• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recover Implied Volatility in Short-term Interest Rate Model

    2017-03-14 02:46:28XUZuoliang

    XU Zuo-liang

    (1.School of Mathematics and Statistics,Shandong Normal University,Jinan 250014,China;2.School of Information,Renmin University of China,Beijing 100872,China)

    §1.Introduction

    Derivative security for interest rate is one whose payoffis determined by interest rate to some extent[1].Recently,in financial market,the pricing of interest rate derivatives become a very important research work.One of the most widely used classes of valuation models is the short-term interest rate model,such as CIR model[2]and Hull-While model[3].The short-term interest model is an indispensable tool for the derivatives pricing and risk management.In order to pricing more accurately,calibration of the model parameters to specific market data is required.Much research has been done on the analysis of calibration of different parameters in different models[4-8].

    As is known to us that volatilities of underlying assets have become widely used by corporate treasures as well as by risk controllers and financial institution in risk management,portfolio hedging and derivatives valuation.Since the volatilities of underlying assets cannot be directly observed in general,much research has been done on the inverse problem to reconstruct the implied volatility from market prices[9-11].In[9],Rainer gives the general structure of optimization in the context of calibration of stochastic models for interest rate derivatives.Based on the relevant market data,a novel numerical algorithm for the optimization of parameters in interest rate models is presented.In[10],Bouchouev et al.consider the problem of reconstruction of volatility from market prices of options with different strikes.As the volatility is only stock price dependent,a linearized version of the inverse problem is considered,a simple convenient representation of the linearization and a reliable numerical algorithm are obtained.

    In this paper,we continue research of the linearization technique.By using linearization,we attempt to reconstruct the implied volatility of interest rate from the market prices of zerocoupon bond,which is sold in somewhat higher discount and will be redeemed on its face value on the maturity date.

    Suppose that the behavior of short-term interest rateris modeled by the following stochastic differential equation

    whereais a constant,W(t)denotes a standard Wiener process,θ(t)is a deterministic function of time,and the volatility factorσ(r)is a function of interest rate.

    In practice,the spot rate is never less than zero and never greater than a certain number,which is assumed to beR.Therefore we assume that the interest rater∈?=[0,R].

    We denote the value of zero-coupon bondv(t,r)is a function of current timetand interest rater.Following the general method for derivative security pricing[12],we get the partial differential equation for a zero-coupon bond in the form

    whereω=[0,T]×[0,R],Tis the expiration date,a time-dependent functionλ(t)is market price for risk of interest rate which reflects the relationship between risk and yield,andσ(r)is the only parameter in the model that is unknown.

    The final condition is given by

    whereKis a certain face value of zero-coupon bond.

    Now,one key problem for us is to reconstruct implied volatilityσ(r)from the observed market prices of zero-coupon bondv,which is described as the inverse problem of zero-coupon bond pricing.

    Problem 1Given market prices of zero-coupon bond, find the implied volatility functionσ(r)such that the solution of(1.2)~(1.3)at initial timet=0 with different interest rates satis fies

    wherev?(r)denotes the current market price of zero-coupon bond at timet=0 andr∈Λ??.

    It is convenient to make the change of variableτ=T?tandV(τ,r)=v(t,r).For simplicity,we denoteθ(τ),λ(τ)still.Then equations(1.2)~(1.4)can be rewritten as follows

    The remainder of the paper is organized as follows.In section 2,we simplify the partial differential equation by applying linearization approach and introduce the power series to derive the formulas of the price of zero-coupon bond.In section 3,an integral equation is formulated and in order to solve the problem,we address the regularization method.Numerical results are given in section 4.In section 5,some concluding remarks are given.

    §2.Linearization

    In this section, first we assume the volatility to be consisting of a given constant and a small perturbation,then based on the form of perturbation,we introduce the power series which play an important role for our reconstruction formulas.

    2.1 Linearization at Constant Volatility

    To recoverσ(r),we first assume

    whereσ0is a given positive constant,the functionf(r)is a small perturbation ofσ0,and takes the form[13]

    whereεis a sufficiently small positive constant andg(r)=0 outside ?.

    Substituting(2.1)and(2.2)into(1.5)gives

    where

    For simplification,by using the following substitution

    where

    and

    Then we simplify equations(2.3),(1.6)and(1.7)to

    where

    and

    Hereω?is the transformed intervalω.As(τ,r)∈ω,it is easy to find the intervalybelongs to denoted by ??. Λ?is the intervalybelongs to whenτ=Tandr∈Λ.

