces transgenera?tionalneuroendocrine metabolic programming alteration in second generation rats[J].Toxicol Appl Pharmacol,2013,274(3):383-392.

    [102]Tan Y,Liu J,Deng Y,Cao H,Xu D,Cu F,et al. Caffeine-induced fetal rat over-exposure to mater?nal glucocorticoid and histone methylation of liver IGF-1 might cause skeletal growth retardation[J]. Toxicol Lett,2012,214(3):279-287.

    [103]Gardebjer EM,Cuffe JS,Pantaleon M,Wlodek ME,Moritz KM.Periconceptional alcohol consumption causesfetalgrowth restriction and increases glycogen accumulation in the late gestation rat placenta[J].Placenta,2014,35(1):50-57.

    [104]Hyatt MA,Gardner DS,Sebert S,Wilson V,Davidson N,Nigmatullina Y,et al.Suboptimal maternal nutrition,during early fetal liver develop?ment,promotes lipid accumulation in the liver of obese offspring[J].Reproduction,2011,141(1):119-126.

    [105]Inder WJ,Jang C,Obeyesekere VR,Alford FP. Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1-implications for steroid-induced myopathy[J]. Clin Endocrinol(Oxf),2010,73(1):126-132.

    [106]Robson H,Siebler T,Shalet SM,Williams GR. Interactions between GH,IGF-I,glucocorticoids,and thyroid hormones during skeletal growth[J]. Pediatr Res,2002,52(2):137-147.

    [107]Yamada M,Wolfe D,Han G,F(xiàn)rench SW,Ross MG,Desai M.Early onset of fatty liver in growth-restricted rat fetuses and newborns[J]. Congenit Anom(Kyoto),2011,51(4):167-173.

    [108]Rueda-Clausen CF,Dolinsky VW,Morton JS,Proctor SD,Dyck JR,Davidge ST.Hypoxia-in?duced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced meta?bolic syndrome[J].Diabetes,2011,60(2):507-516.

    [109]Hales CN, Barker DJ.The thrifty phenotype hypothesis[J].Br Med Bull,2001,60:5-20.

    [110]Vaag AA,Grunnet LG,Arora GP,Brons C.The thrifty phenotype hypothesis revisited[J].Diabeto?logia,2012,55(8):2085-2088.

    [111]Jaquet D,Gaboriau A,Czernichow P,Levy-Marchal C.Insulin resistance early in adulthood in subjects born with intrauterine growth retarda?tion[J].J Clin Endocrinol Metab,2000,85(4):1401-1406.

    [112]Zabeau L,Defeau D,Van Der Heyden J,Iseren?tant H,Vandekerckhove J,Tavernier J.Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay[J].Mol Endocrinol,2004,18(1):150-161.

    [113]Agrogiannis GD, Sifakis S, Patsouris ES,Konstantinidou AE.Insulin-like growth factors in embryonic and fetal growth and skeletal development(Review)[J].Mol Med Rep,2014,10(2):579-584.

    [114]Woods KA,Camacho-Hubner C,Savage MO,Clark AJ.Intrauterine growth retardation and post?natal growth failure associated with deletion of the insulin-like growth factor I gene[J].N Engl J Med,1996,335(18):1363-1367.

    [115]Hyatt MA,Budge H,Walker D,Stephenson T,Symonds ME.Ontogeny and nutritional program?ming of the hepatic growth hormone-insulin-like growth factor-prolactin axis in the sheep[J].En?docrinology,2007,148(10):4754-4760.

    [116]Waterland RA,Jirtle RL.Transposable elements:targets for early nutritional effects on epigenetic gene regulation[J].Mol Cell Biol,2003,23(15):5293-5300.

    [117]Hajkova P,Erhardt S,Lane N,Haaf T,El-Maarri O,Reik W,et al.Epigenetic reprogramming in mouse primordial germ cells[J].Mech Dev,2002,117(1-2):15-23.

    [118]Cooney CA,Dave AA,Wolff GL.Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring[J].J Nutr,2002,132(8 Suppl):2393S-2400S.

    [119]Schwitzgebel VM,Somm E,Klee P.Modeling intrauterine growth retardation in rodents:Impact on pancreas development and glucose homeostasis[J].Mol Cell Endocrinol,2009,304(1-2):78-83.

