張 祎,韓日疇
(廣東省生物資源應(yīng)用研究所,廣東省動物保護與資源利用重點實驗室,廣東省野生動物保護與利用公共實驗室,廣州 510260)
蜂產(chǎn)品及蜜蜂疾病與勞動分工行為研究概況
張 祎,韓日疇*
(廣東省生物資源應(yīng)用研究所,廣東省動物保護與資源利用重點實驗室,廣東省野生動物保護與利用公共實驗室,廣州 510260)
蜜蜂是重要的農(nóng)業(yè)昆蟲,傳花授粉、促進(jìn)農(nóng)作物增產(chǎn)增收,生產(chǎn)蜂產(chǎn)品、滿足市場需求;也是一種典型的社會性模式昆蟲,具有重要的科研價值。本文綜述了目前蜜蜂備受關(guān)注的三方面研究工作:(1)蜜蜂授粉和蜂產(chǎn)品;(2)蜜蜂的疾病與免疫;(3)蜜蜂的勞動分工行為。
蜜蜂;蜂產(chǎn)品;疾病與免疫;行為
蜜蜂是人類的良友,不僅生產(chǎn)具有保健和藥用作用的蜂產(chǎn)品,而且在作物授粉與生態(tài)平衡中發(fā)揮重要作用(Kleinetal., 2007; 蘇松坤和陳盛祿,2009; Pottsetal., 2010; Calderone, 2012)。蜜蜂對多種病原敏感,易罹患疾病。我國養(yǎng)蜂業(yè)經(jīng)歷了美洲幼蟲腐臭病、“爬蜂病”、蜂螨病等折磨,損失慘重(金湯東等,2007)。2006年前后,美國等國家爆發(fā)蜜蜂群體崩潰失調(diào)病(Colony Collapse Disorder, CCD),養(yǎng)蜂及相關(guān)產(chǎn)業(yè)嘗盡苦澀(Cox-Fosteretal., 2007)。蜜蜂疾病研究與防控不可或缺。此外,蜜蜂也是一種典型的社會性昆蟲,具有高度組織、分工明確的社會形態(tài)和嚴(yán)密的社會行為(Menzeletal., 2006; Weinstocketal., 2006; 鄭火青和胡福良,2009)。本文著重綜述蜜蜂的經(jīng)濟價值、病蟲害與免疫以及社會行為。
1.1 授粉
世界上80%的被子植物屬于蟲媒植物,大概有30000種,其中17000種由蜜蜂傳粉(Calderone, 2012)。Klein等(2007)調(diào)查了200個國家的主要農(nóng)作物(水果、蔬菜及堅果類)對蜜蜂等傳粉昆蟲的依賴程度,發(fā)現(xiàn)76%農(nóng)作物依賴蜜蜂等昆蟲授粉,增產(chǎn)幅度90%以上的農(nóng)作物占12%;增產(chǎn)幅度為40%-90%占28%;增產(chǎn)幅度為10%-40%占25%;增產(chǎn)幅度10%以下占20%。蜜蜂授粉帶來的間接經(jīng)濟價值更可觀,占到農(nóng)作物總產(chǎn)值5%-15%(Kleinetal., 2007)。我國2006-2008年間36種主要作物蜜蜂授粉的年均價值高達(dá)3042.20億元,是中國蜂業(yè)總產(chǎn)值76倍,相當(dāng)于中國農(nóng)業(yè)總產(chǎn)值12.3%(劉朋飛等,2011)。目前,國外評估蜜蜂授粉經(jīng)濟價值的方法有4種(1)產(chǎn)值估價法:以授粉作物的總價值簡單地評估蜜蜂授粉經(jīng)濟價值;(2)蜜蜂依存度估價法:以各種作物的產(chǎn)值與該作物蜜蜂授粉的依存度乘積之和來評估蜜蜂授粉價值;(3)條件價值法:根據(jù)假設(shè)性市場的支付意愿估算蜜蜂傳粉的價值;(4)替代成本法:根據(jù)人工授粉與蜜蜂授粉之間的成本變化評估蜜蜂授粉的價值(劉朋飛等,2011)。雖然各種方法都存在局限性,但蜜蜂授粉確實帶來了巨大的經(jīng)濟價值(Calderone, 2012)。
1.2 蜂產(chǎn)品
1.2.1 蜂蜜
蜂蜜是蜜蜂采集各種植物分泌物并經(jīng)過蜜蜂加工的一種天然食品,包括花蜜和植物分泌的蜜露。蜂蜜的主要成分是兩種糖:葡萄糖和果糖,以及少量的18種其他糖:麥芽糖,蔗糖,麥芽酮糖,松二糖,異麥芽糖,昆布二糖,黑曲霉唐,曲二糖,龍膽二糖,β-海藻糖,麥芽三糖,吡喃葡糖基蔗糖,松三糖,1-蔗果三糖,異葡糖基三糖,異麥芽三糖,潘糖,G6-葡基蔗糖。不同的蜜源植物其蜜糖的成分含量不一樣(Bogdanovetal., 2004)。另外還有一些有機酸:乳酸,果酸,酪酸,酒石酸,酒石酸,乙酸,檸檬酸,草酸,琥珀酸,蘋果酸,馬來酸,酮戊二酸,葡萄糖-6-磷酸,焦谷氨酸以及乙醇酸。其中葡糖酸是最常見的一種,由葡萄糖經(jīng)葡萄糖氧化酶氧化而來的。蜂蜜中含有幾種非常重要的酶,如葡萄糖氧化酶,過氧化氫酶,酸性磷酸酶,淀粉酶以及轉(zhuǎn)化酶。正是由于這些酶,使得蜂蜜不同于其它甜味物質(zhì)。蜂蜜中還含有豐富的礦物質(zhì)無機鹽,約0.02%-0.1%,因此蜂蜜不能長時間的低溫保存。蜂蜜中還含有水分(17.3%±0.8%),還原糖,電解質(zhì),自由酸,維生素,揮發(fā)性物質(zhì),蔗糖以及羥甲基糠醛,這些物質(zhì)也會影響蜂蜜的營養(yǎng)價值,粘性,質(zhì)地,味道以及藥用價值(Siddiquietal., 2017)。另外,由于不同植物或地區(qū)的花蜜和蜜露中微生物種類不一樣,這些微生物可能會導(dǎo)致蜂蜜加工過程中的二次污染?;壑兄饕袑儆谧幽揖鶤scomycetes的酵母Metschnikowia, 假絲酵母Candida, 接合酵母Zygosaccharomyces, 德巴利(氏)酵母屬Debariomyces的Starmerella和擔(dān)子菌Basidiomycetes的隱球菌Cryptococcussp.和Cystofilobasidiumsp.(Olgaetal., 2012)。蜂蜜不僅美味營養(yǎng),還有極高的藥用價值,早在古埃及(公元前1553-1550年)就有記載,蜂蜜具有促進(jìn)傷口愈合,利尿,減肥,排毒及治療腸道疾病的功效。現(xiàn)代醫(yī)學(xué)證明蜂蜜具有治療十二指腸病變,消炎,鎮(zhèn)痛,抗動脈硬化,抗血栓,抗癌及增強免疫力的功效(Yaghoobietal., 2008;Mesaiketal., 2014)。
一般來說,蜂蜜是通過蜜源植物來命名分類的(如荔枝蜜,龍眼蜜等),但是由于蜜蜂會同時采集不同植物上的花蜜或蜜露,因此極少有純凈的單一蜂蜜。蜂蜜一般都是混合蜜并且其口感,色澤,理化性質(zhì)等都差異不大。顏色是蜂蜜鑒定最直觀的參數(shù),不同顏色的蜂蜜具有不同的風(fēng)味,顏色淺的通常味道比較溫和,顏色深的口感比較濃烈。顏色深的蜂蜜含有較多的酚醛酸及其衍生物以及較少的類黃酮物質(zhì)(Bogdanovetal., 2004)。電導(dǎo)率(Electrical Conductivity)和傅里葉紅外變換光譜(Fourier Transform Infrared Spetrum)是最近國際上常用于鑒定純花蜜的重要參數(shù)。大多數(shù)純花蜜的電導(dǎo)率小于0.5 mS/cm,蜜露或其混合蜜則介于0.5-0.8 mS/cm(Saxenaetal., 2014)。pH也是常用的質(zhì)量參數(shù),因為蜂蜜中含有有機酸,因此蜂蜜的pH介于3.5-5.5,但不同蜜源的pH也有差異(Sanzetal., 2005)。另外一些理化參數(shù)還有含糖量,旋光性,氮含量等,但這些參數(shù)僅能分辨少數(shù)單花蜜,無法鑒別多花蜜。利用蜂蜜的揮發(fā)性物質(zhì)鑒別不同蜜源蜂蜜更準(zhǔn)確、有效。常用方法包括:(1)初級熒光光譜(Front Phase Fluorimetric Spectroscopy)可分辨單花蜜和多花蜜(Ruoffetal., 2006)。(2)紅外光譜法(Infrared Spectroscopy)可分辨8種單一花蜜及其混合花蜜,中紅外光譜可定量分析20種不同理化性質(zhì)的花蜜(Ruoffetal., 2005),但這種方法受限于沒有合適的生物標(biāo)志物而無法廣泛應(yīng)用。(3)核磁共振光譜(Nuclear Magnetic Resonance,NMR)可鑒別來源于不同植物蜜源單一蜜中的各種糖類含量差異(Consonnietal., 2012),花蜜和蜜露的差別(Simovaetal., 2012),以及不同單一蜂蜜中的羧酸、氨基酸、乙醇以及HMF的差異(del Campoetal., 2016)。核磁共振光譜再結(jié)合使用固相萃取技術(shù)(Solid-Phase Extraction, SPE)則可鑒定出單一蜂蜜是否被其他蜜源蜜污染。不過,化學(xué)標(biāo)志物依然是非常重要的檢測基礎(chǔ),喹啉酸是鑒定栗子(chestnut)蜜的標(biāo)志物,單萜衍生物環(huán)已酮-1,3-二烯-1-羧酸和1-O-β龍膽酯是椴樹蜜的標(biāo)志物,脂肪酸信號則是蜜露的標(biāo)志物。如果結(jié)合高效液相色譜及質(zhì)譜(HPLC-MS/MS)則可鑒別單一花蜜和多花蜜(Spiterietel., 2016)。
除了鑒別不同植物蜜源,是花蜜還是植物分泌的蜜露,最受關(guān)注是如何鑒別蜂蜜是否摻假。蜂蜜中摻假主要是摻入一些其它實物的果漿或飼喂蜜蜂吃蔗糖(Puscasetal., 2013),改變蜂蜜中的果糖/葡萄糖的比率,但又不會被一般技術(shù)手段鑒別出來。常被摻入的物質(zhì)有玉米糖漿、甜菜糖漿、大米糖漿、菊粉糖漿(Siddiquietal., 2017)。通常通過糖類分析鑒定蜂蜜中是否摻假,利用高效陰離子交換色譜-脈沖安培檢測(High Performance Anion-exchange Chromatography Pulsed Amperometric Detection, HPAEC-PAD)檢測低聚糖的含量以鑒別是否摻入玉米糖漿(Moralesetal., 2008)。利用拉曼波普(FT-Raman)技術(shù)則可鑒定是否摻入甜菜糖漿(Paradkar and Irudayaraj,2001)。大米糖漿的摻入會嚴(yán)重影響食品安全,但又不易被檢測,利用高效液相色譜與二極管陣列檢測技術(shù)(High Performance Liquid Chromatography with Diode Array Detection,HPLC-DAD)和三維熒光光譜(Three-dimensional Fluorescence Spectroscopy,3DFS)最多可控制大米糖漿摻假率在10%范圍內(nèi)(Xueetal., 2013)。菊粉糖漿摻假是最常見的多糖摻假,可通過氣相-液相色譜(Gas Chromatographic Mass Spectrometric,GC-MS)鑒別(Ruiz-Matuteetal., 2010)。一般來說,所有摻假都可以通過1H NMR技術(shù)鑒別,且高效快速高通量。
1.2.2 蜂毒