    Problem 2GivenU?(y), find the perturbation?f(?τ,y)such that the solution of(2.9)~(2.10)satis fies the condition(2.11)fory∈Λ?.

    2.2 Power Series

    Recallingf(r)=εg(r)in(2.2),we considerUin power series of the parameterε[13].

    Substituting(2.12)into(2.9)and grouping terms in power ofε,we may derive recursion equations forUn

    where

    Inserting(2.12)into(2.10)gives the initial condition forUn

    In the above recursion,it is understood thatUnis denoted as zero whenever the integern<0.We notice that the transmission problem(2.13)~(2.15)for the current termsUninvolvesMn,which depend only on the previous two termsUn?1andUn?2.Thus,the problem(2.13)~(2.15)indeed can be solved efficiently in a recursive manner starting fromn=0.For each integern,it is easy to get the solution of the initial value problem of parabolic differential equations(2.13)~(2.15).

    Lemma 1The solution of(2.13)~(2.15)is an integral equation as following

    ProofGiven a functionu(x),the one-dimensional Fourier transform ofuis defined by

    Taking the Fourier transform of(2.13)~(2.15)with respect toy,we have

    Solving the initial value problem for the ordinary differential equation,we obtain

    Taking the inverse Fourier transform of the above equation(2.20)with respect toξ,we can obtain the solution in the form of(2.16).

    §3.The Linearized Inverse Problem and Regularization

    In this section,neglecting high order terms in the power series,we formulate an integral equation about perturbationf(r).In order to solve the linearized inverse problem,we address Tikhonov regularization method[14].

    In the paper,we assume the observed market prices for zero-coupon bonds have some relative random noise.LetVδ(T,r)be the noisy data at timet=Tand it takes the form

    whereV(T,r)denotes the noise-free data at timet=Tandδrepresents the noise level.

    Under the change of variables(2.5),we have

    It follows from the expression(2.12)that we have

    Rearranging(3.3)yields

    Neglecting the asymptotic terms ofε2andδin(3.4)gives

    which plays an important role in the linearization of the inverse problem.

    In the following,we will deduce the analytic expression of the order zero term and the order one term respectively from Lemma 1.

    Order Zero TermRecalling(2.14),we have

    Using the solution representation(2.16),we obtain

    Order One TermInserting(3.7)into(2.14),we have

    where

    Using the solution representation(2.16),we have

    From variable substitution(2.5),Jacobian is obtained asJ=then we have

    where

    withh(τ)=

    Inserting(3.13)into(3.5),we have an integral function as follows

    De fine an operatorAas follows

    then we have

    The equation(3.16)is a Fredholm integral equation of the first kind and is an ill-posed problem under noisy propagation.Here we use the Tikhonov regularization method which lies in minimization of the following functional

    where 0<α<1 is the so-called regularization parameter,‖·‖2denotes the EuclideanL2-norm.

    Equation(3.17)can be realized in discrete form using finite difference method,and then the gradient descent algorithm can be applied to solve the minimization problem[14].Details about computational issues are given in the next section.

    §4.Numerical Experiments

    In this section,we give several numerical experiments for recovery of the implied volatility.In our tests,we assumeT=1,R=0.05,K=100,a=0.892,σ0=0.02,θ(t)=(0.001+0.1t)e?0.9t+0.009,λ(t)=1?t,Λ =[0.01,0.04]and the noisy data takes the form

    wherezstands for uniformly distributed random numbers and we chooseδ=0.01,0.05.

    Firstly a mesh is generated withN=101 grid points on the interval[0,T]andM=51 grid points on the interval[0,R],then we use the finite differences method to solve the direct problem(1.5)~(1.6)with artificial boundary conditions that is?V/?r=0 atr=0 andR.

    The equation(3.16)can be discretized as following

    whereAij=P(ri,yj)?r(ri∈[0,R],?r=R/M),yj=rje?aT+c(T)withrj∈Λ.Here we generate 61 grid points on the interval Λ.

    In order to solve the problem(3.17),we take a fixed valueα=0.001 and use the gradient descent method.We consider the perturbation function obeys the linear distribution,the sine distribution and the piecewise function respectively.For the first one,we let the functionf(r)=εr,for the second one,we letf(r)=εsin(40πr),and for the last,we letf(r)=εforr∈[0,0.02]∪(0.04,0.05],andf(r)=0 forr∈(0.02,0.04].According to different perturbation functions,we choose different values ofεto make the perturbations can reach 0-0.5 of the magnitude of constant volatilityσ0.

