• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adjacent Vertex Distinguishing I-total Coloring of Outerplanar Graphs

    2017-03-14 02:46:27

    (College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)

    §1.Introduction

    All graphs considered in this article are simple,undirected and finite.LetGbe a graph with vertex setV(G)and edge setE(G).AnI-total coloring ofGis a mappingφ:V(G)∪E(G)→{1,2,···,k}such that no adjacent vertices receive the same color and no adjacent edges receive the same color.TheI-total chromatic numberχi(G)ofGis the smallest integerksuch thatGhas anI-total coloring.LetCφ(v)={φ(v)∪φ(uv)|uv∈E(G)}denote the set of colors assigned to a vertexvand those edges incident tov.AnI-total coloringφofGis adjacent vertex distinguishing,or ank-AVDIT coloring,ifCφ(u)/=Cφ(v)wheneveruv∈E(G).The adjacent vertex distinguishingI-total chromatic number(G)is the smallest integerksuch thatGhas ank-AVDIT coloring.

    Let? andδdenote the maximum degree and the minimum degree of a graphG,respectively.By definition,it is evident that(G)≥?(G)for any graphG.

    A planar graph is called outerplanar if there is an embedding ofGinto the Euclidean plane such that all the vertices are incident to the unbounded face.An outerplane graph is a particular embedding of an outerplanar graph.

    Zhang et al in[1]investigated firstly the adjacent vertex distinguishing total coloring of graphs.Chen proved the adjacent vertex distinguishing total chromatic of graphs with?(G)=3 in[2].Moreover,Wang et al.have determined the adjacent vertex distinguishing total chromatic of outerplanar graphs in[3].The notion of adjacent vertex distinguishingI-total coloring of graphs was introduced by Zhang et al in[4].The adjacent vertex distinguishingI-total coloring ofPn□Cmandk-multi-Mycieski graph were studied in[5-6].Yang et al in[7-8]showed that the adjacent vertex distinguishingI-total coloring ofPm□Kn,corona graphsCm·CnandCm·Kn.Recently,Chen et al determined the adjacent vertex distinguishingI-total coloring of complete graphKnand the treeT.

    In this paper,we characterize the adjacent vertex distinguishingI-total chromatic number of outerplane graphs.More precisely,we prove the following.

    Main TheoremLetGbe an outerplane graph with?(G)≥3.Then?(G)(G)≤?(G)+1 and= ?(G)+1 ifGcontains two adjacent vertices of maximum degree.

    §2.Structural Lemmas

    LetGbe an outerplane graph.LetF(G)denote the set of faces inG.Forf∈F(G),we useb(f)to denote the boundary walk offand writef=[u1u2···un]ifu1,u2,···,unare all the vertices ofb(f)traversed once in cyclic order.Ak-vertex is a vertex of degreek.A 1-vertex is also said to be a leaf.

    We de fine some con figurations as follows.

    (C1)A vertexvof degree at most 3 is adjacent to a leaf.

    (C2)A pathx1x2···xn,n≥4,withdG(x1)/=2,dG(xn)/=2 anddG(xi)=2 for alli=2,3,···,n?1.

    (C3)Ak-vertexv,k≥4,is adjacent to a leaf andk?3 vertices of degree≤2.

    (C4)A 3-face[uv1v2]satis fiesdG(u)=2 anddG(v1)=3.

    (C5)Two 3-faces[u1v1x]and[u2v2x]satisfydG(x)=4 anddG(u1)=dG(u2)=2.

    Lemma 1[3]Every connected outerplane graphGwith at least two vertices contains one of the con figurations(C1)to(C5).

    Lemma 2[3]Every connected outerplane graphGwith?(G)≤3 contains one of the following con figurations

    (B1)A vertexvadjacent to at most one vertex that is not a leaf.

    (B2)A pathx1x2x3x4such thatdG(x1)=3,and each ofx2andx3is either a 2-vertex,or a 3-vertex that is adjacent to a leaf.

    (B3)A 3-face[uxy]withdG(x)=3 such that eitherdG(u)=2,ordG(u)=3 anduis adjacent to a leaf.

    Lemma 3[3]Every connected outerplane graphGwith?(G)=4 without adjacent 4-vertices contains one of the following con figurations

    (A1)A vertexvwithdG(v)/=3 is adjacent to a leaf.

    (A2)A 3-vertex is adjacent to at least two leaves.

    (A3)A pathx1x2x3x4such thatdG(x1)=3 and each ofx2andx3is either a 2-vertex,or a 3-vertex that is adjacent to a leaf.

    (A4)A 3-face[uxy]withdG(x)=3 such that eitherdG(u)=2,ordG(u)=3 anduis adjacent to a leaf.

    Lemma 4[3]Every connected outerplane graphGwith?(G)=3 and without adjacent 3-vertices contains one of the following con figurations

    (D1)A leaf.

    (D2)A cycleC=x1x2···xn,withn≥3,such thatdG(x1)=3 anddG(xi)=2 for alli=2,3,···,n.

    §3.Main Results

    Given an outerplane graphG,we write|T(G)|=|V(G)|+|E(G)|.The proof of the Main Theorem is divided into two cases:?(G)=3 and?(G)≥4.

    Lemma 5LetGbe a connected graph with ?(G)≤2.Then(G)≤3.

    ProofSinceGis a connected graph with?(G)≤2,thenGis either a path or a cycle.

    IfGis a path,thenGmust be a tree.Chen et al in[9]had proved that(T)≤?(T)+1 for a treeTwith ordern≥2.So we have(G)≤?(G)+1≤3.

    IfGis a cycle,letC=v1v2···vnv1(n≥3).We only need to give a 3-AVDIT coloringφofC.We consider the following two cases.

    Case 1Whenn≡1(mod 2),we color the edgesv1v2,v2v3,···,vn?2vn?1,vn?1vnwith 1,2,1,2,···,and color the edgevnv1with 3.For the verticesvk(1≤k≤n)ofC,letφ(vk)=3 ifk≡1(mod 2),k≤n?2 and letφ(vk)=φ(vk?1vk)ifk≡0(mod 2),k≤n?1.Finally,we color the vertexvnbyφ(vn?1vn).

    Case 2Whenn≡0(mod 2),let(X,Y)be a bipartition ofV(C),whereX={v1,v3,···,vn?1}andY={v2,v4,···,vn}.We color the edgesv1v2,v2v3,···,vn?1vn,vnv1with 1,2,1,2,···.Then color all the vertices ofXwith 3 and color each vertex inYwith some color of its incident edges.

    Proposition 6IfGis a connected graph with two adjacent vertices of maximum degree,Then(G)≥?(G)+1.

    Theorem 1IfGis an outerplane graph with ?(G)≤3,then(G)≤4.