蜂毒是工蜂或蜂王的毒腺或副腺分泌的防御性物質(zhì),對人具有多種藥理活性,是蜜蜂身上非常有價值的副產(chǎn)品(高麗嬌和吳杰,2013)。蜂毒含有多種多肽和蛋白質(zhì),目前所知的主要活性物質(zhì)有磷脂酶A2、透明質(zhì)酸酶、蜂毒肽、蜂毒明肽、肥大細(xì)胞脫粒肽和鎮(zhèn)靜肽等毒蛋白(高麗嬌和吳杰,2013)。其中,蜂毒肽(melittin)是蜂毒中比重最多的成分,占其干重50%(Habermann,1972),可用于治療皮膚炎癥,神經(jīng)炎癥,抗動脈硬化,關(guān)節(jié)炎以及肝炎(Lee and Bea, 2016)。這些功能在細(xì)胞和動物實驗?zāi)P蜕隙嫉玫搅蓑炞C(表1),但是其細(xì)胞水平機理還不完全清楚(Lee and Bea, 2016)。
表1 蜂毒肽的抗炎癥效果及機制(Lee and Bea, 2016)
續(xù)上表
疾病模型Animalmodel作用機制Mechanism實驗方式Method劑量Dose參考文獻(xiàn)References肌萎縮性側(cè)索硬化減少脊髓和腦干中小神經(jīng)膠質(zhì)細(xì)胞和phospo?p38細(xì)胞的數(shù)量;增強脊髓的馬達(dá)作用抑制神經(jīng)元的死亡;抑制α?突觸蛋白的錯誤折疊小鼠,在ST36穴位處每周注射2次01μg/gYangetal.,2011抑制肺中的Iba?1和CD14的表達(dá);抑制脾臟中CD14和COX?2的表達(dá)小鼠,在ST36穴位處每周注射3次01μg/gLeeetal,2014動脈粥樣硬化抑制PDGR?β酪氨酸磷酸化及其胞內(nèi)信號轉(zhuǎn)導(dǎo)大鼠主動脈血管平滑肌細(xì)胞04-08μg/mLSonetal,2006,2007降低血漿中總膽固醇和甘油三酸酯但增加HDL;降低TNF?α,IL?1β,VCAM?1,ICAM?1,及TGF?β1小鼠,每周注射2次01mg/kgKimetal,2011抑制IL?1β,TNF?α和NF?κB的活性人單核細(xì)胞THP?1的衍生巨噬細(xì)胞01-1μg/mL增加抗增殖蛋白和膜聯(lián)蛋白?1的表達(dá);減少核內(nèi)EGFR,ERK及NF?κB的表達(dá)從而抑制鈣網(wǎng)蛋白的表達(dá)。經(jīng)TNF?α刺激過的人血管平滑肌細(xì)胞2μg/mLChoetal,2013關(guān)節(jié)炎抑制LPS誘導(dǎo)的COX?2,PEG2,cPLA2,NO及iNOS的表達(dá);抑制JUK和NF?κB的活性,釋放I?κB和核轉(zhuǎn)位的p50亞基風(fēng)濕性關(guān)節(jié)炎患者的滑膜細(xì)胞5-10μg/mLParketal,2004,2007,2008肝炎抑制炎癥反應(yīng),防止纖維化,抑制肝臟VCAM?1,IL?6及TNF?α的表達(dá)小鼠,注射,每周2次,連續(xù)12周01mg/kgParketal,2011抑制IL?1β,TNF?α及IL?6的表達(dá)大鼠原發(fā)性肝星狀細(xì)胞01-1μg/mL抑制細(xì)胞凋亡以及GaIN/LPS誘導(dǎo)的急性肝衰竭的IL?1β,TNF?α,NF?κB的信號小鼠,注射01mg/kgParketal,2012抑制細(xì)胞凋亡途徑和NF?κB的激活小鼠,AML12肝細(xì)胞系05-2μg/mLParketal,2014抑制慢性肝損傷中TNF?α,IL?6和p?STAT3的表達(dá)小鼠,注射,每周2次,連續(xù)4周01mg/kgKimetal,2015
1.2.3 蜂膠
蜂膠是蜜蜂采集植物頂芽和滲出液中的脂類物質(zhì),并混合蜂蠟經(jīng)蜜蜂上顎腺分泌物加工形成的物質(zhì),在蜂群中主要用來防御外敵入侵,修復(fù)蜂巢,遮風(fēng)擋雨,保護蜂群健康(Wagh, 2013)。蜂膠并不是蜜蜂的代謝產(chǎn)物,不是由蜜蜂的基因決定的,因此,蜂膠的化學(xué)成分差異很大,因植物而異,又取決于環(huán)境氣候。天然蜂膠的基本成分一般是:50%樹脂樹香復(fù)合物,30%蜂蠟,5%花粉,10%揮發(fā)性油以及一些其他物質(zhì)(Burdock, 1998)。其活性物質(zhì)有酚、酸、醇、酯、酚、醚、萜、烯、甾醇等(徐響等,2008),具有廣泛的藥理學(xué)活性如抗菌、抗病毒、抗病原蟲、抗氧化、抗癌、麻醉、創(chuàng)傷修復(fù)、消炎、免疫調(diào)節(jié)、預(yù)防齲齒、心血管保護等(Sforcin and Bankova, 2011),可抗各類癌癥如腦癌,頸癌,皮膚癌,肝癌,乳房癌,胰腺癌,腎癌,膀胱癌,前列腺癌,結(jié)腸癌,血管癌等(Patel, 2014)。抑制金屬蛋白酶活性,抑制血管生成,阻止轉(zhuǎn)移,細(xì)胞周期阻滯,誘導(dǎo)凋亡,修復(fù)化療副作用是蜂膠抗癌的關(guān)鍵機制(Patel, 2014)。蜂膠的提取方法直接影響其藥用活性,因為不同的溶劑溶解和提取出的物質(zhì)是不一樣的,最常用的是不同濃度的乙醇,甲醇和水(Cunhaetal., 2004)?,F(xiàn)代代謝組學(xué)也應(yīng)用于蜂膠成分分析(Andelkovic'etal., 2017)。目前已知被鑒定的化學(xué)物質(zhì)超300種,具有抗癌功效的有咖啡酸苯乙酯,柯因(5,7-二羥黃酮),聚異丙烯基二苯酮,高良姜素(三羥基黃酮),腰果酚,羥基肉桂酸,阿替匹林C等(Kumazakietal., 2014; Patel,2014)。不同產(chǎn)地、不同季節(jié)的蜂膠成分和含量差異很大,并且具有一些獨特物質(zhì)(南垚等,2006; de Sousaetal., 2011; 王凱等,2013)。
阿替匹林C(Artepillin C)主要是非洲綠色蜂膠的重要活性成分,使得非洲蜂膠嘗起來有辛辣味(Hataetal., 2012)。阿替匹林C除了具有抗癌功能,還有其他具有多種生物學(xué)活性(表2),其在人體內(nèi)的代謝也備受關(guān)注。Carr?o等(2017)報道在小鼠的肝微粒體中,阿替匹林C的代謝方式符合希爾動力模型(Hill’s kinetic model)S曲線(sigmoidal profile),酶學(xué)參數(shù)方程為:Vmax=0.757±0.021 μmol/mg蛋白/min,Hill系數(shù)=10.90±2.80,底物濃度的最大半數(shù)值(Substrate Concentration Half-maximal Velocity) Km=33.35±0.55 μM,因此計算出體內(nèi)的代謝速率為16.63±1.52 μL/min/mg蛋白,而在人的肝細(xì)胞中不符合這個動力模型,但細(xì)胞色素P450參與了阿替匹林C的代謝,產(chǎn)生了兩個代謝產(chǎn)物CYP2E1和CYP2C9。其細(xì)胞作用方式,則可能是先聚集于膜的水相,沿著膜的表面負(fù)電荷的阿替匹林C接合于膜的極性區(qū),聚集于膜的薄層區(qū)(Pazinetal., 2016)。
咖啡酸苯乙酯(Caffeic Acid Phenethyl Ester,CAPE)也是蜂膠中一種非常重要的活性組分,屬于多酚類化合物,有清除自由基的功效、在抗腫瘤、抗氧化、抗炎癥、免疫調(diào)節(jié)、缺血再灌注保護等方面表現(xiàn)出獨特的生理藥理作用。在哮喘的治療上也表現(xiàn)獨特的療效(Maetal., 2016)。CAPE也具有抗氧化抗過敏作用,在抗尿路感染方面具有良好療效,這是阿替匹林C所不具備的(Allameh and Salamzadeh, 2016)。
表2 阿替匹林C功能及其作用機制
自從2006年報道蜜蜂群體崩潰失調(diào)病(Colony Collapse Disorder, CCD)(Cox-Fosteretal., 2007),研究者排查了各種可能影響蜜蜂健康的生物與非生物因素。生物因子有病毒、細(xì)菌、寄生蟲以及蜜蜂遺傳因素,而非生物因子則是環(huán)境氣候、蜂群管理及化學(xué)農(nóng)藥等。根據(jù)流行病學(xué)分析結(jié)果,影響蜂群健康的主要是病毒、細(xì)菌、錐形蟲以及寄生螨(Cox-Fosteretal., 2007; McMenaminetal., 2016)。
2.1 蜜蜂病原
2.1.1 病毒
至今陸續(xù)報道的蜜蜂病毒總數(shù)達(dá)28種之多(Baileyl, 1981; Gisder and Genersch, 2015; Mordecaietal., 2016),包括Dicistroviridae,Iflaviridae,Baculoviruses和Tymoviridae等屬(表3)。國內(nèi)外有多篇綜述介紹常見病毒(Baileyl, 1981; Chen and Siede, 2007; 張炫等,2012;Gisder and Genersh, 2015),這里不再贅述,僅介紹幾種新近發(fā)現(xiàn)的病毒。
意大利蜜蜂絲狀病毒AmFV(A.melliferaFilamentous Virus,AmFV)是其中唯一的一種dsDNA病毒,其基因組也是最大的,達(dá)498500 bp,基因組DNA和核蛋白經(jīng)折疊和環(huán)化,形成長450×170 nm的桿狀(圖 1),根據(jù)基因組分析類似于無脊椎動物的桿狀病毒(Gauthieretal., 2015)。跟其他病毒一樣,其傳播方式有水平傳播和垂直傳播。除了感染意大利蜜蜂還感染中華蜜蜂(Houetal., 2015),甚至一些獨棲蜂如熊蜂,具有較廣的宿主譜(Ravoetetal., 2014; Hartmannetal., 2015)。AmFV單獨感染蜜蜂不會引起明顯的病理特征,只有與微孢子蟲Nosemaapis共感染時才會致死蜜蜂,死蜂的血淋巴呈乳白色,一般會在春季發(fā)病(Ravoetetal., 2014)。在意大利蜂群中檢測率很高,瑞士群蜂的檢出率為64%,而美國的則100%,并且在蜜蜂各個發(fā)育階段都能檢測到;但在狄斯瓦螨Varroadestructor中檢出率很低,43頭單螨中僅有3頭檢測到,分組檢測29份(每份100頭)也僅有3份檢測到AmFV,可能其主要的傳播媒介不是狄斯瓦螨(Ravoetetal., 2014)。
圖1 意大利蜜蜂絲狀病毒的形態(tài)特征(Ravoet et al., 2014)Fig.1 Morphology of AmFV virions 注:A,B 分別表示電鏡下病蜂“牛奶”狀血淋巴中意大利蜜蜂絲狀病毒的核衣殼蛋白和包裝好的病毒粒子的形態(tài)特征。Note:A, B, Electron micrographs of “milky” bee hemolymph containing characteristic AmFV nucleoproteins (np) and enveloped virions (v).
