• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 1-Good-neighbor Connectivity and Diagnosability of Locally Twisted Cubes

    2017-03-14 02:46:26

    (School of Mathematics and Information Science,Henan Normal University,Xinxiang,Henan 453007,PR China)

    §1.Introduction

    Many multiprocessor systems have interconnection networks(networks for short)as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors.We use graphs and networks interchangeably.For the system,study the topological properties of its network is important.Furthermore,some processors may fail in the system,so processor fault identification plays an important role for reliable computing.The first step to deal with faults is to identify the faulty processors from the fault-free ones.The identification process is called the diagnosis of the system.A systemGis said to bet-diagnosable if all faulty processors can be identified without replacement,provided that the number of presented faults does not exceedt.The diagnosability ofGis the maximum value oftsuch thatGist-diagnosable[1]-[3],[4].For at-diagnosable system,Dahbura and Masson[1]proposed an algorithm with time complexO(n2.5),which can effectively identify the set of faulty processors.

    Several diagnosis models were proposed to identify the faulty processors.One major approach is the Preparata,Metze,and Chiens(PMC)diagnosis model introduced by Preparata et al.[5].The diagnosis of the system is achieved through two linked processors testing each other.Another important model,namely the comparison diagnosis model(MM model),was proposed by Maeng and Malek[6].In the MM model,to diagnose a system,a node sends the same task to two of its neighbors,and then compares their responses.In 2005,Lai et al.[4]introduced a restricted diagnosability of a multiprocessor system called conditional diagnosability.They consider the situation that no faulty set can contain all the neighbors of any vertex in the system.In 2012,Peng et al.[7]proposed a new measure for faulty diagnosis of the system,namely,theg-good-neighbor diagnosability(which is also called theg-good-neighbor conditional diagnosability),which requires that every fault-free node has at leastgfault-free neighbors.In[7],they studied theg-good-neighbor diagnosability of then-dimensional hypercube under PMC model.In[8],Wang and Han studied theg-good-neighbor diagnosability of then-dimensional hypercube under the MM?model.Yuan et al.[9],[10]studied that theg-good-neighbor diagnosability of thek-aryn-cube(k≥3)under the PMC model and MM?model.The Cayley graphCΓngenerated by the transposition tree Γnhas recently received considerable attention.In[11],[12],Wang et al.studied theg-good-neighbor diagnosability ofCΓnunder the PMC model and MM?model forg=1,2.In this paper,the 1-good-neighbor diagnosability of the locally twisted cubeLTQnhas been studied under the PMC model and MM?model.It is proved that the 1-good-neighbor connectivityκ(1)(LTQn)=2n?2 and the 1-good-neighbor diagnosability ofLTQnis 2n?1 under the PMC model forn≥4 and the MM?model forn≥5.

    §2.Preliminaries

    2.1 Notations

    The graph is applied widely[13],[14].In this paper,a multiprocessor system is modeled as an undirected simple graphG=(V,E),whose vertices(nodes)represent processors and edges(links)represent communication links.Given a nonempty vertex subsetV′ofV,the subgraph induced byV′inG,denoted byG[V′],is a graph,whose vertex set isV′and the edge set is the set of all the edges ofGwith both endpoints inV′.The degreedG(v)of a vertexvis the number of edges incident withv.The minimum degree is denoted byδ(G).For any vertexv,we de fine the neighborhoodNG(v)ofvinGto be the set of vertices adjacent tov.uis called a neighbor vertex or a neighbor ofvforu∈NG(v).LetS?V(G).NG(S)denotes the set∪v∈SNG(v)S.For neighborhoods and degrees,we will usually omit the subscript for the graph when no confusion arises.A graphGis said to bek-regular if for any vertexv,dG(v)=k.LetGbe a connected graph.The connectivityκ(G)ofGis the minimum number of vertices whose removal results in a disconnected graph or only one vertex left whenGis complete.LetG=(V,E).A fault setF?Vis called ag-good-neighbor conditional faulty set if|N(v)∩(VF)|≥gfor every vertexvinVF.Ag-good-neighbor cut ofGis ag-good-neighbor faulty setFsuch thatG?Fis disconnected.The minimum cardinality ofg-good-neighbor cuts is said to be theg-good-neighbor connectivity ofG,denoted byκ(g)(G).A connected graphGis said to beg-good-neighbor connected ifGhas ag-good-neighbor cut.LetF1andF2be two distinct subsets ofV,and let the symmetric differenceF1△F2=(F1F2)∪(F2F1).For graph-theoretical terminology and notation not defined here we follow[15].

    2.2 The PMC Model and the MM?model

    For a multiprocessor systemG=(V(G),E(G)),one important diagnosis model,namely the PMC model,was proposed by Preparata et al.[5].In the PMC model,two adjacent processors can perform tests on each other.For two adjacent verticesuandvinV(G),the ordered pair(u,v)represents the test performed byuonv.The outcome of a test(u,v)is either 1 or 0 with the assumption that the testing result is regarded as reliable if the vertexuis fault-free.However,the outcome of a test(u,v)is unreliable,provided that the testeruitself is originally a faulty processor.Suppose that the vertexuof(u,v)is fault-free,then the result would be 0(resp.1)ifvis fault-free(resp.faulty).A test assignmentTforGis a collection of tests for every adjacent pair of vertices.It can be modeled as a directed testing graphT=(V(G),L),where(u,v)∈Limplies thatuandvare adjacent inG.The collection of all test results for a test assignmentTis called a syndrome.Formally,a syndrome is a functionσ:L→{0,1}.The set of all faulty processors in the system is called a faulty set.This can be any subset ofV(G).For a given syndromeσ,a subset of verticesF?V(G)is said to be consistent withσif syndromeσcan be produced from the situation that,for any(u,v)∈Lsuch thatu∈VF,σ(u,v)=1 if and only ifv∈F.This means thatFis a possible set of faulty processors.Since a test outcome produced by a faulty processor is unreliable,a given setFof faulty vertices may produce a lot of different syndromes.On the other hand,different faulty sets may produce the same syndrome.Letσ(F)denote the set of all syndromes whichFis consistent with.