    ProofThe proof proceeds by induction on|T(G)|.If|T(G)|≤5,the Theorem holds trivially.Suppose thatGis an outerplane graph with?(G)≤3 and|T(G)|≥6.By the induction assumption,any outerplane graphHwith?(H)≤3 and|T(H)|<|T(G)|has a 4-AVDIT coloring.

    We may assume thatGis connected since(G)=max(Gi)}and ?(G)=max{?(Gi)},where both maxima are taken over all componentsGiofG.By Lemma 5,any connected graphGwith?(G)≤2 has a 3-AVDIT coloring.So we can suppose thatGis connected and?(G)=3.

    By Lemma 2,Gcontains one of con figurations(B1)~(B3).To complete the proof,we need to handle separately every possible case.

    (B1)Gcontains a vertexvadjacent to at most one vertex that is not a leaf.

    Letv1,v2,···,vnbe all the neighbors ofvwithdG(v1)=dG(v2)=···dG(vn?1)=1 anddG(vn)≥1.Clearly,2≤n≤3.LetH=G?{v1,v2,···,vn?1}.Then,His an outerplane graph with ?(H)≤3 with|T(H)|<|T(G)|,hence it has a 4-AVDIT coloringφusing colors 1,2,3,4.

    IfdG(v)=2,dG(v2)=2,letu1/=vbe the second neighbor ofv2.We colorvv1with a color inCCφ(v2),v1with a color inCCφ(v).

    IfdG(v)=2,dG(v2)=3,letu1,u2/=vbe the other neighbors ofv2.We color properlyvv1ifφ(v)=φ(vv2).Otherwise,we colorvv1withφ(v)such that|Cφ(v)|=2.Finally,we colorv1with a color inCCφ(v).

    IfdG(v)=3,dG(v3)=1,Gis a star with order 4.We can easily give a 4-AVDIT coloringφofG.

    IfdG(v)=3,dG(v3)=2,letu1/=vbe the second neighbor ofv3.We recolorvwith a color inCCφ(v3),and colorvv1,vv2with different colors inC{φ(vv3)}.Then we color properlyv1andv2.

    IfdG(v)=3,dG(v3)=3,letu1,u2/=vbe the other neighbors ofv3.When|Cφ(v3)|=3,we recolorvwith a color inCCφ(v3)and denote the color ofvbyφ(v).Then we colorvv1,vv2with different colors inC{φ(vv3)}and color properlyv1andv2.When|Cφ(v3)|=4,we colorvv1,vv2with different colors inC{φ(vv3)},and recolorvwithφ(vv3).Then we color properlyv1andv2.

    (B2)Gcontains a pathx1x2x3x4such thatdG(x1)=3,and each ofx2andx3is either a 2-vertex,or a 3-vertex that is adjacent to a leaf.

    Fori∈{2,3},letbe a leaf adjacent toxiprovidedxiis a 3-vertex.

    (B 2.1)If bothx2andx3are 2-vertex,thenG?x2x3has a 4-AVDIT coloringφusing colors 1,2,3,4.We need to consider some subcases.

    Case 2.1.1dG(x4)=1.

    We colorx2x3with a color inC{φ(x1x2),φ(x3x4)}and denote the color ofx2x3byφ(x2x3).Then we recolorx3with a color inC({φ(x2x3)}∪Cφ(x4)).Ifφ(x1x2)=φ(x3),φ(x2x3)=φ(x1),we recolorx2with a color inCCφ(x3).Now,we need to recolorx2x3withφ(x2).Otherwise,there must exist a color can recolorx2in{φ(x1x2),φ(x2x3)}.

    Case 2.1.2dG(x4)=2.

    Letx5/=x3be the second neighbor ofx4.If|Cφ(x4)|=2,then the proof can be given with a similar argument as in the case 2.1.1.If|Cφ(x4)|=3,we colorx2x3with a color inC{φ(x1x2),φ(x3x4)}.Then we recolorx3with a color in{φ(x2x3),φ(x3x4)}{φ(x4)}when we omit the color ofx2.Now,if|Cφ(x1)|=4,then we colorx2with a color inC{φ(x1),φ(x2x3),φ(x3x4)}.If|Cφ(x1)|=3,we need to consider the following situations.

    Ifφ(x2x3)/∈Cφ(x1)andφ(x2x3)/=φ(x3),then we recolorx2withφ(x2x3).

    Ifφ(x2x3)/∈Cφ(x1)andφ(x2x3)=φ(x3),we recolorx2with a color inC{φ(x1),φ(x1x2),φ(x2x3)}.

    Ifφ(x2x3)∈Cφ(x1)andφ(x2x3)/=φ(x3),we recolorx2withCCφ(x1)whenφ(x3)∈Cφ(x1)and recolorx2with a color in{φ(x1x2),φ(x2x3)}{φ(x1)}whenφ(x3)/∈Cφ(x1).

    Ifφ(x2x3)∈Cφ(x1)andφ(x2x3)=φ(x3),we recolorx2with a color inCCφ(x1).

    Case 2.1.3dG(x4)=3.

    Letx5,x6/=x3be the other neighbors ofx4.We colorx2x3with a color inC{φ(x1x2),φ(x3x4)}.There must exist a color in{φ(x2x3),φ(x3x4)}can recolorx3when we omit the color ofx2.Then we consider the color ofx2.If|Cφ(x1)|=4,we recolorx2with a color inC({φ(x1)}∪Cφ(x3)).If|Cφ(x1)|=3,the proof can be given with a similar argument as in the Case 2.1.2.

    (B3)Gcontains a 3-face[uxy]withdG(x)=3 such that eitherdG(u)=2,ordG(u)=3 anduis adjacent to a leafu′.

    (B 3.1)dG(y)=dG(u)=2.

    By the induction assumption,G?{uy}has a 4-AVDIT coloringφusing colors 1,2,3,4.If|Cφ(x)|=4,we coloruywith a color different from the color ofux,xy,and recoloruwithφ(xu),ywithφ(xy).If|Cφ(x)|=3,we color or recoloruanduywith a color inCCφ(x),ywith a color inC{φ(x),φ(u)}.

    (B 3.2)dG(y)=2,dG(u)=3.

    By the induction assumption,G?{u′}has a 4-AVDIT coloringφusing colors 1,2,3,4.If|Cφ(x)|=4,we recolorywithφ(xy),uwithφ(xu).Then we coloruu′with a color inC{φ(xu),φ(uy)}.If|Cφ(x)|=3,we recolorywith{φ(xy),φ(uy)}{φ(x)}after omitting the color ofu.Then we consider recoloringu.We color or recoloruu′anduwith a color inCCφ(x)whenφ(uy)∈Cφ(x).Otherwise,we coloruu′with a color inC{φ(xu),φ(uy)}and recoloruwith a color inC{φ(x),φ(y)}.