西奈病毒(Lake Sinai Virus,LSV),目前發(fā)現(xiàn)有7株,LSV1-7。LSV1和LSV2首次發(fā)現(xiàn)于美國南達(dá)科他(South Dakota)的靠近西奈湖(Lake Sinai)的一個流動養(yǎng)蜂場。2008-2009年期間,在該蜂場采樣檢測發(fā)現(xiàn),2008年4月和2009年1月份是LSV1的高發(fā)期,而2009年7月是LSV2的高發(fā)期,但當(dāng)時對LSV的致病性不了解(Runckeletal., 2011)。但在CCD蜂群中其滴度高于非CCD蜂群。隨后在比利時、西班牙、土耳其發(fā)現(xiàn)了LSV3,LSV-Navarra,LSV4,LSV5(Granbergetal., 2013; Ravoetetal., 2013; Ravoetetal., 2014, 2015)。LSV 是 +ssRNA病毒,基因組長約5600 bp,基于RdRp序列系統(tǒng)進(jìn)化分析與CBPV近緣,基于衣殼蛋白序列系統(tǒng)進(jìn)化分析則與蚊子的Mosino Virus近緣(相似度32%-34%)(Daughenbaughetal., 2015)。LSV2基因組長5904 bp,編碼衣殼蛋白57.3 kDa,病毒粒子直徑約27 nm(Daughenbaughetal., 2015)。LSV可以通過食物和狄斯瓦螨傳播,在狄斯瓦螨,蜜蜂的腸道、胸部、腹部及頭部都能檢測到,說明LSV可以通過媒介、食物或糞便傳播(Daughenbaughetal., 2015)。
隨著測序技術(shù)的發(fā)展與大數(shù)據(jù)比對分析,發(fā)現(xiàn)了一些不了解其致病癥狀的新病毒。夏威夷莫窟病毒(Moku Virus, MV)是在夏威夷群島的一種入侵黃蜂Vespulapensylvanica身上發(fā)現(xiàn)的,并在意大利蜜蜂和狄斯瓦螨樣品也能比對到相似序列。MV是+ssRNA,其基因組全長10056 bp,3′端有一個poly A尾,編碼序列長9153 bp,編碼3050 Aa,與緩慢性麻痹病毒(Slow Bee Paralysis Virus,SBPV)的編碼序列相似性達(dá)46%。編碼區(qū)有3個蛋白,核衣殼蛋白,解旋酶以及RdRp酶以及3C蛋白酶。其病理特征還不清楚(Mordecaietal., 2016)。狄斯瓦螨類黃斑病毒(V.destructorMacula-like Virus,VdMLV)近緣于家蠶的類黃斑病毒(Bombyx Mori Macula-like Latent Virus,BmMLV),是通過蛋白質(zhì)譜分析發(fā)現(xiàn),預(yù)測其體積約30 nm,ssRNA病毒,約6500 bp,其外殼蛋白約24 kD(Erbanetal., 2015)。
表3 蜜蜂病毒
續(xù)上表
編號Number屬Genus名稱Name核酸類型與基因組大小Genomesize參考文獻(xiàn)References(14)ApisIridescentVirus(AIV)+ssRNABaileyandBall,1991(15)IflaviridaeVarroadestructorVirus1(VDV?1)+ssRNA~10000bpMooreetal,2011(16)IflaviridaeVarroadestructorVirus2(VDV?2)+ssRNA~9576bpLevinetal,2016(17)IflaviridaeVarroadestructorVirus3(VDV?3)+ssRNA~4202bpLevinetal,2016(18)TymoviridaeBeeMacula?LikeVirus(BeeMLV)+ssRNA~6500bpdeMirandaetal,2015(19)IflaviridaeKakugoVirus(KV)+ssRNA~10152bpFujiyukietal,2004(20)IflaviridaeMokuVirus(MV)+ssRNA10,056bpMordecaietal,2016(21)蜜蜂X病毒BeeVirusX(BVX)+ssRNABaileyandBall,1991(22)蜜蜂Y病毒BeeVirusY(BVY)+ssRNABaileyandBall,1991(23)蜜蜂死蛹病病毒DeadPupaeVirus(DPV)+ssRNABaileyandBall,1991(24)阿肯色蜜蜂病毒ArkansasBeeVirus(ABV)+ssRNABaileyandBall,1991(25)伯克立病毒BerkeleyBeeVirus,BBPV+ssRNA~9000ntdeMirandaetal,2015(26)埃及寬蜂病毒EgyptBeeVirus(EBV)+ssRNABaileyandBall,1991(27)囊狀幼蟲病病毒泰國毒株SacbroadVirus,Thaistrain(TSBV)+ssRNABaileyandBall,1991(28)慢性麻痹病相關(guān)病毒ChronicParalysisVirusAssociate(CPVA)+ssRNABaileyandBall,1991
2.1.2 細(xì)菌
美洲幼蟲腐臭病(American foulbrood,AFB)和歐洲幼蟲腐爛病(European foulbrood,EFB)是兩大細(xì)菌傳染性病害(Forsgren,2010)。AFB的病原是Paenibacilluslarvae(Generschetal., 2006),目前僅致病蜜蜂幼蟲(Ebelingetal., 2016)。P.larvae屬于G+細(xì)菌,有鞭毛,產(chǎn)芽孢細(xì)菌。芽孢進(jìn)入孵化36 h后的1-2日齡幼蟲,在幼蟲的腸道內(nèi)萌發(fā),繁殖,生長,突破中腸表皮細(xì)胞,隨后進(jìn)入血腔,致死幼蟲,直至降解幼蟲的尸體,耗盡幼蟲的能量,最后形成具有毒力的芽孢子團,再由衛(wèi)生蜂傳到其他幼蟲(Yueetal. 2008)。衛(wèi)生蜂的喂食傳播是唯一的傳播途徑。正因為蜜蜂的獨特哺育方式,蜂群一旦感染P.larvae,整群毀滅(Ebelingetal., 2016)。經(jīng)腸道菌基因間重復(fù)序列(Enterobacterial Repetitive Intergenic Consensus,ERIC)分析,P.larvae具有4種基因型,后經(jīng)多位點序列分型(Multi Locus Sequence Typing,MLST)以及基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜(Matrix-Assisted Laser Desorption/ionization Time of-Flight Mass Spectrometry,MALDI-TOF MS)都驗證了這種分型的準(zhǔn)確性。ERIC I,II比較常見,是美洲幼蟲腐臭病的常見致病株,III和IV僅存在菌種保藏中心。P.larvae的致病機理如圖2,首先在鞭毛的游動幫助下定殖于蜜蜂幼蟲中腸內(nèi)腔,分泌表層蛋白(S-layer protein),抵抗腸腔內(nèi)的其他細(xì)菌和真菌,以及宿主的免疫反應(yīng)(2A),隨后P.larvae會分泌幾丁質(zhì)降解酶PlCBP49(一種溶解性多糖單氧酶,LPMOs),同時,還分泌毒素Plx1和Plx2,三者協(xié)同作用具有單-ADP核糖轉(zhuǎn)移酶活性,降解肌動蛋白細(xì)胞骨架,突破腸道表皮層,從而進(jìn)入到血腔,致死幼蟲后,繼續(xù)分解基質(zhì)直到能量耗盡,細(xì)菌形成芽孢(Ebelingetal., 2016)。
圖2 Paenibacillus larvae致病機理(Ebeling et al., 2016)Fig.2 Disease mechanism of Paenibacillus larvae (Ebeling et al., 2016)
歐洲幼蟲腐爛病全球分布,目前僅新西蘭還未見報道(Forsgren, 2010)。EFB的病原是Melissococcusplutonius(Bailey, 1983),G+細(xì)菌,尖球狀(圖3A,B),屬微需氧-厭氧菌,需二氧化碳培養(yǎng)。易感染4-5日齡未封蓋幼蟲,染病幼蟲顏色首先變黃,漸漸呈褐色,最后腐爛,呈灰黑色(圖3C)。歐腐病一般經(jīng)食物、糞便及成蜂間接觸傳播,因為在單個蜜蜂體內(nèi),M.plutonius是定殖于蜜蜂幼蟲的腸道,但隨后幼蟲羽化出房排便,M.plutonius會隨著糞便留在巢房內(nèi),不會被完全清理干凈,殘留在巢房,感染幼蟲食物。幼蟲的死亡率與M.plutonius有劑量依賴關(guān)系,一般來說>200 CFU/mL會使得幼蟲發(fā)病,有些染病幼蟲立馬死亡,有些會在封蓋后死亡,其癥狀有點像美洲幼蟲腐爛病,也有些攜菌幼蟲會繼續(xù)發(fā)育,直至羽化,只是個子比正常蜂小一點(Forsgren, 2010)。發(fā)病期間常發(fā)生次生感染,次生感染的主要細(xì)菌有Paenibacillusalvei,Brevibacilluslaterosporus,Enterococcusfaecalis, 以及Achromobactereurydice等,經(jīng)基因組測序分析P.alvei可能會分泌一些幾丁質(zhì)降解酶,透明質(zhì)酸裂解酶,以及一些類似于蘇云金芽孢桿菌毒素,促使被感染幼蟲加快死亡(Djukicetal., 2012)。歐腐病的診斷技術(shù)有ELISA、PCR、以及qRT-PCR,但這些技術(shù)比較耗時,一項新的快速檢測技術(shù)應(yīng)運而生,那就是膠體金檢測技術(shù),通過顯色的深淺變化判斷是否含有M.plutonius及含量,可以精確至25拷貝的最少含量(Salehetal., 2012)。
圖 3 歐洲幼蟲腐臭病癥狀及病原Melissococcus plutonius(Forsgren, 2010)Fig.3 Symptom of European Foulbrood and the bacterium Melissococcus plutonius (Forsgren, 2010)注:A,病原菌的電鏡照片(bar=1 μm);B,病原菌的革蘭氏染色;C,患病幼蟲癥狀。Note: A, Scanning electron micrograph of Melissococcus plutonius(The bar represents 1 μm); B, Gram staining of Melissococcus plutonius; C, Symptoms of European foulbrood.