    Under the PMC model,two distinct setsF1andF2inV(G)are said to be indistinguishable ifσ(F1)∩σ(F2)/=?,otherwise,F1andF2are said to be distinguishable.Besides,we say that(F1,F2)is an indistinguishable pair ifσ(F1)∩σ(F2)/=?;else,(F1,F2)is a distinguishable pair.

    Using the MM model,the diagnosis is carried out by sending the same testing task to a pair of processors and comparing their responses.Under the MM model,we always assume the output of a comparison performed by a faulty processor is unreliable.The comparison scheme of a systemG=(V(G),E(G))is modeled as a multigraph,denoted byM=(V(G),L),whereLis the labeled-edge set.A labeled edge(u,v)w∈Lrepresents a comparison in which two verticesuandvare compared by a vertexw,which impliesuw,vw∈E(G).The collection of all comparison results inM=(V(G),L)is called the syndrome,denoted byσ?,of the diagnosis.If the comparison(u,v)wdisagrees,thenσ?((u,v)w)=1,otherwise,σ?((u,v)w)=0.Hence,a syndrome is a function fromLto{0,1}.The MM*model is a special case of the MM model.In the MM*model,all comparisons of G are in the comparison scheme ofG,i.e.,ifuw,vw∈E(G),then(u,v)w∈L.

    Similarly to the PMC model,we can de fine a subset of verticesF?V(G)is consistent with a given syndromeσ?and two distinct setsF1andF2inV(G)are indistinguishable(resp.distinguishable)under the MM*model.

    A systemG=(V,E)isg-good-neighbort-diagnosable ifF1andF2are distinguishable,for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.Theg-good-neighbor diagnosabilitytg(G)ofGis the maximum value oftsuch thatGisg-good-neighbort-diagnosable.

    2.3 Locally twisted cubes

    For an integern≥1,a binary string of lengthnis denoted byu1u2...un,whereui∈{0,1}for every integeri∈{1,2,...,n}.Then-dimensional locally twisted cube,denoted byLTQn,is ann-regular graph of 2nvertices andn2n?1edges,which can be recursively defined as follows[16].

    Definition 2.1[16]Forn≥2,ann-dimensional locally twisted cube,denoted byLTQn,is defined recursively as follows:

    1)LTQ2is a graph consisting of four nodes labeled with 00,01,10 and 11,respectively,connected by four edges{00,01},{01,11},{11,10}and{10,00}.

    2)Forn≥3,LTQnis built from two disjoint copies ofLTQn?1according to the following steps:Let 0LTQn?1denote the graph obtained from one copy ofLTQn?1by pre fixing the label of each node with 0.Let 1LTQn?1denote the graph obtained from the other copy ofLTQn?1by pre fixing the label of each node with 1.Connect each node 0u2u3···unof 0LTQn?1to the node 1(u2+un)u3···unof 1LTQn?1with an edge,where ”+” represents the modulo 2 addition.

    Figs.1 and 2 show three examples of locally twisted cubes.The locally twisted cube can also be equivalently defined in the following non-recursive fashion.

    Definition 2.2[16]Forn≥2,then-dimensional locally twisted cube,denoted byLTQn,is a graph with{0,1}nas the node set.Two nodesu1u2···unandv1v2···vnofLTQnare adjacent if and only if either one of the following conditions are satisfied.

    Proposition 2.3LetLTQnbe the locally twisted cube.If two verticesu,vare adjacent,then there is no common neighbor vertex of these two vertices,i.e.,|N(u)∩N(v)|=0.If two verticesu,vare not adjacent,then there are at most two common neighbor vertices of these two vertices,i.e.,|N(u)∩N(v)|≤2.

    ProofLetu,v∈V(LTQn).The proof is by induction onn.Forn=2,LTQ2is a 4-cycle.Therefore,if two verticesu,vare adjacent,then|N(u)∩N(v)|=0;if two verticesu,vare not adjacent,then|N(u)∩N(v)|≤2.Assumen≥2 and the result holds forLTQn?1.Suppose thatu,v∈V(iLTQn?1)fori∈{0,1}.Ifuis adjacent tov,by the inductive hypothesis,the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|=0 holds.Ifuis not adjacent tov,by the inductive hypothesis,then the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2 holds.So we suppose thatu∈V(0LTQn?1)andv∈V(1LTQn?1).Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2.

    Fig.1.LTQ2and LTQ3

    Fig.2.LTQ4

    §3.The 1-Good-neighbor Connectivity of Locally Twisted Cubes

    In this section,we shall show theg-good-neighbor connectivity of the locally twisted cubeLTQn.