    (B 3.3)dG(y)=3,dG(u)=3.

    Letx′/=u,ybe the third neighbor ofxandy′/=u,xbe the third neighbor ofy.By the induction assumption,G?{u′}has a 4-AVDIT coloringφusing colors 1,2,3,4.

    If|Cφ(x)|=4,|Cφ(y)|=3,we coloruu′withCCφ(y)whenφ(xu)∈Cφ(y)or color properlyuu′whenφ(xu)/∈Cφ(y).Then we recoloruwith a color in{φ(xu),φ(yu),φ(uu′)}{φ(x),φ(y)}.

    If|Cφ(x)|=3,|Cφ(y)|=3,we coloruu′withC{φ(xu),φ(uy),φ(xy)}and recoloruwith a color in{φ(xu),φ(uy),φ(uu′)}{φ(x),φ(y)}.

    (B 3.4)dG(y)=3,dG(u)=2.

    Lety′(/=u,x)be the third neighbors ofy.Letf′denote the face adjacent to[uxy]withxyas a common edge.We need to consider some subcases depending on the size off′.

    Case 3.4.1dG(f′)=3,i.e.,x′is identical toy′.By the induction assumption,G?{u}has a 4-AVDIT coloringφusing colors 1,2,3,4.

    IfdG(x′)=2,i.e.,Gis a graph of order 4 obtained fromK4by removing an edge.We can give a 4-AVDIT coloringφofG.We color{x′,xx′,uy}with 1,{y,x′y}with 2,{x,xy}with 3,and{u,ux}with 4.

    IfdG(x′)=3,lett(/=x,y)be the third neighbor ofx′.

    If|Cφ(x′)|=3,letCφ(x′)={1,2,3},φ(xx′)=1,φ(x′t)=2,φ(x′y)=3 andφ(x′)=a,thena∈{1,2,3}.Ifa=1,2,we color{u,uy}with 1,uxwith 2,ywith 3,and{xy,x}with 4.Ifa=3,we color{u,uy}with 1,ywith 2,uxwith 3,and{xy,x}with 4.

    If|Cφ(x′)|=4,letCφ(x′)={1,2,3,4},φ(xx′)=1,φ(x′t)=2,φ(x′y)=3,andφ(x′)=4.We coloruywith 1,{x,xy}with 2,ywith 3{u,ux}with 4.

    Case 3.4.2dG(f′)=4,i.e.,x′is adjacent toy′.

    (i)IfdG(x′)=dG(y′)=2,we can give a 4-AVDIT coloringφofG.We color{ux,x}with 1,{xy,x′y′,y,x′}with 2,{u,uy,xx′}with 3,and{yy′,y′}with 4.

    (ii)IfdG(x′)=3 anddG(y′)=2(without loss generality,we may assume that),letx′′(/=x,y′)be the third neighbor ofx′.By the induction assumption,G?{uy}has a 4-AVDIT coloringφusing colors 1,2,3,4.Letφ(xx′)=1,φ(x′y′)=2,φ(x′x′′)=3 andφ(x′)=a,thena∈{1,2,3,4}.

    Ifa=1,2,3,we coloruywith 1,{y,xy}with 2,{u,ux}with 3,{x,y′,yy′}with 4.Ifa=4,we colorxwith 1,{y,xy}with 2,{u,ux,y′,yy′}with 3,uywith 4.

    (iii)IfdG(x′)=dG(y′)=3,letx′′(/=x,y′)be the third neighbor ofx′,andy′′(/=y,x′)be the third neighbor ofy′.By the induction assumption,G?{uy}has a 4-AVDIT coloringφusing colors 1,2,3,4.Letφ(xx′)=1,φ(x′y′)=2,φ(x′x′′)=3,φ(x′)=a,φ(yy′)=b,φ(y′)=c,thena∈{1,2,3,4},b∈{1,3,4}.

    a=1.Ifb=1,we colorywith 1,{u,ux}with 2,uywith 3,{x,xy}with 4.Ifb=3,we color{y,uy}with 1,{u,ux}with 2,{x,xy}with 4.Ifb=4,we color or recolor{y,uy}with 1,xwith 2,xywith 3,{u,ux}with 4.

    a=2.Ifb=1,c=1,3,we recolorxwith 1,{u,ux}with 2,uywith 3,{y,xy}with 4.Ifb=1,c=4,we color or recolorxwith 1,{u,ux}with 2,{y,uy}with 3,xywith 4.Ifb=3,c=1,3,we color{x,uy}with 1,{u,ux}with 2,{y,xy}with 4.Ifb=3,c=4,we color or recolor{x,uy}with 1,{u,ux}with 2,ywith 3,xywith 4.Ifb=4,c=1,4,we color or recoloruywith 1,{u,ux}with 2,{y,xy}with 3,xwith 4.Ifb=4,c=3,we color or recolor{y,uy}with 1,{u,ux}with 2,xywith 3,xwith 4.

    a=3.Ifb=1,we color or recolor{u,ux}with 2,{y,uy}with 3,{x,xy}with 4.Ifb=3,we color or recoloruywith 1,{u,ux}with 2,ywith 3,{x,xy}with 4.Ifb=4,we color or recoloruywith 1,xwith 2,{y,xy}with 3,{u,ux}with 4.

    a=4.Ifb=1,we color or recolor{u,ux}with 2,{x,xy}with 3,{y,uy}with 4.Ifb=3,we color or recolor{x,uy}with 1,{u,ux}with 2,{y,xy}with 4.Ifb=4,we color or recolor{x,uy}with 1,{u,ux}with 2,xywith 3,ywith 4.

    Case 3.4.3dG(f′)≥5,i.e.,x′is not adjacent toy′.

    LetH=G?{u,x,y}+x′y′.By the induction assumption,Hhas a 4-AVDIT coloringφusing colors 1,2,3,4.Without loss generality,we may assume thatφ(x′)=1,φ(y′)=3.Ifφ(x′y′)=1,then,inG,we color{xx′,yy′}with 1,{x,uy}with 2,{u,ux}with 3,{y,xy}with 4.Ifφ(x′y′)=2,then,inG,we color{y,uy}with 1,{u,xx′,yy′}with 2,{x,ux}with 3,xywith 4.Ifφ(x′y′)=3,then,inG,we color{u,uy}with 1,{y,ux}with 2,{xx′,yy′}with 3,{x,xy}with 4.

    Theorem 2IfGis an outerplane graph with?(G)=3 without adjacent 3-vertices,then(G)=3.

    ProofThe lower bound that(G)≥3 is trivial.We prove the upper bound3 by induction on the vertex number|V(G)|.If|V(G)|=4,thenGis eitherK1,3or a graph obtained fromK1,3by joining a pair of leaves.It is easy to verify that(G)=3 for both these cases.LetGbe a connected outerplane graph with?(G)=3 and|V(G)|≥5 and having no adjacent 3-vertices.By lemma 4,Gcontains(D1)or(D2).