2.1.3 寄生螨
蜜蜂寄生螨的主要害螨有狄斯瓦螨,梅氏熱厲螨Tropliaelapsmercedesae,武氏蜂盾螨Acarapiswoodi(羅其花等,2010)。其中,狄斯瓦螨對養(yǎng)蜂業(yè)危害最大,不僅吸食蜜蜂的血淋巴,對蜜蜂造成直接傷害,還攜帶和傳播病毒,特別是殘翅病病毒(DWV)(Rosenkranzetal., 2010; Martinetal., 2012;張祎和韓日疇,2012)。一般在沒有狄斯瓦螨的情況下,DWV呈隱性感染,病毒滴度低,蜜蜂形態(tài)正常,一旦同時受到狄斯瓦螨的侵染,DWV含量上升,蜜蜂的NF-κB免疫途徑遭到損壞,免疫力下降,狄斯瓦螨快速繁殖(Di Priscoetal., 2016),蜂蛹發(fā)育受損,幼蜂殘翅,群勢逐漸削弱,一到冬天便全群崩潰(Highfieldetal., 2009; Dainat and Neumann, 2013)。然而,對于對狄斯瓦螨具有抗性的蜂種來說,其個體對狄斯瓦螨更為敏感,被狄斯瓦螨侵染的幼蟲很快死亡,并被快速清除出巢房,采取的策略可能是通過犧牲個體達(dá)到拯救群體的目的(Loftusetal., 2016; Mondetetal., 2016; Pageetal., 2016)。狄斯瓦螨的攜帶會加劇病毒(DWV)的毒力(Ryabovetal., 2014; Lampetal., 2016),降低DWV的多樣性,加劇優(yōu)勢株的流行(Martinetal., 2012; Ryabovetal., 2014; Mordecaietal., 2016; Wilfertetal., 2016),改變蜜蜂的微生物群落(Hubertetal., 2016)。而環(huán)境氣候條件、地理位置、植被蜜源條件及蜂群管理水平都會影響病毒及其他病原的繼發(fā)感染程度,影響螨害的發(fā)展程度,但狄斯瓦螨的對蜜蜂作用機理并不清楚(Anquianoetal., 2016; Giacobinoetal., 2016; Giacobinoetal., 2017)。
為了研究狄斯瓦螨作用蜜蜂的機理,狄斯瓦螨的人工飼養(yǎng)是關(guān)鍵。瓦螨人工飼養(yǎng)的關(guān)鍵條件是:(1)合適的膜供螨刺吸取食;(2)合適的人工培養(yǎng)基(Bruceetal., 1988; Garrido and Rosenkranz, 2003; Garedewetal., 2004; Tabartetal., 2013)。早在1988年,Bruce等 (1988) 便嘗試使用封口膜(ParafilmR,成分是聚烯烴)拉成大概10 μm厚,做成囊狀,里面包裹幼蟲血淋巴(加入甲基藍(lán))或人工食物(成分是酵母提取物,酪蛋白,鹽,維生素,膽固醇,蔗糖明膠,吐溫80,雞蛋黃,RNA提取物,無菌水),24 h后觀察到瓦螨有取食血淋巴和人工食物并有產(chǎn)卵,但48 h后發(fā)現(xiàn)卵都未孵化且螨的死亡率達(dá)到80%;取食人工食物的母代雌螨也最多只能存活5 d,產(chǎn)下有甲基藍(lán)的卵,卵可以孵化并發(fā)育至一齡若蟲,但不能繼續(xù)發(fā)育至成螨完成一個世代循環(huán)。考慮到人工拉扯封口膜并不標(biāo)準(zhǔn),也容易破,也嘗試用其他商業(yè)膜或者改進(jìn)封口膜的拉展方法,但后來都未采用(Milani and Chiesa, 1989)。1991年,Rath嘗試用ELISA 96孔板培養(yǎng)狄斯瓦螨,孔深10.5 mm,直徑7.0 mm,底部圓弧形,蜜蜂的幼蟲作為螨的食物,每孔放一頭幼蟲一頭螨,用聚乙烯膜封蓋并在中間打一個直徑約0.5 mm的孔,封好后置于35℃,RH75%培養(yǎng)箱中培養(yǎng)。結(jié)果發(fā)現(xiàn)以意蜂工蜂幼蟲為食物的狄斯瓦螨中,有26.8%產(chǎn)卵,但也沒有發(fā)育至成螨(Rath, 1991)。1994年,Nazzi和Milani嘗試用蜂蠟或明膠做成人工巢房,以封蓋后0-15 h的幼蟲為食物飼養(yǎng)狄斯瓦螨,用濾紙封蓋,豎直放在培養(yǎng)皿中,然后置于34.5℃,RH75%的培養(yǎng)箱中培養(yǎng),12 d后開蓋,結(jié)果發(fā)現(xiàn)在直徑為6.0 mm的明膠人工巢房中的螨產(chǎn)卵率達(dá)62%,每頭螨的產(chǎn)卵量平均達(dá)3.5顆,也有27.1%發(fā)育至成螨(Nazzi and Milani, 1994)。但是還是不能培養(yǎng)至第二代螨,無法一直持續(xù)循環(huán)培養(yǎng);而且以蜜蜂幼蟲為食物,也不能調(diào)配食物的成分。2013年,Tabart等設(shè)計了一套新的培養(yǎng)系統(tǒng),用殼聚糖做稱膠囊狀,把螨放在膠囊內(nèi),整個膠囊放在盛有人工培養(yǎng)基的無菌96孔板內(nèi),螨可以從膠囊內(nèi)部咬破囊膜吸到外部的食物。食物的配方如下:30%Schneider’s培養(yǎng)基,30% CMRL1066,0.06 M組氨酸,10%胎牛血清,1% Hank’s鹽溶液,4%昆蟲培養(yǎng)基,25%蜜蜂幼蟲血淋巴,混合后置于45℃溫育,再加入20%含20 g/L瓊脂糖和0.8% FCF亮藍(lán)的磷酸緩沖液,將培養(yǎng)基做成半固體狀態(tài)。但該實驗僅持續(xù)了5 d,證實了狄斯瓦螨會刺破囊膜吸食含有蜜蜂血淋巴的“半人工培養(yǎng)基”,僅個別雌螨產(chǎn)卵,卵不發(fā)育。因此,至今,還沒有成功的可以利用的人工培養(yǎng)系統(tǒng)。因為不知道誘發(fā)產(chǎn)卵及促使卵發(fā)育的具體物質(zhì),無法配置合適的培養(yǎng)基。狄斯瓦螨基因組的解釋也許為后續(xù)研究提供一些思路(Cornmanetal., 2010)。
2.1.3 其它
另外還有一些真菌病,如蜂球菌Ascoshaeraapis引起白堊病(Qinetal., 2006),還有曲霉Aspergillussp.引起幼蟲石化病(Morse and Flottum, 1997),以及微孢子蟲(Nosemaapis和Nosemaceranae)(Fries, 2010; Hongetal., 2011)。
2.2 蜜蜂的免疫
蜜蜂的免疫系統(tǒng)比較獨特,除了個體免疫,還具有群體免疫(Friesetal., 1996; Evansetal., 2006; Evans and Spivak, 2010; Le Conteetal., 2011; Kurzeetal., 2016)。研究認(rèn)為蜂群CCD現(xiàn)象中工蜂的整體“消失”是因為蜂群過度反復(fù)的積極免疫反應(yīng)使得巢內(nèi)蜜蜂大部分或全部死亡(Bulletal., 2012;李貝貝等,2016)。
2.2.1 個體免疫
昆蟲主要的免疫機制由三部分組成:(1)表皮,是昆蟲抵抗外界微生物的天然物理屏障;(2)細(xì)胞免疫;(3)體液免疫(Evansetal. 2006; Kurzeetal., 2016;鄭樹安,2016)。蜜蜂的免疫系統(tǒng)啟動的誘導(dǎo)物沒有針對特定的誘導(dǎo)源,也沒有相應(yīng)的特異性結(jié)果,為“非專一性”免疫,不同的誘導(dǎo)源均可產(chǎn)生類似的抗菌物質(zhì),且經(jīng)誘導(dǎo)產(chǎn)生的抗菌物質(zhì)具有廣譜性,而非針對特定的誘導(dǎo)物質(zhì)(Kurzeetal., 2016)。由于蜜蜂開放式的血液循環(huán),血淋巴遍布于所有組織和器官,當(dāng)外來病原體或異物進(jìn)入后,蜜蜂依靠血細(xì)胞的吞噬、成瘤、包囊等作用殺滅病原菌,并通過凝集作用修復(fù)傷口,以防止外來物進(jìn)一步侵入體腔(鄭樹安,2016)。體液免疫主要有Toll途徑,Imd途徑,Jak/STAT途徑,JNK (Jun N-terminal kinase)-MAPK (Mitogen-Activated Protein Kinases)途徑以及RNAi途徑(Evansetal., 2006; Brutscheretal., 2015)。RNAi途徑則由dsRNA觸發(fā)的序列特異性的轉(zhuǎn)錄后基因調(diào)控的病毒沉默機制,目前在黑腹果蠅Drosophilamelanogaster, 埃及伊蚊Aedesaegypti及岡比亞按蚊Anophelesgambiae中都得到了實驗驗證。蜜蜂的RNAi抗病毒途徑也取得重大進(jìn)展。經(jīng)信息生物學(xué)分析發(fā)現(xiàn)在蜜蜂的基因組中存在RNAi途徑上的重要元件基因,如dicer-1,ago-2,r2d2, 以及dicer-like,許多重要的抗病毒免疫基因也得到證實(表4)(Brutscheretal.,2015)。一些特異性dsRNA觸發(fā)RNAi途徑,可以特異性抵抗RNA病毒。在實驗條件下,IAPV,DWV以及CSBV都可以通過給蜜蜂喂食特異性dsRNA,抑制蜜蜂體內(nèi)病毒的增殖,提高存活率(Maorietal., 2009; Liuetal., 2010; Desaietal., 2012),并且已有商業(yè)化的抗病毒dsRNA制劑可用于蜂群防御(Hunteretal., 2010)。在自然條件下,蜜蜂體內(nèi)也存在很多病毒特異性siRNA,如在CCD蜂群中有大量負(fù)鏈IAPV-siRNA,這些負(fù)鏈siRNA結(jié)合IAPV的(+)ssRNA基因組,發(fā)揮RNAi作用。高通量測序分析不同樣品(Varroa-infested, DWV-infected, VDV-1-infected)中的小RNA發(fā)現(xiàn),大量病毒特異性的正鏈siRNA,與相應(yīng)病毒量呈正比關(guān)系。如果沒有狄斯瓦螨的侵染,蜜蜂體內(nèi)的siRNA足夠抵御病毒的繁殖(Chejanovskyetal., 2014)。由于蜜蜂群居,微環(huán)境復(fù)雜,往往是多條途徑共同發(fā)揮作用才能保護蜜蜂的健康(Brutscheretal.,2015)。
表4 免疫途徑與基因(Brutscher et al., 2015)
2.2.2 群體免疫
群體免疫(Social Immunity)是社會性昆蟲基于群體水平抵御疾病的方式,包括理毛行為(Grooming),清潔行為(Hygienic behavior)和移走行為(Undertaking)(Friesetal., 1996; Evans and Spivak, 2010; Le Conteetal., 2011),也有文獻(xiàn)認(rèn)為清潔行為包括“開蓋”和“移走”行為(Palacioetal., 2005; Swansonetal., 2009)。理毛行為有個體的自我理毛,主要是清除自身的顆粒物和花粉,也有相互理毛,就是兩頭蜜蜂之間互相為對方清理身上的顆粒異物,這個特性在中華蜜蜂抗螨過程中發(fā)揮作用(Rath, 1999; Bahreini and Currie, 2015),但也可能導(dǎo)致疾病的快速傳播。清潔行為不是我們理解的一般意義上的打掃衛(wèi)生,清理巢房,而是指成年工蜂抵抗疾病和寄生蟲的行為,是蜜蜂的群體免疫的重要組成部分(Bigioetal., 2014)。最初是發(fā)現(xiàn)在抵抗美洲幼蟲腐臭病和白堊病中發(fā)揮作用(Gilliametal., 1988; Evans and Spivak, 2010; Invernizzietal., 2010),其中揮發(fā)性氣味物質(zhì)在誘導(dǎo)這種行為中發(fā)揮了作(Swansonetal., 2009)。隨后研究表明在中華蜜蜂抗螨特性中,清潔行為發(fā)揮了重要作用,蜜蜂能夠檢測到有螨寄生的巢房,然后打開巢房蓋,讓螨逃走或者移走受螨侵染的蛹(Pengetal., 1987a,1987b),為了了解清潔行為的強弱,經(jīng)典測定實驗是幼蟲凍傷后放回蜂箱,24或48 h后檢查被清理凍死幼蟲的數(shù)量和比例(Spivak and Gilliam, 1998a; Palacioetal., 2005),實驗證明能夠迅速清走這些凍死幼蟲其抵抗受狄斯瓦螨的能力也很強(Morettoetal., 2006),而不同的意大利蜜蜂其清潔行為也有差異并且受到特定基因的調(diào)控(Boutinetal., 2015)。由于現(xiàn)在意大利蜜蜂螨害嚴(yán)重,急需獲得具有抗螨特性的蜂種,基于清潔行為特性研究為選育抗螨蜂種提供了思路。
蜜蜂作為模式生物受到全世界科學(xué)家的重視基于其獨特的生物學(xué)特性:(1)復(fù)雜而精確的社會性結(jié)構(gòu);(2)繁殖快,生活周期短,易于飼養(yǎng),個體適中,適于觀察。蜜蜂基因組的完成使得蜜蜂生物學(xué)研究迅速升溫,尤其是:(1)勞動分工;(2)學(xué)習(xí)與記憶;(3)性別決定;(4)級型分化;(5)免疫調(diào)節(jié);(6)自組織調(diào)節(jié)等,涵蓋了昆蟲學(xué)、生物信息學(xué)、進(jìn)化與發(fā)育、神經(jīng)生物學(xué)、細(xì)胞與結(jié)構(gòu)生物學(xué)等多學(xué)科,取得了矚目進(jìn)展(Weinstocketal., 2006,鄭火青和胡福良,2009)。