    [120]Ferrari P,Krozowski Z.Role of the 11beta-hy?droxysteroid dehydrogenase type 2 in blood pres?sure regulation[J].Kidney Int,2000,57(4):1374-1381.

    [121]Baserga M,Kaur R,Hale MA,Bares A,Yu X,Callaway CW,et al.Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehy?drogenase type 2 in a sex-specific manner[J]. Am J Physiol Regul Integr Comp Physiol,2010,299(1):R334-R342.

    [122]Fu Q,Mcknight RA,Yu X,Callaway CW,Lane R H.Growth retardation alters the epigenetic characteristics of hepatic dual specificity phospha?tase 5[J].FASEB J,2006,20(12):2127-2129.

    [123]Long NM,F(xiàn)ord SP,Nathanielsz PW.Multigener?ational effects of fetal dexamethasone exposure on the hypothalamic-pituitary-adrenal axis of firstand second-generation female offspring[J].Am J Obstet Gynecol,2013,208(3):217 e211-218.

    [124]Iqbal M,Moisiadis VG,Kostaki A,Matthews SG. Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic-pituitary-adrenal function[J].Endocrinology,2012,153(7):3295-3307.

    [125]Gniuli D,Calcagno A,Caristo M E,Mancuso A,Macchi V,Mingrone G,et al.Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny[J].J Lipid Res,2008,49(9):1936-1945.

    [126]Govorko D,Bekdash RA,Zhang C,Sarkar DK. Male germline transmits fetal alcohol adverse ef?fect on hypothalamic proopiomelanocortin gene across generations[J].Biol Psychiatry,2012,72(5):378-388.

    [127]Ding GL,Wang FF,Shu J,Tian S,Jiang Y,Zhang D,et al.Transgenerational glucose intoler?ance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia[J].Diabetes,2012,61(5):1133-1142.

    [128]Rouleau J,Tanigawa G,Szyf M.The mouse DNA methyltransferase 5'-region.A unique housekeeping gene promoter[J].J Biol Chem,1992,267(11):7368-7377.

    [129]Dolinoy DC,Jirtle RL.Environmental epigenom?ics in human health and disease[J].Environ Mol Mutagen,2008,49(1):4-8.

    [130]Alworth LC,Howdeshell KL,Ruhlen RL,Day JK,Lubahn DB,Huang TH,et al.Uterine responsive?nessto estradioland DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice:effects of low versus high doses[J].Toxicol Appl Pharmacol,2002,183(1):10-22.

    [131]Grossniklaus U,Kelly B,F(xiàn)erguson-Smith AC,Pembrey M, LindquistS.Transgenerational epigenetic inheritance:how important is it?[J]. Nat Rev Genet,2013,14(3):228-235.

    [132]Chen M,Zhang L.Epigenetic mechanisms in developmental programming of adult disease[J]. Drug Discov Today,2011,16(23-24):1007-1018.

    [133]Crudo A, Suderman M, MoisiadisVG,Petropoulos S,Kostaki A,Hallett M,et al.Gluco?corticoid programming of the fetal male hippocam?pal epigenome[J].Endocrinology,2013,154(3):1168-1180.

    [134]Crudo A,Petropoulos S,Moisiadis VG,Iqbal M,Kostaki A,Machnes Z,et al.Prenatal syntheticglucocorticoid treatment changes DNA methyla?tion states in male organ systems:multigenerational effects[J].Endocrinology,2012,153(7):3269-3283.

    [135]Lillycrop KA,Slater-Jefferies JL,Hanson MA,Godfrey KM,Jackson AA,Burdge GC.Induction of altered epigenetic regulation of the hepatic glu?cocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expres?sion is involved in impaired DNA methylation and changes in histone modifications[J].Br J Nutr,2007,97(6):1064-1073.

    [136]Thompson RF,F(xiàn)azzari MJ,Niu H,Barzilai N,Simmons RA,Greally JM.Experimental intrauterine growth restriction inducesalterationsin DNA methylation and gene expression in pancreatic islets of rats[J].J Biol Chem,2010,285(20):15111-15118.

    [137]Fu Q,Mcknight RA,Yu X,Wang L,Callaway CW,LaneRH.Uteroplacentalinsufficiencyinduces site-specific changes in histone H3 covalent modi?fications and affects DNA-histone H3 positioning in day 0 IUGR rat liver[J].Physiol Genomics,2004,20(1):108-116.