    (1)IfGcontains(D1),i.e.,a leafvadjacent to a vertexu,letH=G?v.By the induction assumption,Hhas a 3-AVDIT coloringφusing colors 1,2,3.We consider the degree ofu.

    Case 1IfdG(u)=2,letx(/=v)be the second neighbor ofu.

    If|Cφ(x)|=2,we recoloruwith a color inCCφ(x)and{v,uv}with a color inC{φ(u),φ(u x)}.IfdG(x)=2 and|Cφ(x)|=3,we recoloruwithφ(ux)and color{v,uv}with a color inC{φ(u)}.IfdG(x)=3 and|Cφ(x)|=3,we coloruanduvwith a color inC{φ(x),φ(ux)},and colorvwith a color inCCφ(u).

    Case 2IfdG(u)=3,letu1,u2(/=v)be the other neighbors ofu.SinceGhas no adjacent 3-vertex and|V(G)|≥5,we can see thatdG(ui)≤2 fori=1,2 and it is impossible thatdG(u1)=dG(u2)=1.

    (2)IfGcontains(D2),i.e.,a cycleC=x1x2···xn,withn≥3,such thatdG(x1)=3 anddG(xi)=2 for alli=2,3,···,n,lety(/=x2,xn)be the third neighbor ofx1.We see thatyis not a 3-vertex.LetH=G?{x1xn}.By the induction assumption,Hhas a 3-AVDIT coloringφusing colors 1,2,3.

    Case 1|Cφ(y)|≤2.

    Ifn≡0(mod 2),we recolor the vertices and the edges ofC.First,we recolor{x1,x1x2}with a color inCCφ(y),x2x3with a color inC{φ(x1y),φ(x1x2)}.Next,we color the edgesx3x4,x4x5,···,xn?1xn,xnx1with colorsφ(x1x2),φ(x2x3),φ(x1x2),φ(x2x3),···.For the verticesvk(1≤k≤n)ofC,we colorvkwithφ(x2x3)whenk≡0(mod 2)and colorvkwithφ(x1y)whenk≥3 andk≡1(mod 2).

    Ifn≡1(mod 2),we recolor the vertices and the edges ofC.First,we color{x1,x1x2}with a color inCCφ(y),andx2x3withφ(x1y).Next,we color the edgesx3x4,x4x5,···,xn?2xn?1,xn?1xnwith colorsφ(x1x2),φ(x2x3),φ(x1x2),φ(x2x3),···,and colorxnx1with a color inC{φ(x1y),φ(x1x2)}.For the verticesvk(1≤k≤n)ofC,we colorvkwithφ(x2x3)whenk≡0(mod 2),and colorvkwithφ(x1xn)whenk≥3 andk≡1(mod 2).

    Case 2|Cφ(y)|=3.

    We can see thatdG(y)=2.Lety1(/=x1)be the second neighbor ofyand|Cφ(y1)|≤2.We can recolor{y,x1y}with a color inCCφ(y1)such that|Cφ(y)|=2.Then we give a similar proof to the case of|Cφ(y)|≤2.

    Theorem 3IfGis an outerplane graph with ?(G)≥4,then(G)≤?(G)+1.

    ProofWe prove the Theorem by induction on|T(G)|.If|T(G)|≤9,Gis a star with order 5,the Theorem holds clearly.Suppose thatGis a connected outerplane graph with?(G)≥4 and|T(G)|≥10.By the induction assumption,every outerplane graphHwith?(H)≤?(G)and|T(H)|<|T(G)|has?(H)+1≤?(G)+1.

    By Lemma 1,Gcontains one of the con figurations(C1)~(C5).Since?(G)≥4,then we have|C|≥?(G)+1≥5.

    (C1)Gcontains a vertexvwithdG(v)≤3 which is adjacent to a leaf.

    Letuibe the neighbors ofvfor 1≤i≤3 anddG(u1)=1,dG(ui)≥2 for 2≤i≤3.LetH=G?u1.ThenHis a connected outerplane graph with|T(H)|<|T(G)|and?(H)≤?(G).By the induction assumption,Hhas a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.

    Case 1.1dG(v)=2.

    IfdG(u2)=2,or 3,we colorvu1with a color inCCφ(u2)andu1with a color inCCφ(v).

    IfdG(u2)≥4,we only need to color{vu1,u1}with a color inC{φ(v)∪φ(vu2)}.

    Case 1.2dG(v)=3.

    Suppose thatφ(vu2)=1,φ(vu3)=2.If|{3,4,5}∩Cφ(ui)|≥2 for alli=2,3,we colorvu1with 3.If|{3,4,5}∩Cφ(ui)|≤1 for alli=2,3,we colorvu1with a color in{3,4,5}({3,4,5}∩(Cφ(u2)∪Cφ(u3))).If|{3,4,5}∩Cφ(u2)|≥2,|{3,4,5}∩Cφ(u3)|≤1,we colorvu1with a color in{3,4,5}({3,4,5}∩Cφ(u3)).Then we recolorvwith a color in{φ(vu1),φ(vu2),φ(vu3)}{φ(u2),φ(u3)}.

    (C2)Gcontains a pathx1x2···xnwithdG(x1)≥3,dG(xn)≥3 anddG(xi)=2 for alli=2,3,···,n?1,wheren≥4.

    LetH=G?x2x3.ThenHis a connected outerplane graph with with|T(H)|<|T(G)|and?(H)≤?(G).By the induction assumption,Hhas a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.

    Case 2.1n=4.If|Cφ(x1)|=3,we color properlyx2x3.Then we recolorx3with a color in{φ(x2x3),φ(x3x4)}{φ(x4)}.Finally,we recolorx2with a color inC({φ(x1)}∪Cφ(x3))whenφ(x2x3)/∈Cφ(x1).Otherwise,we recolorx2with a color inC({φ(x3)}∪Cφ(x1)).If|Cφ(x1)|≥4,we color properlyx2x3.Then we recolorx3with a color in{φ(x2x3),φ(x3x4)}{φ(x4)}.Finally,we recolorx2with a color inC({φ(x1)}∪Cφ(x3)).

    Case 2.2n≥5.We color properlyx2x3.Then we recolorx2with a color in{φ(x1x2),φ(x2x3)}{φ(x1)},x4with a color in{φ(x3x4),φ(x4x5)}{φ(x5)}.Finally,we recolorx3with a color inC(Cφ(x2)∪Cφ(x4)).

    (C3)Gcontains a vertexvwith neighborsv1,v2,···,vk,k≥4,such thatdG(v1)=1 anddG(vi)≤2 for alli=2,3,···,k?2.