蜜蜂最引人注目的是它的社會行為(Social Behaviour)和復(fù)雜的勞動分工(Page Jretal., 2000)。級型分化的第一級分化是受精卵發(fā)育的雌蜂因為攝入食物的差異形成負(fù)責(zé)產(chǎn)卵繁殖的蜂王和無繁殖能力的工蜂(李文峰等,2014)。級型分化的兩個核心問題是(1)引發(fā)級型分化的營養(yǎng)因子;(2)級型發(fā)育的調(diào)節(jié)途徑(Shuel and Dixon, 1960)。關(guān)鍵營養(yǎng)因子是蜂王漿主要蛋白組分Royalactin(57 kDa蛋白),其作用機理可能是受脂肪體細(xì)胞表皮生長因子受體介導(dǎo)的信號通路調(diào)控誘導(dǎo)蜂王的發(fā)育(Kamakura, 2011)。但由于受限于蜜蜂不成熟的遺傳操作技術(shù),也沒有合適的突變體,以及人工蜂王培養(yǎng)技術(shù)不完善,直接在蜜蜂體內(nèi)驗證Royalactin的功能還沒有實現(xiàn)(李文峰等,2014)。表觀遺傳修飾也是影響級型分化的因素,dynactin p62基因的甲基化影響幼蟲的卵巢和形態(tài)發(fā)育(Kucharskietal., 2008; Shietal., 2011)。另外,激素水平的平衡控制,胰島素受體途徑和TOR信號通路的調(diào)控也都參與級型分化,但細(xì)節(jié)問題尚無定論(李文峰等,2014)。
第二級分化是成年工蜂的各項細(xì)致分工。影響工蜂勞動分工的因素相當(dāng)復(fù)雜, 主要包括: 工蜂的日齡、保幼激素(Juvenile Hormone,JH)濃度、遺傳基因、遺傳-環(huán)境互作和蜂王上顆腺信息素(QMP)等(Denison and Raymond-Delpech, 2008;沈飛英等,2015)。成年工蜂出房后從事巢內(nèi)勞動(內(nèi)勤蜂):哺育、筑巢、清潔,2-3周后飛出蜂箱采集花粉和花蜜(外勤蜂),5-7周再次分工,?;杉刍蛘呋ǚ?。根據(jù)日齡的基本分工,內(nèi)勤蜂一旦轉(zhuǎn)化成外勤蜂就很少再回到蜂箱內(nèi)從事巢內(nèi)工作(Winston,1987)。根據(jù)蜂群需求,這種轉(zhuǎn)變有時加速、有時延遲,也有可能會顛倒(Fahrbach and Robison, 1995)。影響蜂群分工的因素有天氣條件,營養(yǎng)狀態(tài),蜂齡結(jié)構(gòu)。如果一個蜂群缺少相對老齡的蜂,那么年幼的蜂會壓縮在巢內(nèi)的工作時間,盡快轉(zhuǎn)變?yōu)橥馇诜?孫婷等,2008)。分工的不同也伴隨激素的變化,內(nèi)勤蜂體內(nèi)激素水平低,外勤蜂激素水平高(Fahrbach and Robison, 1995)。從巢內(nèi)到巢外工作的轉(zhuǎn)變,涉及涉及幾千個基因的調(diào)控(宗超等,2014),目前研究發(fā)現(xiàn)foraging(Amfor),malvolio(Amvl)和vitellogenin(Vg)這3個基因在調(diào)控這些行為轉(zhuǎn)變中發(fā)揮重要作用 (Denison and Raymond-Delpech, 2008)。Foraging基因與昆蟲的趨光性有關(guān),蜜蜂Foraging同源基因Amfor在其腦部的視葉區(qū)、蕈形體中表達(dá),外勤蜂的表達(dá)水平顯著高于內(nèi)勤蜂,因為內(nèi)勤蜂在蜂箱內(nèi)黑暗環(huán)境中工作,需避光,而外勤蜂則長時間在蜂箱外采集,具有趨光性(Ben-Shaharetal., 2005)。Amv影響工蜂對蜜源質(zhì)量(果糖含量)的感知,在蜜蜂采集花粉還是花蜜的分工中擔(dān)任重要作用(Ben-Shaharetal., 2004)。Vg是一個卵黃蛋白前體基因,與保幼激素共同作用調(diào)節(jié)蜜蜂內(nèi)外分工,一般是呈相互抑制關(guān)系,JH高則Vg低,JH高促進(jìn)向外勤蜂轉(zhuǎn)變,降低JH,則延遲轉(zhuǎn)變,用Vg-dsRNA降低Vg的表達(dá),也促進(jìn)向外勤蜂轉(zhuǎn)變(Nelsonetal., 2007)。但Vg是如何抑制JH的表達(dá),以及相互作用機制還不清楚(Denison and Raymond-Delpech, 2008)。數(shù)量性狀位點(Quantitative Trait Loci,QTLs)遺傳圖譜的解析,則更好的詮釋了蜜蜂行為的分子生物學(xué)基礎(chǔ)(Huntetal., 2007)。如影響采集花蜜還是花粉的“花粉(pollen)”QTLs:pln-1,pln-2,pln-3和pln-4。pln-1和pln-2調(diào)控蜜蜂識別花粉的顆粒大小,pln-2和pln-3則幫助蜜蜂辨別花蜜中果糖濃度(Huntetal., 1995),pln-4影響采集蜂參與采粉行為的比例。
蜂產(chǎn)品貿(mào)易是目前養(yǎng)蜂業(yè)生存與發(fā)展的主要動力。如何進(jìn)一步提高蜂產(chǎn)品的產(chǎn)量和質(zhì)量是消費者與養(yǎng)蜂業(yè)關(guān)注的重點。蜜蜂授粉產(chǎn)業(yè)需求強勁、增效可觀,被認(rèn)為養(yǎng)蜂業(yè)可持續(xù)發(fā)展的有力支撐(劉朋飛等,2011;Brownetal., 2016; Spragueetal., 2016)。蜜蜂疾病的高效安全防控是護航養(yǎng)蜂業(yè)的根本措施(金湯東等,2007;Chen and Siede, 2007; Gisder and Genersh, 2015; McMenaminetal., 2016)。建立蜜蜂疾病流行規(guī)律、病原與宿主相互作用機理是蜜蜂疾病控制的關(guān)鍵科學(xué)問題。蜜蜂行為研究不僅解釋這一王國生存、進(jìn)化的奧秘,而且為仿生學(xué)提供寶貴的模式。蜜蜂原代細(xì)胞培養(yǎng)(Goblirschetal., 2013)、轉(zhuǎn)基因技術(shù)(Schulteetal., 2014)以及認(rèn)知理論的應(yīng)用將為未來蜜蜂研發(fā)提供嶄新的手段。
References)
Allameh Z, Salamzadeh J. Use of antioxidants in urinary tract infection [J].J.Res.Pharm.Pract., 2016, 5 (2):79-85.
Anguiano BR, Guzman NE, Md Hamiduzzaman M,etal.Varroadestructor(Mesostigmata: Varroidae) parasitism and climate differentially influence the prevalence, levels, and overt Infections of Deformed Wing Virus in honey bees (Hymenoptera: Apidae) [J].J.Insect.Sci., 2016, 16 (1):44.
Bahreini R, Currie RW. The effect of queen pheromone status on Varroa mite removal from honey bee colonies with different grooming ability [J].Exp.Appl.Acarol, 2015, 66:383-397.
Bailey L, Ball BV. Honey Bee Pathology, 2nded. [M]. London: Academic Press, 1991: 1-193.
Bailey L.Melissococcuspluton, the cause of European foulbrood of honey bees (Apisspp.) [J].J.Appl.Bacteriol., 1983, 55: 65-69.
Bailey L. Honey Bee Pathology [M]. London: Academic Press, 1981.
Ben-Shahar Y, Dudek NL, Robinson GE. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honeybee division of labor [J].J.Exp.Biol., 2004, 207:3281-3288.
Bigio G, Toufailia AL, Ratnieks LW. Honey bee hygienic behaviour does not incur a cost via removal of healthy brood [J].J.Evol.Biol., 2014, 27: 226-230.
Bogdanov S. Beeswax: Quality issues today [J].BeeWorld, 2004, 85 (3): 46-50.
Bogdanov S, Ruoff K, Oddo LP. Physico-chemical methods for the characterisation of unifloral honeys: A review [J].Apidologie, 2004, 35 (Suppl. 1): S4-S17.
Boot WJ, Beetsma J, Calis JNM (1994). Behaviour ofVarroamites invasing honey bee brood cells [J].Exp.Appl.Acarol., 1994, 18 (6): 371-379.
Boutin S, Alburaki M, Mercier PL,etal. Differential gene expression between hygienic and non-hygienic honeybee (ApismelliferaL.) hives [J].BMCGenomics., 2015, 16:500.
Brown MJ, Dicks LV, Paxton RJ,etal. A horizon scan of future threats and opportunities for pollinators and pollination[J].Peer.J., 2016, 4:e2249.
Bruce WA, Chiesa F, Marchetti S,etal. Laboratory feeding ofVarroajacobsoni(Acari: Varroidae) on natural and artificial diets [J].Apidologie, 1988, 19 (2): 209-218.
Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral defense mechanisms in honey bees[J].Curr.Opin.InsectSci., 2015, 10: 71-82.
Bull JC, Ryabov EV, Prince G,etal. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees [J].PLoSPathog., 2012, 8 (12): e1003083.
Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis) [J].FoodChem.Toxicol., 1998, 36 (4): 347-363.
Calderone NW. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992-2009 [J].PLoSONE, 7 (5): e37235.
Carr?o DB, de Albuquerque NC, Marques LM,etal.Invitrometabolism of artepillin C by rat and human liver microsomes [J].PlantaMed., 2017, in press.
Chejanovsky N, Ophir R, Schwager MS,etal. Characterization of viral siRNA populations in honey bee colony collapse disorder [J].Virology, 2014, 454-455:176-183.
Chen YP, Siede R. Honey bee viruses [J].Adv.Virus.Res., 2007, 70: 33-80.
Cheung KW, Sze DM, Chan WK,etal. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation [J].J.Ethnopharmacol., 2011, 138 (2):463-71.
Cho HJ, Kang JH, Park KK,etal. Comparative proteome analysis of tumor necrosis factor alpha-stimulated human vascular smooth muscle cells in response to melittin [J].ProteomeSci., 2013, 11 (1): 1-9.
Choi SS, Cha BY, Iida K,etal. Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells [J].Biochem.Pharmacol., 2011, 81 (7): 925-33.
Consonni R, Cagliani LR, Cogliati C. NMR characterization of saccharides in Italian honeys of different floral sources [J].JournalofAgricultural&FoodChemistry, 2012, 60 (18): 4526-4534.
Cornman RS, Schatz MC, Johnston JS,etal. Genomic survey of the ectoparasitic miteVarroadestructor, a major pest of the honey beeApismellifera[J].BMCGenomics, 2010, 11 (1): 602.