    Theorem 3.1[16]LetLTQnbe the locally twisted cube.Thenκ(LTQn)=n.

    Lemma 3.2[17]LetLTQnbe the locally twisted cube,and letS?V(LTQn)andn≥3.Suppose thatLTQn?Sis disconnected.The following two conditions hold:

    (1)|S|≥n;

    (2)Ifn≤|S|≤2n?3,thenLTQn?Shas exactly two components,one is trivial and the other is nontrivial.

    Lemma 3.3LetAbe defined as above and letLTQnbe the locally twisted cube.IfF1=NLTQn(A),F2=F1∪A,then|F1|=2n?2,|F2|=2n,andδ(LTQn?F1?F2)≥1.

    ProofSinceA={0n?1X:X∈{0,1}}and the definition ofLTQn,we haveLTQn[A]2and|A|=2.By Proposition 2.3,|F1|=n?1+n?1=2n?2 and|F2|=2n.

    Claim 1LTQn?F2is connected.

    The proof of this claim is by induction onn.Forn=4,F1={0100,0111,0010,0011,1101,1000}andF2={0000,0001,0100,0111,0010,0011,1101,1000}.It is easy to see thatLTQ4?F2is connected(See Fig.2).Assume thatn≥5 andLTQn?1?F2is connected.Let=F2∩V(iLTQn?1)fori=0,1.By Definition 2.1,A?V(0LTQn?1),0LTQn?1is connected and|N(A)∩V(1LTQn?1)|=2.By Theorem 3.1,1LTQn?1is connected.Note that|F2|=2n.Sincen≥5,22?1>2nholds.Therefore,LTQn?F2is connected by De finition 2.1.

    By Claim 1,δ(LTQn?F1?F2)≥1.

    Lemma 3.4LetLTQnbe the locally twisted cube.Then 1-neighbor-connectivityκ(1)(LTQn)≤2(n?1).

    ProofLetF1andF2be defined in Lemma 3.3.Note thatLTQn?F1has two componentsLTQn?F2andK2.By Lemma 4.4,F1is ag-good-neighbor cut.By the definition of 1-goodneighbor connectivity,we haveκ1(LTQn)≤2(n?1).

    Theorem 3.5LetLTQnbe the locally twisted cube.Thenκ(1)(LTQn)=2n?2 forn≥4.

    ProofLetFbe an arbitrary subset ofV(LTQn)such that|F|≤2n?3.Suppose that|F|≤n?1.By Theorem 3.1,LTQn?Fis connected.Suppose thatn≤|F|≤2n?3.By Lemma 3.2,LTQn?Fhas two components:an isolated vertex and a nontrivial subgraph.Therefore,Fis not a 1-good-neighbor cut ofLTQn.Thus,κ1(LTQn)≥2n?2.By Lemma 3.4,we haveκ1(LTQn)=2n?2 forn≥4.

    §4.The 1-Good-neighbor Diagnosability of the Locally Twisted Cube LTQnunder the PMC Model

    In this section,we shall show the 1-good-neighbor diagnosability of locally twisted cubes under the PMC model.

    Theorem 4.1[9]A systemG=(V,E)isg-good-neighbort-diagnosable under thePMCmodel if and only if there is an edgeuv∈Ewithu∈V(F1∪F2)andv∈F1△F2for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.

    Lemma 4.2A graph of minimum degree 1 has at least two vertices.

    The proof of Lemma 4.2 is trivial.

    Lemma 4.3Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    Proof LetAbe defined in Lemma 2,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.SinceA=F1△F2andNLTQn(A)=F1?F2,there is no edge ofLTQnbetweenV(LTQn)(F1∪F2)andF1△F2.By Theorem 4.1,we can deduce thatLTQnis not 1-goodneighbor 2n-diagnosable under the PMC model.Hence,by the de finition of 1-good-neighbor diagnosability,we conclude that the 1-good-neighbor diagnosability ofLTQnis less than 2n,i.e.,t1(LTQn)≤2n?1.

    Lemma 4.4Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.By Theorem 4.1,to proveLTQnis 1-goodneighbor(2n?1)-diagnosable,it is equivalent to prove that there is an edgeuv∈E(LTQn)withu∈V(LTQn)(F1∪F2)andv∈F1△F2for each distinct pair of 1-good-neighbor faulty subsetsF1andF2ofV(LTQn)with|F1|≤2n?1 and|F2|≤2n?1.

    We prove this statement by contradiction.Suppose that there are two distinct 1-goodneighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with the condition in Theorem 4.1,i.e.,there are no edges betweenV(LTQn)(F1∪F2)andF1△F2.Without loss of generality,assume thatF2F1/=?.Assume thatV(LTQn)=F1∪F2.Sincen≥4,we have that 2n=|V(LTQn)|=|F1∪F2|=|F1|+|F2|?|F1∩F2|≤|F1|+|F2|≤2n?1+2n?1≤4n?2,a contradiction.Therefore,V(LTQn)/=F1∪F2.

    Since there are no edges betweenV(LTQn)(F1∪F2)andF1△F2,andF1is a 1-goodneighbor faulty set,LTQn?F1has two partsLTQn?F1?F2andLTQn[F2F1].Thus,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.Similarly,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is also a 1-good-neighbor cut.WhenF1F2=?,F1∩F2=F1is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is a 1-good-neighbor cut.By Theorem 3.5,|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+2n?2=2n,which contradicts with that|F2|≤2n?1.SoLTQnis 1-good-neighbor(2n?1)-diagnosable.By the de finition oft1(LTQn),t1(LTQn)≥2n?1.