    For 2≤i≤k?2,ifviis 2-vertex,we denote byui/=vthe second neighbor ofvi.It follows from(C2)thatdG(ui)≥3.By the induction assumption,G?v1has a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.We may assume thatφ(vvi)=ifori=2,3,···,k.Since?(G)≥dG(v)=k,|C|≥?(G)+1≥k+1.Thusk+1∈C.

    Ifk+1∈(Cφ(vk?1)∩Cφ(vk)),we colorvv1with 1.Ifk+1/∈(Cφ(vk?1)∪Cφ(vk)),we colorvv1withk+1.If 1∈(Cφ(vk?1)∩Cφ(vk)),we colorvv1withk+1.If 1/∈(Cφ(vk?1)∪Cφ(vk)),we colorvv1with 1.If{1,k+1}?Cφ(vk?1)Cφ(vk)or{1,k+1}?Cφ(vk)Cφ(vk?1),we colorvv1withk+1.

    Now suppose that 1∈Cφ(vk?1)Cφ(vk)andk+1∈Cφ(vk)Cφ(vk?1),say.IfdG(v2)=1,we recolor(or color)vv2withk+1 andvv1with 1.IfdG(v2)=2,we recolor(or color)vv2with a colora∈{1,k+1}{φ(v2u2)},vv1with a color in{1,k+1}{a},and then recolorv2with a color in{φ(vv2),φ(v2u2)}{φ(u2)}.Finally,we recolor properlyv.

    (C4)Gcontains a 3-face[uv1v2]withdG(u)=2 anddG(v1)=3.

    Letz/=u,v2be the third neighbor ofv1.Lety1,y2,···,ymbe the neighbors ofv2different fromuandv1.

    Case 4.1m=0.Suppose thatdG(z)=d,thend≤?(G)and the edgev1zis a cut edge ofG.By the induction assumption,G?uv2has a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.Then we only need to coloruv2with a color inCCφ(v1),coloruwithφ(uv2),and colorv2with a color in{φ(uv1),φ(v1v2)}{φ(v1)}.

    Case 4.2m≥1.By the induction assumption,G?uv1has a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.

    (4.2.1)Ifm=1,the proof is similar to the case(B3)in Theorem 1.

    (4.2.2)Ifm=2,we consider the following cases.

    (i)If|Cφ(z)|≤2,we color properlyuv1.Then we recolorv1with a color in{φ(uv1),φ(v1v2),φ(v1z)}{φ(v2),φ(z)},anduwith a color inC({φ(v2)}∪Cφ(v1)).

    (ii)If|Cφ(z)|=3,we coloruv1with a color inC({φ(uv2)}∪Cφ(z))whenφ(v1v2)∈Cφ(z)and color properlyuv1whenφ(v1v2)/∈Cφ(z).Then we recolorv1with a color in{φ(uv1),φ(v1v2),φ(v1z)}{φ(v2),φ(z)}after omitting the color ofu.Finally,we recoloruwith a color inC({φ(v2)}∪Cφ(v1)).

    (iii)If|Cφ(z)|≥4,we coloruv1with a color inC{φ(uv2),φ(v1v2),φ(v1z)}.Then we recolorv1with a color in{φ(uv1),φ(v1v2),φ(v1z)}{φ(v2),φ(z)}after omitting the color ofu.Finally,we recoloruwith a color inC({φ(v2)}∪Cφ(v1)).

    (4.2.3)Assume thatm≥3.We obtained that?(G)≥5 and|C|≥?(G)+1≥6.We color properlyuv1.If|Cφ(z)|≤3,we recolorv1with a color inC({φ(v2)}∪Cφ(z)),uwith a color inC({φ(v2)}∪Cφ(v1)).Otherwise,we recolorv1with a color in{φ(uv1),φ(v1v2),φ(v1z)}{φ(v2),φ(z)},uwith a color inC({φ(v2)}∪Cφ(v1)).

    (C5)Gcontains two 3-faces[u1v1x]and[u2v2x]such thatdG(x)=4 anddG(u1)=dG(u2)=2.

    Ifv1is a 2-vertex orv2is a 2-vertex,thenG?u1v1orG?u2v2has a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.We can easily extend the coloring to the whole graphG.

    Ifv1orv2is a 3-vertex,the proof is similar to the case(C4).

    Now we assume thatdG(vi)≥4 fori=1,2.Letz1,z2,···,zmbe the neighbors ofv1different fromxandu1.Lety1,y2,···,ynbe the neighbors ofv2different fromxandu2.Thenm≥2 andn≥2.

    Ifm,n≥3,then any(?(G)+1)-AVDIT coloringφofG?xu1can be easily extended to the whole graphG.Otherwise,assume thatn≥2 andm=2 by symmetry.By the induction assumption,G?xu1has a(?(G)+1)-AVDIT coloringφusing colors 1,2,···,?(G)+1.We need to consider two subcases as follows:

    Case 1n≥3.Obviously,we have|C|≥?(G)+1≥5+1=6.Letb=CCφ(v1).Ifb/∈{φ(xu2),φ(xv2)},we colorxu1withb.Otherwise,we properly colorxu1.Then we recolorxwith a color in{φ(xu1),φ(xv1),φ(xu2),φ(xv2)}{φ(v1),φ(v2),φ(u2)}and recolor properlyu1.

    Case 2n=2.SincedG(v2)=4≤?(G),then|C|≥?(G)+1≥5.

    (2.1) If|Cφ(v1)|=|Cφ(v2)|=5,we colorxu1with a color different from the colors ofxv1,xu2,xv2,u1v1.Then we recolorxwith a color in{φ(xv1),φ(xu1),φ(xu2),φ(xv2)}{φ(v1),φ(u2),φ(v2)}.Finally,we color properlyu1.

    (2.2) If|Cφ(v1)|=|Cφ(v2)|=4,we colorxu1with a color different from the colors ofu1v1,xv1,xv2,xu2.After omitting the colors ofu1,v1,u2,v2,we recolorxwith a color inC{φ(xu1),φ(xu2),φ(xv1),φ(xv2)}.Then,we recolorv1with a color in{φ(xv1),φ(v1u1),φ(v1z1),φ(v1z2)}{φ(z1),φ(z2),φ(x)}andv2with a color in{φ(xv2),φ(v2u2),φ(v2y1),φ(v2yz2)}{φ(y1),φ(y2),φ(x)}.Finally,we recolor properlyu1andu2.

    (2.3)If|Cφ(v1)|=4,|Cφ(v2)|=5,letbdenote a color inCCφ(v1).Ifb∈{φ(xv2),φ(xu2)},we color properlyxu1.Otherwise,we colorxu1withb.Then we recolorxwith a color in{φ(xv1),φ(xv2),φ(xu1),φ(xu2)}{φ(v1),φ(v2),φ(u2)}and recolor properlyu1.