    Example 1f(r)=εr.With differentε=0.001,0.0025,0.005,0.01,we can obtain the reconstructed perturbation functions.Figures 1,2 show the reconstructed results and relative errors respectively.From Figure 2,we obtain that smallerεyields smaller relative errors and gives better reconstruction.It can be seen from the equation(2.2)that the linearization procedure(3.4)gives more accurate approximation to the original nonlinear inverse problem if the parameterεis smaller.

    Figure 1 Reconstructed Perturbation with Different Parameters of ε

    Example 2f(r)=εsin(40πr).For this example,we consider different parameters ofε=0.001,0.0025,0.005,0.01.Figures 3,4 show the reconstructions and relative errors respectively.Clearly,we can see that whenε=0.001,the reconstruction result is the most close to the true value.

    Example 3In this example,the functionf(r)is discontinuous and we let the parameters ofε=0.001,0.0025,0.005,0.01.Figures 5,6 show the reconstructions and relative errors respectively.From the figures,we can get the same result as the above two examples.In this case,the errors between the estimated results and the true value are relatively large.Also we can see that at the discontinuous pointsr=0.02 and 0.04,the errors reach maximum.For this situation that the perturbation is non-smooth,our future work is to apply the total variation regularization method to reconstruct the volatility more accurately.

    Furthermore,in this paper,we consider volatility depend on interest rate only.In the next step,we will consider the case that volatility doesnot depend on interest rate,but also relates to the time and text our algorithm to the real market data.

    Figure 2 Relative Errors with Different Parameters of ε

    Figure 3 Reconstructed Perturbations with Different Parameters of ε

    Figure 4 Relative Errors with Different Parameters of ε

    Figure 5 Reconstructed Perturbations with Different Parameters of ε

    Figure 6 Relative Errors with Different Parameters of ε

    §5.Conclusion

    In this paper,we study a numerical method for the reconstruction of the implied volatility in short-term interest rate model from the market prices of zero-coupon bonds.Assuming the volatility function to be combination of a given constant and a small perturbation,we simplify the partial differential equation.Introducing the power series,we derive recursive formulas of the price of zero-coupon bond.Then we consider the inverse problem by neglecting the high order terms in the power series,and obtain an integral equation of the perturbation function.In order to solve the inverse problem,we address the Tikhonov regularization method.Using the gradient decent method,three examples are considered and the numerical results show that the method is effective.In the test,by considering different values of the parameter in perturbation function,we get the result that smaller perturbation yields better reconstruction.

    [1]HULL J.Options,Futures and Other Derivatives[M].New Jersey:Prentice Hall,2006.

    [2]COX J C,INGERSOLL J E,ROSS S A.A theory of the term structure of interest rates[J].Econometrica,1985,53(2):385-408.

    [3]HULL J,WHITE A.The general Hull-White model and super calibration[J].Finance Analysis Journal,2001,57(6):34-43.

    [4]BOUCHOUEV I,ISAKOV V.The inverse problem of option pricing[J].Inverse Problems,1997,13(5):11-17.

    [5]BOUCHOUEV I,ISAKOV V.Uniqueness,stability and numerical methods for the inverse problem that arises in financial markets[J].Inverse Problems,1999,15(3):95-116.

    [6]ZHANG Guan-quan,LI Pei-jun.An Inverse Problem of Derivative Security Pricing[C].New Jersey:The International Conf on Inverse Problems,World Sci,2003:411-419.

    [7]EGGER H,HEIN T,HOFMANN B.On decoupling of volatility smile and term structure in inverse option pricing[J].Inverse Problem,2006,22(4):1247-1259.

    [8]EGGER H,ENGL H W.Tikhonov regularization applied to the inverse problem of option pricing:convergence analysis and rates[J].Inverse Problems,2005,21(3):1027-1045.

    [9]RAINER M.Calibration of stochastic models for interest rate derivatives[J].2009,58(3):373-388.

    [10]BOUCHOUEV I,ISAKOV V,VALDIVIA V.Recovery of volatility coefficient by linearization[J].Quantitative Finance,2002,2(4):257-263.