    Combining Lemmas 4.3 and Lemma 4.4,we have the following theorem.

    Theorem 4.5Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is 2n?1.

    §5.The 1-Good-neighbor Diagnosability of Locally Twisted Cubes Under the MM?Model

    Before discussing the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model,we first give an existing result.

    Theorem 5.1([1],[9])A systemG=(V,E)isg-good-neighbort-diagnosable under theMM?model if and only if each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤tsatisfies one of the following conditions.

    (1)There are two verticesu,w∈V(F1∪F2)and there is a vertexv∈F1△F2such thatuw∈Eandvw∈E.

    (2)There are two verticesu,v∈F1F2and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    (3)There are two verticesu,v∈F2F1and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    Lemma 5.1Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    ProofLetAbe defined in Lemma 3.3,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.By the definitions ofF1andF2,F1△F2=A.NoteF1F2=?,F2F1=Aand(V(LTQn)(F1∪F2))∩A=?.Therefore,bothF1andF2are not satisfied with any one condition in Theorem 5.1,andLTQnis not 1-good-neighbor 2n-diagnosable.Hence,t1(LTQn)≤2n?1.

    Lemma 5.2Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.

    By Theorem 5.1,suppose,on the contrary,that there are two distinct 1-good-neighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1.Without loss of generality,assume thatF2F1/=?.Similarly to the discussion onV(LTQn)=F1∪F2in Lemma 4.4,we can deduceV(LTQn)/=F1∪F2.

    Claim 1LTQn?F1?F2has no isolated vertex.

    Suppose,on the contrary,thatLTQn?F1?F2has at least one isolated vertexw.SinceF1is a 1-good neighbor faulty set,there is a vertexu∈F2F1such thatuis adjacent tow.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,there is at most one vertexu∈F2F1such thatuis adjacent tow.Thus,there is just one vertexu∈F2F1such thatuis adjacent tow.Similarly,we can deduce that there is just one vertexv∈F1F2such thatvis adjacent towwhenF1F2/=?.LetW?V(LTQn)(F1∪F2)be the set of isolated vertices inLTQn[V(LTQn)(F1∪F2)],and letHbe the subgraph induced by the vertex setV(LTQn)(F1∪F2∪W).Then for anyw∈W,there are(n?2)neighbors inF1∩F2whenF1F2/=?.Since|F2|≤2n?1,we have that∑w∈W|NLTQn[(F1∩F2)∪W](w)|=|W|(n?2)≤∈F1∩F2dLTQn(v)=n|F1∩F2|≤n(|F2|?1)≤n(2n?2)=2n2?2n.It follows that|W|≤≤2n+4 forn≥5.Note|F1∪F2|=|F1|+|F2|?|F1∩F2|≤2(2n?1)?(n?2)=3n.Suppose thatV(H)=?.Then 2n=|V(LTQn)|=|F1∪F2|+|W|≤3n+2n+4=5n+4.This is a contradiction ton≥5.SoV(H)/=?.Since the vertex set pair(F1,F2)is not satisfied with the condition(1)of Theorem 5.1,and any vertex ofV(H)is not isolated inH,we deduce that there is no edge betweenV(H)andF1△F2.Thus,F1∩F2is a vertex cut ofLTQnandδ(LTQn?(F1∩F2))≥1,i.e.,F1∩F2is a 1-good-neighbor cut ofLTQn.By Theorem 3.5,|F1∩F2|≥2n?2.Because|F1|≤2n?1,|F2|≤2n?1,and neitherF1F2norF2F1is empty,we have|F1F2|=|F2F1|=1.LetF1F2={v1}andF2F1={v2}.Then for any vertexw∈W,ware adjacent tov1andv2.According to Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn,it follows that there are at most two isolated vertices inLTQn?F1?F2.

    Suppose that there is exactly one isolated vertexvinLTQn?F1?F2.Letv1andv2be adjacent tov.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v}?F1∩F2;NLTQn(v2){v}?F1∩F2;[NLTQn(v){v1,v2}]∩[NLTQn(v1){v}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v}]=?.By Proposition 2.3,|[NLTQn(v1){v}]∩[NLTQn(v2){v}]|≤1.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(v1){v}|+|NLTQn(v2){v}|=(n?2)+(n?1)+(n?1)?1=3n?5.It follows that|F2|=|F2F1|+|F1∩F2|≥1+3n?5=3n?4>2n?1(n≥4),which contradicts|F2|≤2n?1.

    Suppose that there are exactly two isolated verticesvandwinLTQn?F1?F2.Letv1andv2be adjacent tovandw,respectively.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v,w}?F1∩F2,NLTQn(v2){v,w}?F1∩F2,[NLTQn(v){v1,v2}]∩[NLTQn(v1){v,w}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v,w}]=?.By Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn.Thus,it follows that|[NLTQn(v1){v,w}]∩[NLTQn(v2){v,w}]|=0.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(w){v1,v2}|+|NLTQn(v1){v,w}|+|NLTQn(v2){v,w}|=(n?2)+(n?2)+(n?2)+(n?2)=4n?8.It follows that|F2|=|F2F1|+|F1∩F2|≥1+4n?8=4n?7>2n?1 (n≥4),which contradicts|F2|≤2n?1.