Cox-Foster DL, Conlan S, Holmes EC,etal. A metagenomic survey of microbes in honey bee colony collapse disorder [J].Science, 2007, 18 (5848): 283-287.
Cunha IBS, Sawaya ACHF, Caetano FM,etal. Factors that influence the yield and composition of Brazilian propolis extracts [J].J.Braz.Chem.Soc., 2004, 15: 964-970.
Dai PL, Wang Q, Sun JH,etal. Effects of pesticides on honeybee behaviours [J].ChineseBulletinofEntomology, 2009,46 (6): 855-861. [代平禮, 王強, 孫繼虎, 等. 農(nóng)藥對蜜蜂行為的影響[J]. 昆蟲知識, 2009,46 (6): 855-861]
Dainat B, Neumann P. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses [J].J.Invertebr.Pathol., 2013, 112: 278-280.
Daughenbaugh KF, Martin M, Brutscher LM,etal. Honey bee infecting Lake Sinai Viruses [J].Viruses, 2015, 7 (6): 3285-3309.
de Michelette ER, Soares AEE. Characterization of preimaginal developmental stages in Africanized honey bee workers (ApismelliferaL) [J].Apidologie, 1993, 24 (4):431-440.
de Miranda JR, Dainat B, Locke B,etal. Genetic characterization of slow bee paralysis virus of the honeybee (ApismelliferaL.) [J].J.Gen.Virol., 2010, 91: 2524-2530.
de Miranda JR, Drebot M, Tyler S,etal. Complete nucleotide sequence of Kashmir Bee Virus and Comparison with Acute Bee Paralysis Virus [J].J.Gener.Virol., 2004, 85: 2263-2270.
de Oliveira PF, Lima IM, Monteiro NMA,etal. Evaluation of genotoxicity and antigenotoxicity of Artepillin C in V79 cells by the comet and micronucleus assays [J].Nutr.Cancer., 2013, 65 (7): 1098-103.
de Sousa JP, Leite MF, Jorge RF,etal. Seasonality role on the phenolics from cultivatedBaccharisdracunculifolia[J].Evid-Based.Compl.Alt.Med., 2011, 2011: 464289.
del Campo G, Zuriarrain J, Zuriarrain A,etal. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR [J].FoodChemistry, 2016, 196: 1031-1039.
Denison R, Raymond-Delpech V. Insights into the molecular basis of social behaviour from studies on the honeybee,Apismellifera[J].Invert.Neurosci., 2008, 8 (1): 1-9.
Desai SD, Eu YJ, Whyard S,etal. Reduction in deformed wing virus infection in larval and adult honey bees (ApismelliferaL.) by double-stranded RNA ingestion [J].InsectMol.Biol., 2012, 21: 446-455.
Di Prisco G, Annoscia D, Margiotta M,etal. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health [J].Proc.Natl.Acad.Sci.USA, 2016, 113 (12): 3203-3208.
Djukic M, Becker D, Poehlein A,etal. Genome sequence ofPaenibacillusalveiDSM 29, a secondary invader during European foulbrood outbreaks [J].J.Bacteriol., 2012, 194 (22): 6365.
Dynes TL, De Roode JC, Lyons JI,etal. Fine scale population genetic structure ofVarroadestructor, an ectoparasitic mite of the honey bee (Apismellifera) [J].Apidologie, 2016, 2016: 1-9.
Ebeling J, Knispel H, Hertlein Getal. Biology ofPaenibacilluslarvae, a deadly pathogen of honey bee larvae [J].Appl.Microbiol.Biotechnol., 2016, 100: 7387-7395.
Erban T, Harant K, Hubalek M,etal. In-depth proteomic analysis ofVarroadestructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite [J].Sci.Rep., 2015, 5: 13907.
Evans JD, Aronstein K, Chen YP,etal. Immune pathways and defence mechanisms in honey beesApismellifera[J].InsectMol.Biol., 2006, 15 (5): 645-656.
Evans JD, Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees [J].J.Invertebr.Pathol., 2010, 103: S62-S72.
Fahrbach SE, Robison GE. Behavioral development in the honey bee: Toward the study of learning under natural conditions [J].LearnMemory, 1995, 2: 199-244.
Forsgren E. European foulbrood in honey bees [J].J.Invertebr.Pathol., 2010, 103: S5-S9.
Fries I, Wei HZ, Shi W,etal. Grooming behavior and damaged mites (Varroajacobsoni) inApisceranaceranaandApismelliferaligustica[J].Apidologie, 1996, 27: 3-11.
Fries I.Nosemaceranaein European honey bees (Apismellifera) [J].J.Invertebr.Pathol., 2010, 103: S73-S79.
Fujiyuki T, Matsuzaka E, Nakaoka T,etal. Distribution of Kakugo Virus and its effects on the gene expression profile in the brain of the worker honeybeeApismelliferaL[J].J.Virology., 2009, 22 (83): 11560-11568.
Fujiyuki T, Takeuchi H, Ono M,etal. Novel insect picorna-like virus identified in the brains of aggressive worker honey bees [J].J.Virol., 2004, 78: 1093-1100.
Gao LJ, Wu J. Advance on the main compositions and the functions of honeybee venom [J].Genom.Appli.Biol., 2013, 32 (2): 246-253. [高麗嬌, 吳杰. 蜜蜂蜂毒主要成分與功能研究進(jìn)展[J]. 基因組學(xué)與應(yīng)用生物學(xué), 2013, 32 (2): 246-253]
Gao W, Wu J, Wei J,etal. Brazilian green propolis improves immune function in aged mice [J].J.Clinical.Biochem.Nutr., 2014, 55 (1): 7-10.
Garedew A, Schmolz E, Lamprecht I. The energy and nutritional demand of the parasitic life of the miteVarroadestructor[J].Apidologie, 2004, 35: 419-430.
Garrido C, Rosenkranz P. The reproductive program of femaleVarroadestructormites is triggered by its host,Apismellifera[J].Exp.Appl.Acarol., 2003, 31: 269-273.
Gauthier L, Cornman S, Hartmann U,etal. TheApismelliferafilamentous virus genome [J].Viruses, 2015, 7 (7): 3798-3815.
Genersch E, Forsgren E, Pentik?inen J,etal. Reclassification ofPaenibacilluslarvaesubsp.PulvifaciensandPaenibacilluslarvaesubsp. larvae asPaenibacilluslarvaewithout subspecies differentiation [J].Int.J.Syst.Evol.Microbiol., 2006, 56: 501-511.
Ghosh RC, Ball BV, Willcocks MM,etal. The nucleotide sequence of sacbrood virus of the honey bee: An insect picorna-like virus [J].J.Gen.Virol., 1999, 80 (6): 1541-1549.
Giacobino A, Molineri A, Bulacio CN,etal. Key management practices to prevent high infestation levels ofVarroadestructorin honey bee colonies at the beginning of the honey yield season [J].Prev.Vet.Med., 2016, 131: 95-102.
Giacobino A, Pacini A, Molineri A,etal. Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels ofVarroadestructor[J]?Res.Vet.Sci., 2017, 112: 1-6.
Gilliam M, Lii ST, Lorenz BJ,etal. Factors affecting development of chalkbrood disease in colonies of honey bees,Apismellifera, fed pollen contaminated withAscosphaeraapis[J].J.Invertebr.Pathol., 1988, 52 (2): 314-325.
Gisder S, Genersch E. Special issue: Honey bee viruses[J].Viruses, 2015, 7: 5603-5608.
Goblirsch MJ, Spivak MS, Kurtti TJ. A cell line resource derived from honey bee (Apismellifera) embryonic tissues [J].PLoSONE, 2013, 8: e69831.
Govan VA, Leat N, Allsopp M,etal. Analysis of the complete genome sequence of acute bee paralysis virus shows that It belongs to the novel group of insect-infecting RNA viruses [J].Virology, 2000, 277: 457-463.
Granberg F, Vicente-Rubiano M, Rubio-Guerri C,etal. Metagenomic detection of viral pathogens in spanish honeybees: Co-infection by aphid lethal paralysis, Israel acute paralysis and Lake Sinai Viruses [J].PLoSONE, 2013, 8: e57459.
Habermann E. Bee and wasp venoms [J].Science, 1972, 177 (4046):314-322.
Han SM, Kim JM, Park KK,etal. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells [J].BMCComplAlt.Med., 2014, 14 (1): 286.
Hartmann U, Forsgren E, Chattière JD,etal. Dynamics ofApismelliferaFilamentous Virus (AmFV) infections in honey bees and relationships with other parasites [J].Viruses, 2015, 7 (5): 2654-2667.
Hata T, Tazawa S, Ohta S,etal. Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels [J].PLoSONE, 2012, 7 (11): e48072.
Highfield AC, Nagar AE, Mackinder LC,etal. Deformed wing virus implicated in overwintering honeybee colony losses [J].Appli.Env.Mic., 2009, 75 (22): 7212-7220.
Hong IP, Woo SO, Choi YS,etal. Prevalence ofNosemaand virus in honey bee (ApismelliferaL.) colonies on flowering period of Acacia in Korea [J].Mycobiology, 2011, 39 (4): 317-320.
Hou CS, Li BB, Luo Y,etal. First detection ofApismelliferafilamentous virus inApisceranaceranain China [J].J.Invertebr.Pathol., 2016, 138:112-115.
Hubert J, Bicianova M, Ledvinka O,etal. Changes in the bacteriome of honey bees associated with the parasiteVarroadestructor, and RathogensNosemaandLotmariapassim[J].Microb.Ecol., 2016.
Hunt GJ, Amdam GV, Schlipalius D,etal. Behavioral genomics of honeybee foraging and nest defense [J].Naturwissenschaften, 2007, 94: 247-267.
Hunt GJ, Page RE Jr, Fondrk MK,etal. Major quantitative trait loci affecting honeybee foraging behavior [J].Genetics, 1995, 141 (4): 1537-1545.
Hunter W, Ellis J, van Engelsdorp D,etal. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apismellifera, Hymenoptera: Apidae) [J].PLoS.Pathog., 2010, 6: e1001160.
Invernizzi C, Rivas F, Bettucci L. Resistance to Chalkbrood disease inApismelliferaL. (Hymenoptera: Apidae) colonies with different hygienic behaviour [J].Neotr.Entom., 2010, 40 (1): 28-34.
Jin TD, Chen SL, Qian JH,etal. The honeybee disease occurrence tendency and control in our contry [J].ApicultureofChina, 2007, 2 (57): 23-24. [金湯東, 陳盛祿, 錢建華, 等. 我國蜜蜂疾病發(fā)生趨勢與防治技術(shù)[J]. 中國蜂業(yè), 2007, 2 (57): 23-24]
Kamakura M. Royalactin induces queen differentiation in honeybees [J].Nature, 2011, 473 (7348): 478-483.
Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee (Apismellifera) pupae punctured byVarroamites [J].Parasitol.Res., 2003, 90: 349-354.
Kim KH, Sung HJ, Lee WR,etal. Effects of melittin treatment in cholangitis and biliary fibrosis in a model of xenobiotic-induced cholestasis in mice [J].Toxins., 2015, 7: 3372-3387.
Kim SJ, Park JH, Kim KH,etal. Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions [J].J.Atheroscler.Thromb., 2011, 18: 1117-1126.
Klein AM, Vaissière BE, Cane JH,etal. Importance of pollinators in changing landscapes for world crops [J].Proc.R.Soc.B, 2007, 274: 303-313.
Kucharski R, Maleszka J, Foret S,etal. 2008. Nutritional control of reproductive status in honeybees via DNA methylation [J].Science, 319: 1827-1830.
Kumazaki M, Shinohara H, Taniguchi K,etal. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression [J].Phytomedicine, 2014, 21 (8-9):1070-1077.
Kurze C, Routtua J, Moritza RFA. Parasite resistance and tolerance in honeybees at the individual and social level [J].Zoology, 2016, 119 (4): 290-297.