    [138]Wolfe D,Gong M,Han G,Magee TR,Ross MG,Desai M.Nutrient sensor-mediated programmed nonalcoholic fatty liver disease in low birthweight offspring[J].Am J Obstet Gynecol,2012,207(4):308e301-308e306.

    [139]Nobili V,Marcellini M,Marchesini G,Vanni E,Manco M,Villani A,et al.Intrauterine growth retardation,insulin resistance,and nonalcoholic fatty liver disease in children[J].Diabetes Care,2007,30(10):2638-2640.

    [140]DonnellyKL,SmithCI,SchwarzenbergSJ,Jessurun J,Boldt M D,Parks E J.Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J].J Clin Invest,2005,115(5):1343-1351.

    [141]Horton JD,Shah NA,Warrington JA,Anderson NN,Park SW,Brown MS,et al.Combined anal?ysis of oligonucleotide microarray data from trans?genic and knockout mice identifies direct SREBP target genes[J].Proc Natl Acad Sci USA,2003,100(21):12027-12032.

    [142]Rector RS,Thyfault JP,Uptergrove GM,Morris EM,Naples SP,Borengasser SJ,et al.Mito?chondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model[J].J Hepatol,2010,52(5):727-736.

    [143]Tep S,Mihaila R,F(xiàn)reeman A,Pickering V,Huynh F,Tadin-Strapps M,et al.Rescue of Mtp siRNA-induced hepatic steatosis by DGAT2 siRNA silencing[J].J Lipid Res,2012,53(5):859-867.

    [144]Zhang L,Shen L,Xu D,Wang L,Guo Y,Liu Z,et al.Increased susceptibility of prenatal food restricted offspring to high-fat diet-induced nonal?coholic fatty liver disease is intrauterine programmed[J].Reprod Toxicol,2016,65:236-247.

    [145]Xu D,Bai J,Zhang L,Shen L,Wang L,Liu Z,et al.Prenatal nicotine exposure-induced intra?uterine programming alteration increases the sus?ceptibility of high-fat diet-induced non-alcoholic simple fatty liver in female adult offspring rats[J]. Toxicol Res,2014,4(1):112-120.

    [146]Sayer AA,Poole J,Cox V,Kuh D,Hardy R,Wadsworth M,et al.Weight from birth to 53 years:a longitudinal study of the influence on clin?icalhand osteoarthritis[J].Arthritis Rheum,2003,48(4):1030-1033.

    [147]Jordan KM,Syddall H,Dennison EM,Cooper C,Arden NK.Birthweight,vitamin D receptor gene polymorphism,and risk of lumbar spine osteoar?thritis[J].J Rheumatol,2005,32(4):678-683.

    [148]Aigner T,Richter W.OA in 2011:Age-related OA-a concept emerging from infancy?[J].Nat Rev Rheumatol,2012,8(2):70-72.

    [149]Pitsillides AA,Beier F.Cartilage biology in osteo?arthritis-lessons from developmental biology[J]. Nat Rev Rheumatol,2011,7(11):654-663.

    [150]Dahlberg L.Cartilage quality,overweight and os?teoarthritis:a case for new behaviour?[J].Ann Rheum Dis,2012,71(1):1-3.

    [151]Cubukcu D,Ardic F,Karabulut N,Topuz O. Hylan G-F 20 efficacy on articular cartilage quality in patients with knee osteoarthritis:clinical and MRI assessment[J].Clin Rheumatol,2005,24(4):336-341.

    [152]Ni Q,Tan Y,Zhang X,Luo H,Deng Y,Magdalou J,et al.Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway[J].Sci Rep,2015,5:14711.

    [153]Tie K,Zhang X,Tan Y,Deng Y,Li J,Ni Q,et al. Intrauterine low-functional programming of IGF1by prenatalnicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring[J].FASEB J,2016,30(2):785-797.

    [154]Luo H,Li J,Cao H,Tan Y,Magdalou J,Chen L,et al.Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage[J]. Sci Rep,2015,5:17746.

    [155]Ni Q,Wang L,Wu Y,Shen L,Qin J,Liu Y,et al. Prenatal ethanol exposure induces the osteoarthritislike phenotype in female adult offspring rats with a post-weaning high-fat diet and its intrauterine pro?gramming mechanisms of cholesterol metabolism[J].Toxicol Lett,2015,238(2):117-125.