    Suppose thatF1F2=?.ThenF1?F2.SinceF2is a 1-good neighbor faulty set,LTQn?F2=LTQn?F1?F2has no isolated vertex.The proof of Claim 1 is complete.

    Letu∈V(LTQn)(F1∪F2).By Claim 1,uhas at least one neighbor inLTQn?F1?F2.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,by the condition(1)of Theorem 5.1,for any pair of adjacent verticesu,w∈V(LTQn)(F1∪F2),there is no vertexv∈F1△F2such thatuw∈E(LTQn)andvw∈E(LTQn).It follows thatuhas no neighbor inF1△F2.By the arbitrariness ofu,there is no edge betweenV(LTQn)(F1∪F2)andF1△F2.SinceF2F1/=?andF1is a 1-good-neighbor faulty set,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.SinceF2is a 1-good-neighbor faulty set,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQn.Suppose thatF1F2=?.ThenF1∩F2=F1.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQnwhenF1F2=?.By Theorem 3.5,we have|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+(2n?2)=2n,which contradicts|F2|≤2n?1.Therefore,LTQnis 1-good-neighbor(2n?1)-diagnosable andt1(LTQn)≥2n?1.

    Combining Lemmas 5.2 and 5.3,we have the following theorem.

    Theorem 5.4Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder theMM?model is 2n?1.

    [1]DAHBURA A T,MASSON G M.AnO(n2.5)Fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492.

    [2]FAN Jian-xi.Diagnosability of crossed cubes under the comparison diagnosis model[J].IEEE Transactions on Parallel and Distributed Systems,2002,13(10):1099-1104.

    [3]FAN Jian-xi,ZHANG Shu-kui,JIA Xiao-hua,et al.The Restricted Connectivity of Locally Twisted Cubes[C].10th International Symposium on Pervasive Systems,Algorithms,and Networks(ISPAN).Kaohsiung,14-16 December 2009,574–578.

    [4]LAI Pao-Lien,TAN J J M,CHANG Chien-Ping,et al.Conditional Diagnosability Measures for Large Multiprocessor Systems[J].IEEE Transactions on Computers,2005,54(2):165-175.

    [5]PREPARATA F.P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Computers,1967,EC-16:848-854.

    [6]MAENG J,MALEK M.A comparison connection assignment for self-diagnosis of multiprocessor systems[C].in:Proceeding of 11th International Symposium on Fault-Tolerant Computing,Washington,D C:IEEE Computer Society Press,1981,173-175.

    [7]PENG Shao-Lun,LIN Cheng-Kuan,TAN J J M,et al.Theg-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412.

    [8]WANG Shi-ying,HAN Wei-ping.Theg-good-neighbor conditional diagnosability ofn-dimensional hypercubes under the MM*model[J].Information Processing Letters,2016,116:574-577.

    [9]YUAN Jun,LIU Ai-xia,MA Xue,et al.Theg-good-neighbor conditional diagnosability ofk-aryn-cubes under the PMC model and MM?model[J].IEEE Transactions on Parallel and Distributed Systems,2015,26:1165-1177.

    [10]YUAN Jun,LIU Ai-xia,QIN Xiao,et al.g-Good-neighbor conditional diagnosability measures for 3-aryn-cube networks[J].Theoretical Computer Science,2016,622:144-162.

    [11]WANG Mu-jiang-shan,GUO Yubao,WANG Shiying.The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM?model[J].International Journal of Computer Mathematics,2017,94(3):620-631.

    [12]WANG Mu-jiang-shan,LIN Yu-qing,WANG Shi-ying.The 2-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM*model[J].Theoretical Computer Science 628(2016)92-100.

    [13]LIN Hao,LIN Lan.Minimum Dominating Tree Problem for Graphs[J].Chinese Quarterly Journal of Mathematics,2014,29(1):1–8.

    [14]WANG Mu-Jiang-shan,YUAN Jun,LIN Shang-wei,et al.Ordered and Hamilton Digraphs,Chinese Quarterly Journal of Mathematics[J].2010,25(3):317-326.

    [15]BONDY J A,MURTY U S R..Graph Theory[M].New York:Springer,2007.

    [16]YANG Xiao-fan,EVANS D J,MEGSON G M.The Locally Twisted Cubes[J].International Journal of Computer Mathematics,2005(82)(4):401-413.

    [17]FENG Rui-tao,BIAN Genq-ing,WANG Xin-ke.Conditional diagnosability of the locally twisted cubes under the PMC model[J].Communications and Network,2011,3:220-224.