Lamp B, Url A, Seitz K,etal. Construction and rescue of a molecular clone of Deformed Wing Virus(DWV) [J].PLoSONE, 2016, 11: e0164639.
Lanzi G, de Miranda, Boniotti MB,etal. Molecular and biological characterization of deformed wing virus of honeybees (ApismelliferaL.) [J].J.Virol., 2006, 80 (10): 4998-5009.
Le Conte Y, Alaux C, Martin JF,etal. Social immunity in honeybees (Apismellifera): Transcriptome analysis of varroa-hygienic behaviour [J].InsectMole.Biol., 2011, 20 (3): 399-408.
Leat N, Ball B, Govan V,etal. Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees [J].J.Gen.Virol., 2000, 81 (Pt 8): 2111-2119.
Lee G, Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects [J].Molecules, 2016, 21: 616-625.
Lee SH, Choi SM, Yang EJ. Melittin ameliorates the inflammation of organs in an amyotrophic lateral sclerosis animal model [J].Exp.Neurobiol., 2014, 23: 86-92.
Lee WR, Kim KH, An HJ,etal. Protective effect of melittin against inflammation and apoptosis onPropionibacteriumacnes-induced human THP-1 monocytic cell [J].Eur.J.Pharmacol., 2014, 740: 218-226.
Lee WR, Kim KH, An HJ,etal. The protective effects of melittin on Propioni bacterium acnes-induced inflammatory responsesinvitroandinvivo[J].J.Investig.Dermatol., 2014, 134: 1922-1930.
Levin S, Sela N, Chejanovsky N. Two novel viruses associated with theApismelliferapathogenic miteVarroadestructor[J]. 2016, 24, 6: 37710.
Li BB, Hou CS, Deng S,etal. First complete genome sequence of chronic bee paralysis virus isolated from honey bees (Apismellifera) in China [J].GenomeAnnounc., 2016, 4 (4): e00618-16.
Li BB, Zhang HQ, Zhou J,etal. Immune system of honeybee [J].ApicultChina, 2015,6 (66): 58-59. [李貝貝, 張洪慶, 周軍等. 蜜蜂的免疫系統(tǒng)[J], 中國蜂業(yè), 2015, 6 (66): 58-59]
Li J, Qin H, Wu J,etal. The prevalence of parasites and pathogens in Asian honeybeesApisceranain China [J].PLoSONE, 2012, 7 (11): e47955.
Li WF, Zhong BX, Su SK. Mechanisms of caste differentiation in honey bees [J].ActaEntomologicaSinica, 2014, 57 (2): 248-256. [李文峰, 鐘伯雄, 蘇松坤. 蜜蜂級型分化機理[J]. 昆蟲學(xué)報, 2014, 57 (2): 248-256]
Liu PF, Wu J, Li HY,etal. Economic values of bee pollination to China’s agriculture [J].ScientiaAgriculturaSinica, 2011,44 (24): 5117-5123. [劉朋飛, 吳杰, 李海燕, 等. 中國農(nóng)業(yè)蜜蜂授粉的經(jīng)濟價值評估[J]. 中國農(nóng)業(yè)科學(xué), 2011,44 (24): 5117-5123]
Liu XJ, Zhang Y, Yan X,etal. Prevention of Chinese sacbrood virus infection inApisceranausing RNA interference [J].Curr.Microbiol., 2010, 61: 422-428.
Loftus JC, Smith ML, Seeley TD. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming [J].PLoSONE, 2016, 11 (3): e0150362.
Luo QH, Zhou T, Wang Q,etal. Advances in research on classification and major species of bee mites [J].ScientiaAgriculturaSinica, 2010, 43 (3): 585-593. [羅其花, 周婷, 王強, 等. 蜂螨的種類及蜜蜂主要害螨研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43 (3): 585-593]
Ma Y, Zhang JX, Liu YN,etal. Caffeic acid phenethyl ester alleviates asthma by regulating the airway microenvironment via the ROS-responsive MAPK/Akt pathway [J].FreeRadicBiolMed, 2016, 101: 163-175.
Maori E, Paldi N, Shafir S,etal. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion [J].InsectMol.Biol., 2009, 18: 55-60.
Martin SJ, Highfield AC, Brettell L,etal. Global honey bee viral landscape altered by a parasitic mite [J].Science, 2012, 336 (6086): 1304-1306.
McMenamin AJ, Brutscher LM, Glenny W,etal. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses [J].Curr.Opin.InsectSci., 2016, 16: 14-21.
Menzel R, Leboulle G, Eisenhard D. Small brains, bright minds [J].Cell, 2006, 124: 237-239.
Mesaik MA, Dastagir N, Uddin N,etal. Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides [J].J.Agricult.FoodChem., 2014, 63 (1): 177-184.
Milani N, Chiesa F. Artificial rearing ofVarroamites. In: Proceedings of a Meeting of the EC-experts’ Group: Present Status of Varroatosis in Europe and Progress in the Varroa Mite Control [C]. Udine, Italy, 1989: 229-236.
Miranda JRD, Comman RS, Evans JD,etal. Genome characterization, prevalence and distribution of a Macula-like virus fromApismelliferaandVarroadestructor[J].Viruses, 2015, 7 (7): 3586-3602.
Mondet F, Kim SH, de Miranda JR,etal. Specific cues associated with honey bee social defence againstVarroadestructorinfested brood [J].Sci.Rep., 2016, 6: 25444.
Moon DO, Park SY, Lee KJ,etal. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia [J].Int.Immunopharmacol., 2007, 7, 1092-1101.
Moore J, Jironkin A, Chandler D,etal. Recombinants between deformed wing virus andVarroadestructorvirus-1 may prevail inVarroadestructor-infested honeybee colonies [J].J.Gen.Virol., 2011, 92: 156-161.
Morales V, Corzo N, Sanz ML. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups [J].FoodChemistry, 2008, 107 (2): 922-928.
Mordecai GJ, Brettell LE, Martin SJ,etal. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies [J].ISME.J., 2016, 10: 1182-1191.
Mordecai GJ, Brettell LE, Pachori P,etal. Moku virus, a new Iflavirus found in wasps, honey bees andVarroa[J].Sci.Rep., 2016, 6: 34983.
Moretto G, Guerra JC Jr, Bittencourt CV. Uncapping activity ofApismelliferaL. (Hymenoptera: Apidae) towards worker brood cells infested with the miteVarroadestructorAnderson & Treuman (Mesostigmata: Varroidae) [J].Neotrop.Entomol., 2006, 35 (3): 299-301.
Morse RA, Flottum K. Honey Bee Pests Predators and Diseases[M]. Medina :A.I. Root Co., 1997.
Nan Y, Guo G, Zheng LX,etal. Advances in studies on chemical constituents of propolis [J].WorldSci.Tech./Mod.Trad.ChineseMed.Mat.Med., 2006, 8 (1): 61-71. [南垚, 郭伽, 鄭蓮香, 等. 蜂膠化學(xué)成分研究進(jìn)展[J]. 世界科學(xué)技術(shù)—中醫(yī)藥現(xiàn)代化, 2006, 8 (1): 61-71]
Nazzi F,Le Conte Y. Ecology ofVarroadestructor, The major ectoparasite of the western honey bee,Apismellifera[J].Annu.Rev.Entomol., 2016, 61: 417-32.
Nazzi F, Milani N. A technique for reproduction ofVarroajacobosoniOud under laboratory conditions [J].Apidologie, 1994, 25: 579-584.
Nelson CM, Ihle KE, Fondrk MK,etal. The gene vitellogenin has multiple coordinating effects on social organization [J].PLoSBiol., 2007, 5: 673-677.
Nishikawa S, Aoyama H, Kamiya M,etal. Artepillin C, a typical Brazilian propolis-derived component, induces brown-like adipocyte formation in C3H10T1/2 cells, primary inguinal white adipose tissue-derived adipocytes, and mice [J].J.Diet.Suppl., 2016, 13 (3): 245-68.
Olga E, María FG, Carmen SM. Differentiation of blossom honey and honeydew honey from Northwest Spain [J].Agriculture, 2012, 2: 25-37.
Oliviera V, Blancharda P, Chaoucha S,etal. Molecular characterisation and phylogenetic analysis of Chronic Bee Paralysis Virus, a honey bee virus [J].VirusRes., 2008, 132 (1-2): 59-68.
Page Jr RE, Scheiner R, Erber J,etal. The development and evolution of division of labor and foraging specialization in a social insect (ApismelliferaL.) [J].Curr.Top.Dev.Biol., 2006, 74: 253-286.
Page P, Lin Z, Buawangpong N,etal. Social apoptosis in honey bee superorganisms [J].Sci.Rep., 2016, 6: 27210.
Palacio MA, Flores JM, Figini E,etal. Evaluation of the time of uncapping and removing dead brood from cells by hygienic and non-hygienic honey bees [J].Gen.Mol.Res., 2005, 4 (1): 105-114.
Paradkar MM, Irudayaraj J. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy [J].FoodChemistry, 2001, 76 (2): 231-239.
Park HJ, Lee HJ, Choi MS,etal. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin [J].J.Inflamm., 2008, 5.
Park HJ, Lee SH, Son DJ,etal. Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit [J].Arthritis.Rheum., 2004, 50: 3504-3515.
Park HJ, Son DJ, Lee CW,etal. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase [J].Biochem.Pharmacol., 2007, 73: 237-247.
Park JH, Kim KH, Lee WR,etal. Protective effect of melittin on inflammation and apoptosis in acute liver failure [J].Apoptosis, 2012, 17: 61-69.
Park JH, Kum YS, Lee TI,etal. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis [J].Exp.Biol.Med., 2011, 236: 1306-1313.
Park JH, Lee WR, Kim HS,etal. Protective effects of melittin on tumor necrosis factor-alpha induced hepatic damage through suppression of apoptotic pathway and nuclear factor-kappa B activation [J].Exp.Biol.Med., 2014, 239: 1705-1714.Parmentier L, Smagghe G, de Graaf DC,etal.VarroadestructorMacula-like Virus, Lake Sinai Virus and other new RNA viruses in wild bumblebee hosts (Bombuspascuorum,BombuslapidariesandBombuspratorum) [J].J.Inverteb.Pathol., 2016, 134: 6-11.
Patel S. Emerging adjuvant therapy for cancer: Propolis and its constituents [J].J.Clin.Biochem.Nutr., 2014, 55 (1): 7-10.
Pazin WM, Olivier DD, Vilanova N,etal. Interaction of Artepillin C with model membranes [J].Eur.Biophys.J., 2016,1-11.
Peng YS. Fang,Y, Xu S,etal. Response of foster Asian honeybee (ApisceranaFabr.) colonies to the brood of European honeybee (ApismelliferaL.) infested with parasitic mite,VarroajacobsoniOudemans [J].J.Invertebr.Pathol., 987a, 49: 259-264.
Peng YS. Fang,Y, Xu S,etal. The resistance mechanism of the Asian honey beeApisceranaFabr., to an ectoparasitic mite,VarroajacobsoniOudemans [J].J.Invertebr.Pathol., 987b, 49: 54-60.
Potts SG, Biesmeijer JC, Kremen C,etal. Global pollinator declines: Trends,impacts and drivers [J].TendsEcol.Evol., 2010, 25 (5): 345-353.
Puscas A, Hosu A, Cimpoiu C. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration [J].J.Chromatogr.A, 2013, 1272: 132-135.
Qin X, Evans JD, Aronstein KA,etal. Genome sequences of the honey bee pathogensPaenibacilluslarvaeandAscosphaeraapis[J].InsectMol.Biol., 2006, 15: 715-718.
Rath W. Co-adaptation ofApiscerananFabr. andVarroajacobsoniOud. [J].Apidologie, 1999, 30: 97-110.