    [156]Tie K,Tan Y,Deng Y,Li J,Ni Q,Magdalou J,et al.Prenatal nicotine exposure induces poor ar?ticular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine program?ming mechanisms[J].Reprod Toxicol,2016,60:11-20.

    [157]Hochberg Z,F(xiàn)eil R,Constancia M,F(xiàn)raga M,Junien C,Carel JC,et al.Child health,develop?mental plasticity,and epigenetic programming[J].Endocr Rev,2011,32(2):159-224.

    [158]Vickers MH,Gluckman PD,Coveny AH,Hofman PL,Cutfield WS,Gertler A,et al.Neonatal leptin treatment reverses developmental programming[J]. Endocrinology,2005,146(10):4211-4216.

    Prenatal adverse environment increased offspring susceptibility to multiple chronic diseases and intrauterine programming mechanisms

    WANG Hui1,2,JIAO Zhe-xiao1,2

    (1.Department of Pharmacology,Basic Medical School of Wuhan University,Wuhan 430071,China; 2.Hubei Provincial Key Laboratory of Developmentally Originated Disease,Wuhan 430071,China)

    Epidemiological studies reveal that prenatal adverse environment could cause lower birthweight in offspring and increase the susceptibility to multiple chronic diseases(e.g.metabolic and neuropsychiatric diseases etc.)after maturity.However,the underlying mechanism remains unclarified.The hypothalamic-pituitary-adrenal(HPA)axis is a key neuroendocrine axis playing pivotal roles in systemic stress responses before and after birth.It is also an important but vulnerable fetal targeting organ.Previous studies showed that many environmental insults during pregnancy,including external environment and maternal health condition,could affect fetal development in multi-ways via maternalplacental-fetal unit,which leads to the intrauterine programming alteration of HPA axis and the in?creased susceptibility to chronic diseases in adulthood.This article reviews the latest global advances in the etiology of increased susceptibility to adult diseases induced by compromised prenatal environ?ment and the associated intrauterine programming mechanisms by incorporating our recent research findings,and proposes that the fetal over-exposure to maternal glucocorticoids(GC)could bring about the intrauterine neuroendocrine metabolic programming alteration in offspring:the core is the program?ming of GC-insulin-like growth factor 1 axis in multiple organs,and the abnormal epigenetic modification is involved in this programming.

    prenatal adverse environment;metabolic syndrome;hypothalamic-pituitary-adrenal axis,epigenetic modification;intrauterine programming

    WANG Hui,Tel:13627232557,E-mail:wanghui19@whu.edu.cn

    R99

    A

    1000-3002-(2017)01-0012-16

    10.3867/j.issn.1000-3002.2017.01.002

    2016-12-25接受日期:2017-01-20)

    (本文編輯:喬 虹)

    國家自然科學(xué)基金(30830112);國家自然科學(xué)基金(81430089);國家自然科學(xué)基金(81220108026)

    汪 暉,Tel:13627232557,E-mail:wanghui19@ whu.edu.cn

    Foundation item:The project supported by National Natural Science Foundation of China(30830112);National Natural Science Foundation of China(81430089);and National Natural Science Foundation of China(81220108026)

    猜你喜歡
    子代外源編程
    我家有只編程貓
    我家有只編程貓
    我家有只編程貓
    我家有只編程貓
    具有外源輸入的船舶橫搖運動NARX神經(jīng)網(wǎng)絡(luò)預(yù)測
    外源鉛脅迫對青稞生長及鉛積累的影響
    外源鈣對干旱脅迫下火棘種子萌發(fā)的影響
    外源添加皂苷對斑玉蕈生長發(fā)育的影響
    火力楠優(yōu)樹子代測定與早期選擇
    24年生馬尾松種子園自由授粉子代測定及家系選擇
    宜黄县| 公安县| 诸城市| 谢通门县| 镇平县| 南木林县| 庆城县| 濉溪县| 乐陵市| 呼图壁县| 嘉兴市| 乐都县| 原平市| 龙口市| 台南市| 绥德县| 隆回县| 江口县| 九江市| 定襄县| 普兰县| 泊头市| 博客| 交口县| 江华| 神农架林区| 棋牌| 通许县| 巴塘县| 上林县| 广州市| 宜都市| 礼泉县| 额尔古纳市| 新河县| 香格里拉县| 本溪市| 宝丰县| 辽宁省| 亚东县| 同心县|