    黄色视频在线播放观看不卡| 亚洲国产精品一区二区三区在线| 97精品久久久久久久久久精品| 夫妻午夜视频| 两性夫妻黄色片 | 国产午夜精品一二区理论片| av在线app专区| 超碰97精品在线观看| 国产成人aa在线观看| 国产在视频线精品| 亚洲婷婷狠狠爱综合网| 日韩成人av中文字幕在线观看| 欧美另类一区| 日韩中文字幕视频在线看片| 国产精品秋霞免费鲁丝片| av福利片在线| 99re6热这里在线精品视频| 99re6热这里在线精品视频| 国产伦理片在线播放av一区| 日韩电影二区| 精品亚洲成a人片在线观看| 丝袜在线中文字幕| 亚洲精品456在线播放app| 建设人人有责人人尽责人人享有的| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 又黄又爽又刺激的免费视频.| 18禁观看日本| 亚洲av综合色区一区| 51国产日韩欧美| 水蜜桃什么品种好| 中文乱码字字幕精品一区二区三区| 好男人视频免费观看在线| 少妇猛男粗大的猛烈进出视频| 亚洲精品av麻豆狂野| 亚洲高清免费不卡视频| 夫妻午夜视频| 成人18禁高潮啪啪吃奶动态图| 国产精品无大码| 两性夫妻黄色片 | 亚洲av电影在线观看一区二区三区| 亚洲色图综合在线观看| videossex国产| 观看美女的网站| 久久午夜综合久久蜜桃| 精品少妇久久久久久888优播| 在线观看国产h片| 在线观看三级黄色| 亚洲一级一片aⅴ在线观看| 看非洲黑人一级黄片| 99国产综合亚洲精品| 国产高清三级在线| 欧美亚洲日本最大视频资源| 老司机影院成人| √禁漫天堂资源中文www| 日韩中字成人| 中文字幕人妻丝袜制服| 久久女婷五月综合色啪小说| 人人妻人人澡人人爽人人夜夜| 99视频精品全部免费 在线| 大香蕉久久网| 亚洲人成77777在线视频| 国产在线免费精品| 免费av不卡在线播放| 国产男女超爽视频在线观看| 少妇高潮的动态图| 国产毛片在线视频| 亚洲性久久影院| 国产在线视频一区二区| 久久精品国产亚洲av涩爱| 亚洲国产精品国产精品| 一个人免费看片子| 久久久久久久亚洲中文字幕| 乱码一卡2卡4卡精品| 丝袜喷水一区| 韩国精品一区二区三区 | 这个男人来自地球电影免费观看 | 51国产日韩欧美| 妹子高潮喷水视频| 热re99久久精品国产66热6| 黑人巨大精品欧美一区二区蜜桃 | 日韩精品有码人妻一区| 波多野结衣一区麻豆| 18在线观看网站| 男人操女人黄网站| 99香蕉大伊视频| 免费播放大片免费观看视频在线观看| 十分钟在线观看高清视频www| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 国产片内射在线| 免费大片18禁| 国产1区2区3区精品| 日韩成人av中文字幕在线观看| av天堂久久9| 91精品伊人久久大香线蕉| 久久午夜福利片| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 性色av一级| 乱人伦中国视频| 一级片'在线观看视频| 久久精品国产自在天天线| 国产成人91sexporn| 日本猛色少妇xxxxx猛交久久| 9色porny在线观看| 亚洲婷婷狠狠爱综合网| 色婷婷久久久亚洲欧美| 亚洲人与动物交配视频| 麻豆精品久久久久久蜜桃| 纯流量卡能插随身wifi吗| 97在线人人人人妻| 国产淫语在线视频| 亚洲久久久国产精品| 免费高清在线观看日韩| 国产精品久久久久久久电影| 久久免费观看电影| 成人黄色视频免费在线看| 国产极品粉嫩免费观看在线| 精品久久久久久电影网| 日韩大片免费观看网站| 亚洲综合色网址| 欧美性感艳星| 美女福利国产在线| av女优亚洲男人天堂| 久久精品久久久久久久性| 91成人精品电影| 欧美老熟妇乱子伦牲交| 99re6热这里在线精品视频| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 久久99蜜桃精品久久| 精品一区二区免费观看| 多毛熟女@视频| 亚洲精品久久午夜乱码| 99久久综合免费| 国产精品99久久99久久久不卡 | 波多野结衣一区麻豆| 日韩大片免费观看网站| 久久热在线av| 夜夜骑夜夜射夜夜干| 欧美成人午夜精品| 高清在线视频一区二区三区| 久久婷婷青草| 久久国产亚洲av麻豆专区| 久久国产亚洲av麻豆专区| 一二三四在线观看免费中文在 | kizo精华| 亚洲精品美女久久av网站| 国产免费福利视频在线观看| 91aial.com中文字幕在线观看| av片东京热男人的天堂| 国产亚洲最大av| 91精品伊人久久大香线蕉| 欧美日韩av久久| 中文字幕亚洲精品专区| 亚洲第一av免费看| 成年人免费黄色播放视频| 99精国产麻豆久久婷婷| 男女边摸边吃奶| 精品久久久久久电影网| 丰满迷人的少妇在线观看| av不卡在线播放| 黄色 视频免费看| 精品一区二区三卡| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 欧美人与性动交α欧美精品济南到 | 久久久久久久精品精品| 美女福利国产在线| 亚洲av免费高清在线观看| 黄网站色视频无遮挡免费观看| 精品亚洲乱码少妇综合久久| 成年动漫av网址| 18禁国产床啪视频网站| 国产男女超爽视频在线观看| 国产永久视频网站| 99热国产这里只有精品6| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久 | 中国国产av一级| 一二三四中文在线观看免费高清| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 久久久久久久亚洲中文字幕| 欧美激情国产日韩精品一区| 中文字幕人妻丝袜制服| 国产极品天堂在线| 各种免费的搞黄视频| 日本av手机在线免费观看| 老司机影院成人| 狠狠精品人妻久久久久久综合| 国产又爽黄色视频| 午夜福利,免费看| 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 少妇的丰满在线观看| 久久久久久久精品精品| 国产精品99久久99久久久不卡 | 国产精品偷伦视频观看了| 看非洲黑人一级黄片| 午夜久久久在线观看| 亚洲内射少妇av| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 亚洲五月色婷婷综合| 欧美 日韩 精品 国产| 久久久国产欧美日韩av| 99re6热这里在线精品视频| 熟女电影av网| 