    [11]LU Lu,YI Lei.Recover implied volatility of underlying asset from European option price[J].Journal of Inverse and Ill-posed Problems,2009,17(5):499-509.

    [12]HULL J,WHITE A.Pricing interest-rate-derivative securities[J].The Review of Financial Studies,1990,3(4):573-592.

    [13]BAO Gang,LI Pei-jun.Near- field imaging of in finite rough surfaces in dielectric media[J].SIAM J.Imaging Sciences.2014,7(2):867-899.

    [14]WANG Yan-fei.Computational Methods for Inverse Problems and Their Applications[M].Beijing:Higher Education Press,2007.

    精品国产亚洲在线| 99久久无色码亚洲精品果冻| 欧美激情 高清一区二区三区| 91成人精品电影| 国产午夜福利久久久久久| 久久精品91蜜桃| 在线观看66精品国产| 日韩国内少妇激情av| 精品卡一卡二卡四卡免费| 色综合欧美亚洲国产小说| 91国产中文字幕| 给我免费播放毛片高清在线观看| 啪啪无遮挡十八禁网站| 俄罗斯特黄特色一大片| 午夜福利免费观看在线| 黄色女人牲交| 一a级毛片在线观看| 国产精品影院久久| 日韩欧美国产一区二区入口| 亚洲精品中文字幕在线视频| 久久久久久免费高清国产稀缺| 亚洲色图av天堂| 亚洲国产精品合色在线| 亚洲在线自拍视频| 国产久久久一区二区三区| 婷婷丁香在线五月| 亚洲欧美精品综合久久99| 两人在一起打扑克的视频| 精品欧美国产一区二区三| 黄色视频不卡| 日韩 欧美 亚洲 中文字幕| 日本免费一区二区三区高清不卡| 免费在线观看影片大全网站| 国产午夜福利久久久久久| 日本黄色视频三级网站网址| 在线观看免费视频日本深夜| 婷婷亚洲欧美| 老司机深夜福利视频在线观看| 国产亚洲精品av在线| 人人妻人人看人人澡| 一级毛片高清免费大全| 男男h啪啪无遮挡| 高潮久久久久久久久久久不卡| 亚洲国产中文字幕在线视频| 亚洲国产中文字幕在线视频| 国产v大片淫在线免费观看| 欧美成人免费av一区二区三区| 亚洲男人的天堂狠狠| 国产97色在线日韩免费| 久99久视频精品免费| 99久久国产精品久久久| 麻豆国产av国片精品| 欧美成人一区二区免费高清观看 | xxxwww97欧美| 99热6这里只有精品| 亚洲一卡2卡3卡4卡5卡精品中文| 后天国语完整版免费观看| 真人一进一出gif抽搐免费| 欧美成狂野欧美在线观看| 18禁裸乳无遮挡免费网站照片 | 久久精品国产99精品国产亚洲性色| 真人一进一出gif抽搐免费| 国产真实乱freesex| 19禁男女啪啪无遮挡网站| 一进一出好大好爽视频| av欧美777| 男女做爰动态图高潮gif福利片| 久久狼人影院| 国产野战对白在线观看| 人人妻人人澡欧美一区二区| 国产av在哪里看| 丁香欧美五月| 波多野结衣av一区二区av| 久久狼人影院| 国产精品久久久人人做人人爽| 国产精品,欧美在线| 亚洲,欧美精品.| www.999成人在线观看| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 一个人免费在线观看的高清视频| 99国产综合亚洲精品| 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一小说| tocl精华| 免费在线观看成人毛片| bbb黄色大片| 熟女少妇亚洲综合色aaa.| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久久久久 | 国产乱人伦免费视频| 又紧又爽又黄一区二区| 久久婷婷成人综合色麻豆| 999久久久国产精品视频| 欧美日本亚洲视频在线播放| 精品电影一区二区在线| 精品电影一区二区在线| 久久久国产欧美日韩av| 人人妻,人人澡人人爽秒播| 亚洲美女黄片视频| 午夜福利一区二区在线看| www.999成人在线观看| 美女高潮到喷水免费观看| 免费观看人在逋| 亚洲欧美一区二区三区黑人| 制服丝袜大香蕉在线| 久久久久久久精品吃奶| 久久久久国内视频| 日韩高清综合在线| 国产麻豆成人av免费视频| 欧美成人免费av一区二区三区| 一本精品99久久精品77| 看免费av毛片| 99精品在免费线老司机午夜| 久久久久久久久中文| 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 久久久久久人人人人人| 午夜影院日韩av| 亚洲片人在线观看| 亚洲精品在线观看二区| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄色小视频在线观看| 波多野结衣高清作品| 一区福利在线观看| 波多野结衣高清作品| 丝袜美腿诱惑在线| 母亲3免费完整高清在线观看| 给我免费播放毛片高清在线观看| x7x7x7水蜜桃| 制服人妻中文乱码| 久久精品国产综合久久久| 