    (2.4)If|Cφ(v1)|=5,|Cφ(v2)|=4,letcdenote a color inCCφ(v2).Ifc/=φ(u1v1),c/∈{φ(xv1),φ(xu2)},we colorxu1withc.Ifc/=φ(u1v1),c∈{φ(xv1),φ(xu2)},we color properlyxu1.Ifc=φ(u1v1),c/∈{φ(xv1),φ(xu2)},we colorxu1withφ(xu2)and recolorxu2withc.Ifc=φ(u1v1),c∈{φ(xv1),φ(xu2)},that isφ(u1v1)=φ(xu2)=c,we color properlyxu1.Finally,we recolorxwith a color in{φ(xv1),φ(xv2),φ(xu1),φ(xu2)}{φ(v1),φ(v2),φ(u2)},and recolor properlyu1.

    Combining Proposition 6,Theorem 1,Theorem 2 and Theorem 3,we complete the proof of the Main Theorem.

    We find that many graphGwith?(G)≥4 and without adjacent vertices of maximum degree satisfy(G)= ?(G).So we propose the following Conjecture 1.

    Conjecture 1IfGis an outerplane graph with?(G)≥4 and without adjacent vertices of maximum degree,theG)= ?(G).

    [1]ZHANG Zhong-fu,CHEN Xiang-en,LI Jing-wen,et al.On adjacent-vertex-distinguishing total coloring of graphs[J].Sci China Ser A,2005,48:289-299.

    [2]CHEN Xiang-en.On the adjacent vertex distinguishing total coloring numbers of graphs with?=3[J].Discrete Mathematics,2008,308:4003-4007.

    [3]WANG Yi-qiao,WANG Wei-fan.Adjacent vertex distinguishing total colorings of outerplanar graphs[J].Journal of combinatorial optimization,2010,19(2):123-133.

    [4]ZHANG Zhong-fu,WOODALL D R,YAO Bing,et al.Adjacent vertex-distinguishingI-total coloring of graphs[EB/OL].(2008-06-12)http://202.201/18.40:8080/mas 5/.

    [5]YANG Xiao-ya.Adjacent vertex-distinguishingI-total colorings ofPn□Cm[J].Pure and Applied Mathematics,2012,28(6):757-764.

    [6]TIAN Jing-jing.Adjacent vertex-distinguishingI-total chromatic number of some kinds ofk-multi-Mycieski graph[J].Computer Engineering and Applications,2012,48(25):39-41.

    [7]YANG Sui-yi,GAO Yu-ping,HE Wan-sheng.Adjacent vertex-distinguishingI-total coloring ofPm□Kn[J].Mathematics in Practice and Theory,2013,43(1):212-218.

    [8]YANG Sui-yi,HE Wan-sheng,WEN Fei.Adjacent vertex-distinguishingI-total coloring of corona graphsCm·CnandCm·Kn[J].Pure and Applied Mathematics,2011,27(3):327-333.

    [9]CHEN Xiang-en,GAO Yu-ping,YAO Bing.Not necessarily proper total colourings which are adjacent vertex distinguishing[J].International Journal of Computer Mathematics,2013,9(11):2298-2307.