22中文网久久字幕| 色婷婷av一区二区三区视频| 综合色丁香网| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| 免费看光身美女| 国产黄色免费在线视频| 日韩三级伦理在线观看| 青春草亚洲视频在线观看| av不卡在线播放| 欧美3d第一页| 亚洲精品久久成人aⅴ小说| 黑丝袜美女国产一区| av免费观看日本| 夫妻午夜视频| 久久国内精品自在自线图片| 久久久久久人妻| 国产探花极品一区二区| 22中文网久久字幕| 制服人妻中文乱码| 夜夜骑夜夜射夜夜干| 精品99又大又爽又粗少妇毛片| 久久精品熟女亚洲av麻豆精品| 大陆偷拍与自拍| 亚洲av成人精品一二三区| 9色porny在线观看| 麻豆乱淫一区二区| 欧美97在线视频| 久久女婷五月综合色啪小说| 欧美精品一区二区免费开放| 少妇的逼好多水| 日韩免费高清中文字幕av| 自线自在国产av| 亚洲在久久综合| 日本与韩国留学比较| 亚洲内射少妇av| 国产在视频线精品| 黑人巨大精品欧美一区二区蜜桃 | 一级a做视频免费观看| 我要看黄色一级片免费的| 亚洲精品中文字幕在线视频| kizo精华| freevideosex欧美| 国产亚洲最大av| 久久久久精品性色| 午夜福利视频在线观看免费| 日韩熟女老妇一区二区性免费视频| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 亚洲人与动物交配视频| 亚洲精品久久成人aⅴ小说| 麻豆乱淫一区二区| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 久久久久久伊人网av| 热re99久久国产66热| 久久久久久人人人人人| 国产av一区二区精品久久| 国产女主播在线喷水免费视频网站| 五月玫瑰六月丁香| 亚洲四区av| 夜夜爽夜夜爽视频| 满18在线观看网站| 精品久久国产蜜桃| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 满18在线观看网站| 2018国产大陆天天弄谢| 亚洲国产精品成人久久小说| 日韩一区二区视频免费看| 交换朋友夫妻互换小说| 一级a做视频免费观看| 熟女人妻精品中文字幕| 在线观看免费视频网站a站| 午夜福利网站1000一区二区三区| 精品久久蜜臀av无| 亚洲欧美中文字幕日韩二区| 少妇被粗大的猛进出69影院 | 精品久久国产蜜桃| 精品一区二区三区视频在线| 午夜福利乱码中文字幕| 2022亚洲国产成人精品| 夫妻午夜视频| 97人妻天天添夜夜摸| 日韩欧美一区视频在线观看| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 日韩欧美一区视频在线观看| av网站免费在线观看视频| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久| 丰满迷人的少妇在线观看| 亚洲成人一二三区av| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线| 91精品国产国语对白视频| videos熟女内射| 永久网站在线| 欧美另类一区| 免费看av在线观看网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 十八禁高潮呻吟视频| 欧美xxⅹ黑人| 激情五月婷婷亚洲| 天堂俺去俺来也www色官网| 欧美激情国产日韩精品一区| 欧美bdsm另类| 丰满少妇做爰视频| 国产淫语在线视频| av在线观看视频网站免费| 日本av手机在线免费观看| 国产日韩欧美亚洲二区| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| 在线观看一区二区三区激情| 国产毛片在线视频| 精品99又大又爽又粗少妇毛片| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 五月伊人婷婷丁香| 这个男人来自地球电影免费观看 | 亚洲美女搞黄在线观看| 亚洲中文av在线| 少妇的丰满在线观看| 99热6这里只有精品| 十八禁网站网址无遮挡| 搡女人真爽免费视频火全软件| 99久国产av精品国产电影| 考比视频在线观看| 一区在线观看完整版| 18禁在线无遮挡免费观看视频| 免费人成在线观看视频色| 亚洲精品,欧美精品| 精品久久久精品久久久| 夜夜爽夜夜爽视频| 国产永久视频网站| 观看美女的网站| 丝瓜视频免费看黄片| 人成视频在线观看免费观看| 欧美精品av麻豆av| 超碰97精品在线观看| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 哪个播放器可以免费观看大片| 亚洲国产最新在线播放| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| 少妇精品久久久久久久| 国产极品天堂在线| 在线观看免费高清a一片| 一级爰片在线观看| 久久免费观看电影| 亚洲精品av麻豆狂野| 老女人水多毛片| av网站免费在线观看视频| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 日韩一本色道免费dvd| 精品少妇久久久久久888优播| 久久久久久久精品精品| 国产爽快片一区二区三区| 在线天堂最新版资源| 成人影院久久| 亚洲国产精品国产精品| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 国产免费又黄又爽又色| 日本与韩国留学比较| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 少妇人妻久久综合中文| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久| a 毛片基地| av有码第一页| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 伦理电影免费视频| 乱人伦中国视频| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 久热这里只有精品99| 日韩伦理黄色片| 国产 精品1| 黄色配什么色好看| 大片电影免费在线观看免费| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| av在线播放精品| 亚洲三级黄色毛片| av免费观看日本| 