国产视频一区二区在线看| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区| 视频区欧美日本亚洲| 免费搜索国产男女视频| 别揉我奶头~嗯~啊~动态视频| 少妇的丰满在线观看| xxx96com| 天天一区二区日本电影三级| 少妇粗大呻吟视频| 91字幕亚洲| 两个人免费观看高清视频| 国产一区二区激情短视频| 男女视频在线观看网站免费 | 一区二区三区精品91| 97超级碰碰碰精品色视频在线观看| 黄色丝袜av网址大全| 一本综合久久免费| 在线观看66精品国产| 亚洲精品一区av在线观看| 一进一出好大好爽视频| 久久中文字幕一级| 麻豆国产av国片精品| 成人18禁在线播放| 在线国产一区二区在线| 一边摸一边做爽爽视频免费| 国产精品久久久久久亚洲av鲁大| 国产高清激情床上av| 日韩三级视频一区二区三区| 欧美黑人巨大hd| 麻豆成人午夜福利视频| 一边摸一边抽搐一进一小说| x7x7x7水蜜桃| 伦理电影免费视频| 两人在一起打扑克的视频| 级片在线观看| 国产v大片淫在线免费观看| 中文在线观看免费www的网站 | 亚洲中文日韩欧美视频| 午夜激情av网站| 日韩精品青青久久久久久| 亚洲激情在线av| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 搡老妇女老女人老熟妇| 亚洲五月婷婷丁香| 日本撒尿小便嘘嘘汇集6| 人人澡人人妻人| 岛国在线观看网站| 日本免费一区二区三区高清不卡| 少妇被粗大的猛进出69影院| 视频区欧美日本亚洲| 男女视频在线观看网站免费 | 国产精品美女特级片免费视频播放器 | 亚洲欧美精品综合一区二区三区| 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 91成年电影在线观看| 丝袜人妻中文字幕| 首页视频小说图片口味搜索| 日本一本二区三区精品| 国产成人精品久久二区二区免费| 亚洲色图av天堂| 免费看a级黄色片| 久久久国产精品麻豆| 嫁个100分男人电影在线观看| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 国产精品免费视频内射| 国产三级在线视频| 免费高清视频大片| 久久久久久久精品吃奶| 人人妻人人澡人人看| 91老司机精品| 国产黄片美女视频| 亚洲欧美日韩无卡精品| 亚洲第一青青草原| 一个人观看的视频www高清免费观看 | 麻豆成人午夜福利视频| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品中文字幕在线视频| 久久亚洲精品不卡| 黑丝袜美女国产一区| 青草久久国产| 特大巨黑吊av在线直播 | 99精品欧美一区二区三区四区| 日本a在线网址| 国产视频内射| 丁香六月欧美| 国产成人啪精品午夜网站| 天堂影院成人在线观看| 岛国在线观看网站| 午夜福利18| 久久久国产精品麻豆| 1024手机看黄色片| 熟女少妇亚洲综合色aaa.| 在线观看舔阴道视频| 999精品在线视频| 一进一出好大好爽视频| 51午夜福利影视在线观看| 99热6这里只有精品| 法律面前人人平等表现在哪些方面| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 亚洲美女黄片视频| 国产精品日韩av在线免费观看| 1024视频免费在线观看| 99热6这里只有精品| 中文字幕久久专区| 国产亚洲精品久久久久久毛片| 啦啦啦免费观看视频1| 琪琪午夜伦伦电影理论片6080| 亚洲精品久久国产高清桃花| 久久草成人影院| av电影中文网址| 国产亚洲精品第一综合不卡| 国产欧美日韩精品亚洲av| 中国美女看黄片| 久久久久国产一级毛片高清牌| 国产精品电影一区二区三区| 国产精品亚洲一级av第二区| 亚洲国产精品999在线| 国产亚洲欧美在线一区二区| 人成视频在线观看免费观看| 精品无人区乱码1区二区| 91老司机精品| 亚洲中文字幕日韩| 美女午夜性视频免费| 国产精品爽爽va在线观看网站 | 亚洲人成网站高清观看| 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 嫩草影院精品99| 久9热在线精品视频| 特大巨黑吊av在线直播 | 精品乱码久久久久久99久播| 天堂动漫精品| 国产亚洲精品久久久久5区| 在线看三级毛片| 最新美女视频免费是黄的| 久热爱精品视频在线9| 久久狼人影院| 久久久久久久午夜电影| 一区二区三区精品91| 午夜成年电影在线免费观看| 不卡av一区二区三区| 国产av在哪里看| 久久久精品欧美日韩精品| 日韩有码中文字幕| 国产精品电影一区二区三区| 欧美亚洲日本最大视频资源| 天堂动漫精品| 男人操女人黄网站| 日韩欧美国产在线观看| 女同久久另类99精品国产91| 久久狼人影院| 啪啪无遮挡十八禁网站| 成人亚洲精品av一区二区| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月| 一级片免费观看大全| 正在播放国产对白刺激| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女| 久久久国产成人免费| 50天的宝宝边吃奶边哭怎么回事| 少妇 在线观看| 久热这里只有精品99| 亚洲av熟女| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲| 