Rath W. Laboratory culture of the mitesVarroajacobosoniandTropilaelapsclareae[J].Exp.Appl.Acar., 1991, 10: 289-293.
Ravoet J, de Smet L, Meeus I,etal. Widespread occurrence of honey bee pathogens in solitary bees [J].J.Invertebr.Pathol., 2014, 122: 55-58.
Ravoet J, de Smet L, Wenseleers T,etal. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/RdRP-based polymorphisms in a single host [J].VirusRes., 2015, 201: 67-72.
Ravoet J, Maharramov J, Meeus I,etal. Comprehensive bee pathogen screening in Belgium bevealsCrithidiamellificaeas a new contributory factor to winter mortality [J].PLoSONE, 2013, 8: e72443.
Rodrigues CR, Plentz LC, Flores MD,etal. Assessment of genotoxic and antigenotoxic activities of Artepillin C in somatic cells ofDrosophilamelanogaster[J].FoodChem.Toxicol., 2017, 101: 48-54.
Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control ofVarroadestructor[J].J.Invertebr.Pathol., 2010, 103 (Suppl.1): S96-119.
Ruiz-Matute AI, Rodríguez-Snchez S, Sanz ML,etal. Detection of adulterations of honey with high fructose syrups from inulin by GC analysis [J].J.Food.Comp.Analy., 2010, 23 (3): 273-276.
Runckel C, Flenniken ML, Engel JC,etal. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses,Nosema, andCrithidia[J].PLoSONE, 2011, 6 (6): e20656.
Ruoff K, Iglesias MT,etal. Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry [J].EuropeanFoodRes.Tech., 2005, 223 (1): 22-29.
Ruoff K, Luginbuhl W, Kunzli R,etal. Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy [J].J.Agricult.FoodChem., 2006, 54 (18): 6858-6866.
Ryabov EV, Wood GR, Fannon JM,etal. A virulent strain of deformed wing virus (DWV) of honeybees (Apismellifera) prevails afterVarroadestructor-mediated, orinvitro, transmission [J].PLoSPathog., 2014, 10 (6): e1004230.
Saleh M, Soliman H, S?rum H,etal. A novel gold nanoparticles-based assay for rapid detection ofMelissococcusplutonius, the causative agent of European foulbrood [J].Vet.Rec., 2012, 171 (16): 400.
Sammataro D. Honey bee colony health: Challenges and sustainable solutions [J],FloridaEntomologist, 2011, 1: 242-243.
Saxena S, Gautam S, Sharma A. Physical, biochemical and antioxidant properties of some Indian honeys [J].FoodChemistry, 2010, 118: 391-397.
Schulte C, Theilenberg E, Müller-Borg M,etal. Highly efficient integration and expression of piggy Bac-derived cassettes in the honeybee(Apismellifera) [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2014, 24 (111): 9003-9008.
Sforcin JM, Bankova V. Propolis: Is there a potential for the development of new drugs? [J].J.Ethnopharm., 2011, 133: 253-260.
Shi YY, Huang ZY, Zeng ZJ,etal. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apismellifera, Apidae) [J].PLoSONE, 6 (4) : e18808.
Shuel RW, Dixon SE. The early establishment of dimorphism in the female honeybee,ApismelliferaL. [J].InsectSox., 1960, 7 (3): 265-282.
Siddiqui AJ, Musharraf SG, Choudhary MI,etal. Application of analytical methods in authentication and adulteration of honey[J].FoodChemistry, 2017, 217: 687-698.
Simova S, Atanassov A, Shishiniova M,etal. A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy [J].FoodChemistry, 2012, 134 (3): 1706-1710.
Son DJ, Ha SJ, Song HS,etal. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression [J].J.Pharmacol.Exp.Ther., 2006, 317: 627-634.
Son DJ, Kang J, Kim TJ,etal. Melittin, a major bioactive component of bee venom toxin, inhibits PDGF receptor beta-tyrosine phosphorylation and downstream intracellular signal transduction in rat aortic vascular smooth muscle cells [J].J.Toxicol.Environ.HealthA, 2007, 70: 1350-1355.
Spiteri M, Dubin E, Cotton J,etal. Data fusion between high resolution1H-NMR and mass spectrometry: A synergetic approach to honey botanical origin characterization [J].Anal.Bioanal.Chem., 2016, 408 (16): 4389-4401.
Spivak M, Gilliam M. Hygienic behaviour of honey bees and its application for control of brood diseases and Varroa Part I. Hygienic behaviour and resistance to American foulbrood [J].BeeWorld, 1998a, 79: 124-134.
Sprague R, Boyer S, Stevenson GM,etal. Assessing pollinators’ use of floral resource subsidies in agri-environment schemes: An illustration using Phacelia tanacetifolia and honeybees [J].Peer.J., 2016, 4:e2677.
Su SK, Chen SL. The apiculture and ecological agriculture [J].JournalofBee, 2009,1: 8-10. [蘇松坤, 陳盛祿. 養(yǎng)蜂業(yè)與生態(tài)農(nóng)業(yè)[J], 蜜蜂雜志. 2009,29 (1): 8-10]
Sun T, Qu CH, Zeng ZJ. Progress of honeybee labor division. In: Papers of the Bee Products Market Information Exchange-Feeding And Management[C]. 2008: 60-61. [孫婷, 屈長會, 曾志將. 蜜蜂勞動分工的研究進(jìn)展.見:全國蜂產(chǎn)品市場信息交流會論文集-蜜蜂飼養(yǎng)管理[C]. 2008: 60-61]
Swanson JAI, Torto B, Kells SA,etal. Odorants that induce hygienic behavior in honeybees: Identification of volatile compounds in Chalkbrood-infected honeybee larvae[J].J.Chem.Ecol., 2009, 35:1108-1116.
Szliszka E, Mertas A, Czuba ZP,etal. Inhibition of inflammatory response by Artepillin C in activated RAW264.7 macrophages [J].Evid-Based.Compl.Alt.Med., 2013, 2013 (2013):735176.
Szliszka E, Zydowicz G, Mizgala E,etal. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis [J].Int.J.Oncol., 2012, 41 (3):818-828.
Tabart J, Colin ME, Carayon JL,etal. Artificial feeding ofVarroadestructorthrough a chitosan membrane: A tool for studying the host-microparasite relationship [J].Exp.Appl.Acarol., 2013, 61 (1): 107-118.
Veiga RS, Mendon?a S, Mendes PB,etal. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis andBaccharisdracunculifoliaDC [J].J.Appl.Microbiol., 2017.
Wagh VD. Propolis: A wonder bees product and its pharmacological potentials [J].Adv.Pharmacol.Sci.,2013: 308249.
Wang K, Zhang JL, Hu FL. Research progress in anti-inflammatory activity of propolis and its molecular mechanism [J].ChineseTradit.Herb.Drugs, 2013, 44 (16):2321-2329. [王凱, 張江臨, 胡福良. 蜂膠抗炎活性及其分子機制研究進(jìn)展[J]. 中草藥, 2013, 44 (16):2321-2329]
Weinstock GM, Robinson GE, Gibbs RA,etal., Insights into social insects from the genome of the honeybeeApismellifera[J].Nature, 2006, 443 (7114): 931-949.
Wilfert L, Long G, Leggett HC,etal. Deformed wing virus is a recent global epidemic in honeybees driven byVarroamites [J].Science, 2016,351 (6273): 594-599.
Williams GR, Alaux C, Costa C,etal. Standard methods for maintaining adultApismelliferain cages underinvitrolaboratory conditions [J].J.Apicult.Res., 2013, 52 (1): 79-88. Winston ML. A social insect[J].Science, 1987, 238 (4833): 1591-1592.
Xu X, Zhang HC, Dong J. Reesearch developments of functional components of propolis [J].Sci.Tech.FoodIndus., 2008, 29 (9): 286-288. [徐響, 張紅城, 董捷. 蜂膠功效成分研究進(jìn)展[J]. 食品工業(yè)科技, 2008, 29 (9): 286-288]
Xue X, Wang Q, Li Y,etal. 2-Acetylfuran-3-glucopyranoside as a novel marker for the detection of honey adulterated with rice syrup [J].J.Agricult.FoodChemistry, 2013, 61 (31): 7488-7493.
Yaghoobi N, AlWaili N, GhayourMobarhan M,etal. Natural honey and cardiovascular risk factors; Effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose[J].Scientif.WorldJ., 2008, 8 (1): 463.
Yang EJ, Kim SH, Yang SC,etal. Melittin restores proteasome function in an animal model of ALS [J].J.Neuroinflamm., 2011, 8.
Yue D, Nordhoff M, Wieler LH,etal. Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae andPaenibacilluslarvae, the causative agent of American foulbrood of honeybees (Apismellifera) [J].Environ.Microbiol., 2008, 10: 1612-1620.
Zhang X, Chen YP, He SY. A review of bee virology progress [J].ChineseJournalofAppliedEntomology, 2012, 49 (5): 1095-1116. [張炫, 陳彥平, 和紹禹. 蜜蜂病毒學(xué)研究進(jìn)展[J]. 應(yīng)用昆蟲學(xué)報, 2012, 49(5): 1095-1116]
Zhang Y, Han RC. Progress in research of honey bee miteVarroadestructor[J].JournalofEnvironmentalEntomology, 2012, 34 (3): 346-354. [張祎, 韓日疇. 蜜蜂寄生螨—狄斯瓦螨的研究進(jìn)展[J]. 環(huán)境昆蟲學(xué)報, 2012, 34 (3): 346-354]
Zheng HQ, Hu FL. Honeybee: A newly emerged model organism [J].ActaEntomologicaSinca, 2009, 52 (2): 210-215. [鄭火青, 胡福良.蜜蜂——新興的模式生物[J].昆蟲學(xué)報, 2009, 52 (2): 210-215]
Zheng SA. Cellular and humoral immunity of honeybee [J].ApicultureofChina, 2016.4 (67): 31-33. [鄭樹安. 蜜蜂的細(xì)胞及體液免疫[J],中國蜂業(yè), 2016,4 (67): 31-33]
Zioni N, Soroker V, Chejanovsky N. Replication ofVarroadestructorvirus 1 (VDV-1) and aVarroadestructorvirus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee [J].Virolog., 2011, 417 (1):106-112.
Zong C, Liu F, Yu LS,etal. Analysis of differentially expressed genes associated with the behavioral transition between nurses and foragers inApisceranacerana[J].ChineseJournalofAppliedEntomology, 2014, 51 (2): 440-447. [宗超, 劉芳, 余林生,等. 中華蜜蜂哺育蜂與采集蜂行為轉(zhuǎn)變相關(guān)基因的表達(dá)差異研究[J]. 應(yīng)用昆蟲學(xué)報, 2014, 51 (2): 440-447]
Research overview of honeybee product, disease and labor division
ZHANG Yi, HAN Ri-Chou*
(Guangdong Institute of Applied Biological Resources, Guangdong Key Laboratory of Animal Conservation and Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou 510260, China)
Honeybees are important pollinators to agriculture and producers of honey products, as well as a model social insect for scientific research. The present overview summarizes the progresses on pollination and bee products, diseases and immunity and labor division behavior.
Honeybees; bee products; disease and immunity; behavior
特邀稿件InvitedReview
廣州市珠江新星項目(201610010003);國家自然科學(xué)基金(31301924);廣東省科技計劃項目(2013B040200045)
張祎,女,1983年生,江西人,副研究員,從事蜜蜂病蟲害分子生物學(xué)與防治研究,E-mail: zy3001@163.com
*通訊作者Author for correspondence,E-mail:hanrc@giabr.gd.cn
Received:2017-01-05;接收日期Accepted:2017-01-10
Q968;S89
A
1674-0858(2017)01-0019-20
張祎,韓日疇.蜂產(chǎn)品及蜜蜂疾病與勞動分工行為研究概況[J].環(huán)境昆蟲學(xué)報,2017,39(1):19-38.