    亚洲国产欧美人成| 91精品国产九色| 蜜桃亚洲精品一区二区三区| 亚洲在线观看片| 秋霞伦理黄片| 欧美色视频一区免费| 三级国产精品片| 最近最新中文字幕大全电影3| 久久久欧美国产精品| 精品国产露脸久久av麻豆 | 国产真实伦视频高清在线观看| 精品久久国产蜜桃| 久久6这里有精品| 国产精品熟女久久久久浪| 一卡2卡三卡四卡精品乱码亚洲| 欧美97在线视频| 91精品一卡2卡3卡4卡| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美精品专区久久| 中国国产av一级| 国产亚洲精品久久久com| 国产精品蜜桃在线观看| 亚洲av电影在线观看一区二区三区 | 老女人水多毛片| 亚洲精品乱码久久久v下载方式| 婷婷色av中文字幕| 美女高潮的动态| 婷婷色av中文字幕| 亚洲欧美中文字幕日韩二区| 国产美女午夜福利| 建设人人有责人人尽责人人享有的 | 草草在线视频免费看| 国产亚洲最大av| 午夜老司机福利剧场| 亚洲人与动物交配视频| 国产午夜精品一二区理论片| 久久热精品热| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| av在线观看视频网站免费| 日韩成人伦理影院| 国产成年人精品一区二区| 国产一级毛片七仙女欲春2| 久久久久久久国产电影| 最近中文字幕2019免费版| 国产淫语在线视频| 欧美97在线视频| 国产精品不卡视频一区二区| 国产伦在线观看视频一区| kizo精华| 中国美白少妇内射xxxbb| 国产探花极品一区二区| 91精品一卡2卡3卡4卡| 国产精品.久久久| 国产精品一区二区三区四区免费观看| 我的老师免费观看完整版| 99久久九九国产精品国产免费| 国产高潮美女av| www.色视频.com| videossex国产| 国产精品伦人一区二区| 久久精品国产亚洲av涩爱| 美女脱内裤让男人舔精品视频| 亚洲成人精品中文字幕电影| 床上黄色一级片| 18禁裸乳无遮挡免费网站照片| 99久久人妻综合| 久久鲁丝午夜福利片| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 久久久精品欧美日韩精品| 成人特级av手机在线观看| 男女边吃奶边做爰视频| 国语对白做爰xxxⅹ性视频网站| 麻豆乱淫一区二区| 老司机福利观看| 秋霞伦理黄片| 久久欧美精品欧美久久欧美| 我要看日韩黄色一级片| 久久久久性生活片| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国模一区二区三区四区视频| 99久国产av精品| 久久久久久久久久成人| 国产 一区精品| 久久6这里有精品| 建设人人有责人人尽责人人享有的 | 日韩成人伦理影院| 日韩av在线免费看完整版不卡| 五月玫瑰六月丁香| 久久久久网色| 国产成人午夜福利电影在线观看| 国产极品天堂在线| 日本免费a在线| 亚洲欧美一区二区三区国产| 国产激情偷乱视频一区二区| 男的添女的下面高潮视频| 久久久久久久午夜电影| 亚洲欧美一区二区三区国产| 国产精品蜜桃在线观看| 我的老师免费观看完整版| 爱豆传媒免费全集在线观看| 狂野欧美白嫩少妇大欣赏| 联通29元200g的流量卡| av.在线天堂| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| 久久精品国产亚洲av天美| 熟妇人妻久久中文字幕3abv| 免费av毛片视频| 免费搜索国产男女视频| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 我的女老师完整版在线观看| 免费看美女性在线毛片视频| 精品99又大又爽又粗少妇毛片| 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区| 嫩草影院新地址| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 在线天堂最新版资源| 欧美日韩一区二区视频在线观看视频在线 | 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 亚洲真实伦在线观看| 成人国产麻豆网| 欧美精品国产亚洲| 国产精品精品国产色婷婷| 有码 亚洲区| kizo精华| 中文资源天堂在线| 国产午夜精品一二区理论片| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 1000部很黄的大片| 九九在线视频观看精品| 伦理电影大哥的女人| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 九九久久精品国产亚洲av麻豆| 国产成年人精品一区二区| a级毛片免费高清观看在线播放| 毛片一级片免费看久久久久| 免费看日本二区| 看黄色毛片网站| 国产成人午夜福利电影在线观看| 国产综合懂色| 久久久久久久久中文| 国产熟女欧美一区二区| 久久久久久久久大av| 嫩草影院新地址| 韩国av在线不卡| a级一级毛片免费在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 激情 狠狠 欧美| 亚洲婷婷狠狠爱综合网| 最近中文字幕高清免费大全6| 一本一本综合久久| 内地一区二区视频在线| 国产伦理片在线播放av一区| 91久久精品电影网| 亚洲欧洲国产日韩| 免费大片18禁| 人妻系列 视频| 国产乱人偷精品视频| 99热这里只有精品一区| 十八禁国产超污无遮挡网站| 97超碰精品成人国产| 亚洲成人av在线免费| 中文欧美无线码| 国产成人免费观看mmmm| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 国产大屁股一区二区在线视频| 国产精品国产高清国产av| 蜜臀久久99精品久久宅男| 久久99热这里只有精品18| 69av精品久久久久久| 成人av在线播放网站| 高清毛片免费看| 欧美成人免费av一区二区三区| 国产日韩欧美在线精品| 国产精品一区二区在线观看99 | 高清日韩中文字幕在线| 久久精品综合一区二区三区| 日日干狠狠操夜夜爽| 亚洲一区高清亚洲精品| 免费人成在线观看视频色| 国产精品一区二区在线观看99 | 一级毛片久久久久久久久女| 天堂√8在线中文| 国产私拍福利视频在线观看| 亚洲欧美成人综合另类久久久 | 免费观看在线日韩| 色网站视频免费| 日韩一区二区视频免费看| 亚洲成人av在线免费| 欧美三级亚洲精品| 久久国产乱子免费精品| 激情 狠狠 欧美| 熟女人妻精品中文字幕| 午夜精品一区二区三区免费看| 国产av码专区亚洲av| 午夜a级毛片| 国产在线一区二区三区精 | 毛片一级片免费看久久久久| 亚洲最大成人手机在线| 国产69精品久久久久777片| 亚洲三级黄色毛片| 成人高潮视频无遮挡免费网站| 国内少妇人妻偷人精品xxx网站| 国产精品,欧美在线| 超碰av人人做人人爽久久| 欧美色视频一区免费| 亚洲美女搞黄在线观看| 精品酒店卫生间| 汤姆久久久久久久影院中文字幕 | 国产午夜精品一二区理论片| 国内精品美女久久久久久| 男女国产视频网站| 久久久a久久爽久久v久久| 午夜福利高清视频| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 国产黄色小视频在线观看| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 亚洲av电影在线观看一区二区三区 | 久久精品人妻少妇| 少妇猛男粗大的猛烈进出视频 | 少妇裸体淫交视频免费看高清| 欧美极品一区二区三区四区| 国产极品精品免费视频能看的| or卡值多少钱| a级毛色黄片| 一个人看的www免费观看视频| 国产高清视频在线观看网站| 精品久久久久久成人av| 男人舔奶头视频| av在线播放精品| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 国语自产精品视频在线第100页| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 成人二区视频| 午夜日本视频在线| 一本久久精品| 久久精品国产亚洲av涩爱| 少妇的逼好多水| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 蜜桃久久精品国产亚洲av| 精品国产一区二区三区久久久樱花 | 久久这里只有精品中国| 51国产日韩欧美| 亚洲性久久影院| 国产精品人妻久久久影院| 人妻系列 视频| 免费av不卡在线播放| 国产精品精品国产色婷婷| 久久精品国产鲁丝片午夜精品| 22中文网久久字幕| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 国内精品美女久久久久久| 亚洲av一区综合| 国产色婷婷99| 26uuu在线亚洲综合色| 国产亚洲av嫩草精品影院| 91狼人影院| 国产精品久久久久久精品电影| 欧美xxxx性猛交bbbb| 亚洲第一区二区三区不卡| 一级毛片久久久久久久久女| 高清在线视频一区二区三区 | 日本猛色少妇xxxxx猛交久久| 欧美3d第一页| 永久免费av网站大全| 一个人观看的视频www高清免费观看| 欧美97在线视频| 亚洲精品成人久久久久久| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 亚洲18禁久久av| 亚洲不卡免费看| 午夜福利在线在线| 在现免费观看毛片| 欧美最新免费一区二区三区| 亚洲av熟女| 青春草视频在线免费观看| 精品久久久久久电影网 | 日本午夜av视频| 国产精华一区二区三区| 亚洲国产高清在线一区二区三| 男女视频在线观看网站免费| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区 | 爱豆传媒免费全集在线观看| 成人二区视频| 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| av福利片在线观看| 日日摸夜夜添夜夜爱| 亚洲在线观看片| 国产私拍福利视频在线观看| 亚洲国产色片| 小蜜桃在线观看免费完整版高清| 国语自产精品视频在线第100页| 久久鲁丝午夜福利片| 精品不卡国产一区二区三区| 国产不卡一卡二| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 国产精品不卡视频一区二区| av播播在线观看一区| 久久久久久国产a免费观看| 热99re8久久精品国产| 看黄色毛片网站| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 免费黄色在线免费观看| 欧美日韩国产亚洲二区| 深夜a级毛片| 丝袜美腿在线中文| 内地一区二区视频在线| 精品酒店卫生间| 欧美性猛交黑人性爽| 国产精品伦人一区二区| 亚洲真实伦在线观看| 国内精品宾馆在线| 国产精品.