国产真实乱freesex| aaaaa片日本免费| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 亚洲欧美激情综合另类| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 亚洲av电影在线进入| 国产视频内射| 不卡av一区二区三区| 国产又爽黄色视频| 99国产精品一区二区蜜桃av| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 一区福利在线观看| 精品久久久久久久末码| 一本精品99久久精品77| 欧美日韩黄片免| 日韩欧美三级三区| 黄片大片在线免费观看| 国产精品一区二区免费欧美| 久久香蕉精品热| 午夜免费观看网址| 一区二区三区精品91| 黄色a级毛片大全视频| 亚洲 欧美 日韩 在线 免费| 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 一区二区三区精品91| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 国产精品久久久av美女十八| 亚洲一码二码三码区别大吗| 熟女少妇亚洲综合色aaa.| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 中国美女看黄片| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 18美女黄网站色大片免费观看| 91大片在线观看| 国产爱豆传媒在线观看 | 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 一区二区三区国产精品乱码| www日本黄色视频网| 色精品久久人妻99蜜桃| 国产片内射在线| 欧美日韩黄片免| 免费高清在线观看日韩| 成年免费大片在线观看| 国产精品国产高清国产av| 黄色女人牲交| 一区二区三区精品91| 一区二区三区国产精品乱码| 久久香蕉精品热| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 欧美精品亚洲一区二区| 国产精品一区二区三区四区久久 | 夜夜躁狠狠躁天天躁| 欧美又色又爽又黄视频| 91成年电影在线观看| 欧美成人免费av一区二区三区| 日本成人三级电影网站| 美女高潮喷水抽搐中文字幕| 国内精品久久久久久久电影| 超碰成人久久| 国产精品久久久人人做人人爽| 后天国语完整版免费观看| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 中亚洲国语对白在线视频| 50天的宝宝边吃奶边哭怎么回事| 91成人精品电影| av超薄肉色丝袜交足视频| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 久久精品成人免费网站| 看免费av毛片| 搡老岳熟女国产| 欧美色视频一区免费| 超碰成人久久| 婷婷精品国产亚洲av在线| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 午夜视频精品福利| 91成年电影在线观看| 好男人在线观看高清免费视频 | 国产亚洲精品第一综合不卡| 亚洲无线在线观看| 成人亚洲精品av一区二区| 亚洲熟女毛片儿| 国产一区二区三区在线臀色熟女| 美女扒开内裤让男人捅视频| 一区二区三区高清视频在线| a级毛片a级免费在线| svipshipincom国产片| 自线自在国产av| 1024视频免费在线观看| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区久久 | 色综合婷婷激情| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 色婷婷久久久亚洲欧美| av天堂在线播放| 欧美激情极品国产一区二区三区| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 村上凉子中文字幕在线| 久久久久九九精品影院| 美国免费a级毛片| 亚洲精品色激情综合| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 国产一区二区在线av高清观看| 欧美另类亚洲清纯唯美| 悠悠久久av| 中亚洲国语对白在线视频| 中文字幕高清在线视频| 国产一卡二卡三卡精品| 性欧美人与动物交配| 久久久久久免费高清国产稀缺| 色播亚洲综合网| 91在线观看av| 深夜精品福利| 精品欧美一区二区三区在线| 成人av一区二区三区在线看| 亚洲精品中文字幕一二三四区| 丁香六月欧美| 国产欧美日韩一区二区三| www国产在线视频色| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 亚洲一区二区三区不卡视频| 看黄色毛片网站| 男人舔奶头视频| 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 丰满人妻熟妇乱又伦精品不卡| 午夜影院日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品98久久久久久宅男小说| 成在线人永久免费视频| 啦啦啦观看免费观看视频高清| 亚洲精品久久成人aⅴ小说| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 