久久久久网色| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 激情视频va一区二区三区| 色网站视频免费| 中国国产av一级| 国产高清三级在线| 国产极品天堂在线| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 久久这里只有精品19| 欧美精品亚洲一区二区| 国产精品一区二区在线观看99| 夫妻午夜视频| 亚洲少妇的诱惑av| 2022亚洲国产成人精品| 我要看黄色一级片免费的| 不卡视频在线观看欧美| 777米奇影视久久| 久久久久久久国产电影| 日本免费在线观看一区| av天堂久久9| 精品亚洲成国产av| 国产精品无大码| av女优亚洲男人天堂| 久久女婷五月综合色啪小说| 91久久精品国产一区二区三区| 亚洲美女搞黄在线观看| 亚洲精品视频女| av国产久精品久网站免费入址| 久久毛片免费看一区二区三区| 搡女人真爽免费视频火全软件| 一边摸一边做爽爽视频免费| 日本-黄色视频高清免费观看| 国产av国产精品国产| 人妻 亚洲 视频| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 亚洲成色77777| 制服人妻中文乱码| 新久久久久国产一级毛片| 亚洲精品中文字幕在线视频| 亚洲三级黄色毛片| 草草在线视频免费看| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 91在线精品国自产拍蜜月| 欧美变态另类bdsm刘玥| av免费在线看不卡| 欧美成人精品欧美一级黄| 在线看a的网站| 综合色丁香网| 亚洲人成网站在线观看播放| 日韩大片免费观看网站| 韩国av在线不卡| 国产av码专区亚洲av| 国产综合精华液| 国产淫语在线视频| www.色视频.com| 热re99久久精品国产66热6| 成人毛片a级毛片在线播放| 王馨瑶露胸无遮挡在线观看| 国产成人一区二区在线| 亚洲内射少妇av| 日本-黄色视频高清免费观看| 国产精品免费大片| 18禁观看日本| 午夜日本视频在线| 欧美人与性动交α欧美软件 | 国产精品三级大全| av在线老鸭窝| 69精品国产乱码久久久| 亚洲精品av麻豆狂野| 少妇的逼水好多| 亚洲伊人久久精品综合| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 亚洲精品日本国产第一区| 免费av不卡在线播放| 亚洲色图综合在线观看| 18+在线观看网站| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| 两性夫妻黄色片 | 亚洲三级黄色毛片| 最近最新中文字幕免费大全7| 日韩制服丝袜自拍偷拍| 制服诱惑二区| 99热6这里只有精品| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 国产男女超爽视频在线观看| 国产av国产精品国产| 国产在线视频一区二区| 久久久久人妻精品一区果冻| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 久久久国产欧美日韩av| 赤兔流量卡办理| 国产欧美另类精品又又久久亚洲欧美| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 久久99精品国语久久久| 国产精品一区www在线观看| 纵有疾风起免费观看全集完整版| 国产在视频线精品| 99精国产麻豆久久婷婷| 久久午夜福利片| 亚洲av电影在线进入| 久久 成人 亚洲| 成年人免费黄色播放视频| 久久热在线av| 蜜桃在线观看..| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕免费大全7| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 99热6这里只有精品| 亚洲精品日韩在线中文字幕| 免费黄色在线免费观看| 91午夜精品亚洲一区二区三区| a级毛片黄视频| 边亲边吃奶的免费视频| av女优亚洲男人天堂| 精品福利永久在线观看| 在线 av 中文字幕| 永久免费av网站大全| 成年人午夜在线观看视频| 制服丝袜香蕉在线| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 国产精品久久久久久精品电影小说| 最近最新中文字幕大全免费视频 | 亚洲欧美日韩另类电影网站| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 一级,二级,三级黄色视频| 亚洲欧美日韩另类电影网站| 日产精品乱码卡一卡2卡三| 久久久精品区二区三区| 视频在线观看一区二区三区| 在线免费观看不下载黄p国产| 亚洲一区二区三区欧美精品| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 香蕉国产在线看| 欧美日韩亚洲高清精品| 中文字幕人妻熟女乱码| 自线自在国产av| 日本vs欧美在线观看视频| 老熟女久久久| 99久久中文字幕三级久久日本| 少妇精品久久久久久久| 午夜激情久久久久久久| 考比视频在线观看| 亚洲av电影在线观看一区二区三区| 国产毛片在线视频| 国产成人av激情在线播放| 看免费成人av毛片| av在线播放精品| 久久国产精品大桥未久av| 又黄又粗又硬又大视频| 男女免费视频国产| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 久久精品夜色国产| 亚洲色图 男人天堂 中文字幕 | 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 中文乱码字字幕精品一区二区三区| 日韩人妻精品一区2区三区| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| 人人妻人人澡人人看| 97在线人人人人妻| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院 | 在线观看www视频免费| av福利片在线| 97在线人人人人妻| 亚洲av福利一区| kizo精华| 高清不卡的av网站| 久久久久久久久久人人人人人人| 2021少妇久久久久久久久久久| 一级片免费观看大全| 麻豆精品久久久久久蜜桃| 中文字幕人妻熟女乱码| 国产乱人偷精品视频|