久久久| 岛国在线免费视频观看| 91狼人影院| 天堂√8在线中文| 精品久久久噜噜| 91aial.com中文字幕在线观看| 日本熟妇午夜| 久久久久久久久中文| 欧美不卡视频在线免费观看| 亚洲av成人精品一二三区| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 色噜噜av男人的天堂激情| 性插视频无遮挡在线免费观看| 国产 一区 欧美 日韩| 国产女主播在线喷水免费视频网站 | 亚洲欧美日韩高清专用| av天堂中文字幕网| 日韩高清综合在线| 人体艺术视频欧美日本| 午夜老司机福利剧场| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 精品少妇黑人巨大在线播放 | 国产免费男女视频| 一个人免费在线观看电影| 特级一级黄色大片| 免费看美女性在线毛片视频| 特级一级黄色大片| 69av精品久久久久久| 国产精品国产高清国产av| 69av精品久久久久久| 精品酒店卫生间| 亚洲国产精品成人综合色| 欧美不卡视频在线免费观看| 毛片一级片免费看久久久久| 中文亚洲av片在线观看爽| 一级毛片我不卡| 日本免费在线观看一区| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 日韩一区二区三区影片| 国产一区二区三区av在线| 色视频www国产| 亚洲成人精品中文字幕电影| 午夜精品国产一区二区电影 | 黄色配什么色好看| 天天躁日日操中文字幕| 欧美日韩综合久久久久久| 国产在视频线精品| 国产高潮美女av| 国产精品美女特级片免费视频播放器| 波多野结衣高清无吗| 少妇熟女欧美另类| 村上凉子中文字幕在线| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看 | 亚洲,欧美,日韩| 一级二级三级毛片免费看| 中文资源天堂在线| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 欧美xxxx黑人xx丫x性爽| 美女脱内裤让男人舔精品视频| 禁无遮挡网站| 永久免费av网站大全| 亚洲人与动物交配视频| 只有这里有精品99| 美女黄网站色视频| 日韩视频在线欧美| 亚洲精品国产成人久久av| 亚洲无线观看免费| 色播亚洲综合网| 亚洲色图av天堂| 欧美xxxx黑人xx丫x性爽| 亚洲中文字幕日韩| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 国产乱人视频| 免费看日本二区| 日韩精品有码人妻一区| 直男gayav资源| 亚洲怡红院男人天堂| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 麻豆乱淫一区二区| 又粗又爽又猛毛片免费看| 好男人在线观看高清免费视频| h日本视频在线播放| 色哟哟·www| 久久人妻av系列| 国产 一区精品| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在| 岛国在线免费视频观看| 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频| 中文字幕免费在线视频6| 婷婷色麻豆天堂久久 | 伊人久久精品亚洲午夜| 久久精品综合一区二区三区| 亚洲在线观看片| 国产三级在线视频| 一本久久精品| 久久久久久久久久久免费av| 视频中文字幕在线观看| 国产伦理片在线播放av一区| 六月丁香七月| 大话2 男鬼变身卡| 国产精品一区www在线观看| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 听说在线观看完整版免费高清| 国产成人午夜福利电影在线观看| 噜噜噜噜噜久久久久久91| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 国产成人freesex在线| 偷拍熟女少妇极品色| 不卡视频在线观看欧美| 国产黄片视频在线免费观看| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 国内精品美女久久久久久| 99在线视频只有这里精品首页| 男女啪啪激烈高潮av片| 成人二区视频| 精品熟女少妇av免费看| 国产老妇伦熟女老妇高清| 国产精品电影一区二区三区| 淫秽高清视频在线观看| 欧美人与善性xxx| 男女视频在线观看网站免费| 一级黄色大片毛片| 亚洲成人久久爱视频| 午夜日本视频在线| 高清毛片免费看| 日韩中字成人| 亚洲一区高清亚洲精品| 3wmmmm亚洲av在线观看| 尤物成人国产欧美一区二区三区| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 亚洲欧美成人综合另类久久久 | 美女黄网站色视频| 国产一区有黄有色的免费视频 | 国国产精品蜜臀av免费| 亚洲成av人片在线播放无| 岛国在线免费视频观看| 成人亚洲欧美一区二区av| 男人的好看免费观看在线视频| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 国产成人免费观看mmmm| 大又大粗又爽又黄少妇毛片口| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 99久国产av精品国产电影| 日韩人妻高清精品专区| 欧美高清性xxxxhd video| 亚洲av.av天堂| 18+在线观看网站| 超碰av人人做人人爽久久| 欧美区成人在线视频| 久久久久九九精品影院| 汤姆久久久久久久影院中文字幕 | 亚洲欧美日韩高清专用| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 国产伦精品一区二区三区视频9| 日本三级黄在线观看| 国产精品日韩av在线免费观看| 欧美高清成人免费视频www| 亚洲婷婷狠狠爱综合网| 精品一区二区三区人妻视频| 亚洲精品日韩在线中文字幕| 插阴视频在线观看视频| 精品酒店卫生间| 国产高清国产精品国产三级 | 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 97热精品久久久久久| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 国产精品野战在线观看| 国产精品一及| 99热这里只有精品一区| av在线蜜桃| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 久久这里只有精品中国| 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| 嘟嘟电影网在线观看| 亚洲怡红院男人天堂| 天堂影院成人在线观看| 热99在线观看视频| 内地一区二区视频在线| 久久精品人妻少妇| 亚洲最大成人手机在线| 女人久久www免费人成看片 | 男人狂女人下面高潮的视频| 国产成人精品久久久久久| 亚洲综合精品二区| 亚洲欧美日韩东京热| 亚洲av成人av| av在线老鸭窝| 日本wwww免费看| 久久精品久久久久久久性| ponron亚洲| 亚洲婷婷狠狠爱综合网| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 国产亚洲av片在线观看秒播厂 | 国产色爽女视频免费观看| 欧美精品国产亚洲| 97超碰精品成人国产| 狠狠狠狠99中文字幕| 午夜福利高清视频| 久久国内精品自在自线图片| 3wmmmm亚洲av在线观看| 国产 一区 欧美 日韩| 午夜亚洲福利在线播放| 插逼视频在线观看| 成人鲁丝片一二三区免费| 成人国产麻豆网| 日韩在线高清观看一区二区三区| 美女xxoo啪啪120秒动态图| 国产极品精品免费视频能看的| 少妇熟女欧美另类| 日韩三级伦理在线观看| 久久久欧美国产精品| 美女xxoo啪啪120秒动态图| 国产精品一区二区在线观看99 | 亚洲最大成人手机在线| 在线观看66精品国产| 97人妻精品一区二区三区麻豆| 成人综合一区亚洲| 性插视频无遮挡在线免费观看| 国产av在哪里看| 国产免费又黄又爽又色| 国产精品久久久久久av不卡| 免费看a级黄色片| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 久久99精品国语久久久| 一级爰片在线观看| 女人十人毛片免费观看3o分钟| 日韩精品青青久久久久久| 男女那种视频在线观看| 日韩av在线大香蕉| 人人妻人人澡欧美一区二区| 青春草视频在线免费观看| 美女xxoo啪啪120秒动态图| 我的老师免费观看完整版| 色尼玛亚洲综合影院| 综合色丁香网| 日韩人妻高清精品专区| 精品久久久久久成人av| 有码 亚洲区| 黄色配什么色好看| 久99久视频精品免费| 日韩一本色道免费dvd| 欧美高清性xxxxhd video| 舔av片在线| 亚洲中文字幕一区二区三区有码在线看| 国产一级毛片在线|