91九色精品人成在线观看| 久久中文看片网| 老司机福利观看| 国产亚洲精品第一综合不卡| 久久久国产成人免费| 成年版毛片免费区| 听说在线观看完整版免费高清| 欧美最黄视频在线播放免费| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 男人舔女人的私密视频| 国产色视频综合| 精品少妇一区二区三区视频日本电影| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 1024香蕉在线观看| 国产亚洲欧美精品永久| 自线自在国产av| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 99精品在免费线老司机午夜| 免费电影在线观看免费观看| 91麻豆av在线| 亚洲精品一区av在线观看| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 欧美成人性av电影在线观看| 国产伦在线观看视频一区| 嫩草影院精品99| 黄色a级毛片大全视频| 亚洲成人国产一区在线观看| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| 精品一区二区三区四区五区乱码| 男人舔女人的私密视频| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 亚洲av中文字字幕乱码综合 | 国产av一区在线观看免费| 午夜福利欧美成人| 狂野欧美激情性xxxx| 免费看a级黄色片| 国内精品久久久久久久电影| 男人舔女人的私密视频| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 99国产精品一区二区蜜桃av| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 国产99久久九九免费精品| 88av欧美| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 国产亚洲av高清不卡| 极品教师在线免费播放| 精品高清国产在线一区| 巨乳人妻的诱惑在线观看| 真人一进一出gif抽搐免费| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 欧美日韩瑟瑟在线播放| 久久人妻福利社区极品人妻图片| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 国产成人精品久久二区二区免费| 国产精品爽爽va在线观看网站 | 日韩精品青青久久久久久| 精品熟女少妇八av免费久了| 18禁观看日本| 国产成人av教育| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频 | 国产精华一区二区三区| 久久香蕉精品热| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 又大又爽又粗| 熟女电影av网| 成人手机av| 国产一区二区三区视频了| 一本一本综合久久| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 99久久久亚洲精品蜜臀av| 日韩有码中文字幕| 欧美+亚洲+日韩+国产| 国产成人av教育| 国产男靠女视频免费网站| 国产区一区二久久| 国产在线观看jvid| 人妻久久中文字幕网| avwww免费| 国产人伦9x9x在线观看| 久久久久久久久久黄片| 成人18禁高潮啪啪吃奶动态图| 黄片小视频在线播放| 啦啦啦观看免费观看视频高清| 亚洲精品美女久久av网站| 中文字幕av电影在线播放| 欧美日韩中文字幕国产精品一区二区三区| 麻豆一二三区av精品| 精品久久久久久久毛片微露脸| 亚洲一区二区三区不卡视频| 国产高清有码在线观看视频 | 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 中文在线观看免费www的网站 | 欧美黑人欧美精品刺激| 我的亚洲天堂| 国产亚洲欧美在线一区二区| 在线国产一区二区在线| 日韩视频一区二区在线观看| 又黄又粗又硬又大视频| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 色精品久久人妻99蜜桃| av免费在线观看网站| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 香蕉国产在线看| 亚洲精品中文字幕在线视频| 人人妻人人澡人人看| 久久久国产欧美日韩av| 91麻豆av在线| 黄色女人牲交| 制服人妻中文乱码| 99在线人妻在线中文字幕| 一区二区三区国产精品乱码| 亚洲九九香蕉| 手机成人av网站| 男人的好看免费观看在线视频 | 欧美一区二区精品小视频在线| 中文字幕精品亚洲无线码一区 | 嫩草影院精品99| 欧美 亚洲 国产 日韩一| av超薄肉色丝袜交足视频| 亚洲电影在线观看av| 18禁黄网站禁片午夜丰满| 日韩成人在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 嫩草影院精品99| 老司机深夜福利视频在线观看| 国产成人精品无人区| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频|