• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*

    2017-03-09 09:09:45LiqinLiu劉利琴YanLi李妍LeiHuang黃磊YougangTang唐友剛
    關(guān)鍵詞:李妍黃磊

    Li-qin Liu (劉利琴), Yan Li (李妍), Lei Huang (黃磊), You-gang Tang (唐友剛)

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: liuliqin@tju.edu.cn

    (Received May 4, 2015, Revised March 23, 2016)

    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*

    Li-qin Liu (劉利琴), Yan Li (李妍), Lei Huang (黃磊), You-gang Tang (唐友剛)

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: liuliqin@tju.edu.cn

    (Received May 4, 2015, Revised March 23, 2016)

    The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary condition of the total opening bottom suggested by Molin is adopted. A semi-analytical method is used to solve the governing equations, and the natural frequencies and the motion modes are obtained. Two types of motions are studied: (1) the piston motion in the vertical direction, and (2) the sloshing motion of the free surface. The influences of moon pool’s structural parameters on the natural frequencies, and the modal shapes are analyzed.

    Moon pool, natural vibration characteristics, semi-analytical method, parameter influences

    Introduction

    The moon pool is an important structure used in the offshore floating structures, such as drilling unit, floating production storage and offloading (FPSO), and Spar platform[1,2]. It goes vertically down through the main structure. The risers and the other important drilling equipment are located in the moon pool to prevent excessive wave and current excitations[3-5]. There are two kinds of natural vibration modes of water in the moon pool: (1) the piston-like motion along the depth direction of the moon pool, and (2) the sloshing motion caused by the free liquid surface[6-8].

    The natural vibration characteristics of water in a moon pool were extensively studies, to predict the coupled motion of the moon pool and the offshore structure in the complicated ocean environment. Based on a series of model tests, Aalbers[9]developed the relativemotion equations of water in a ship’s moon pool. The results show that the natural vibration characteristics of water in the moon pool depend on parameters, such as the depth of the water column, the heave amplitude, and the diameter of the moon pool. By applying a fictitious boundary condition at the bottom of a moon pool, Molin[10]studied the natural frequencies and the modal shapes of both the piston mode and the sloshing mode of water in the moon pool and obtained approximate expressions of natural frequencies. Sphaier et al.[11]carried out the model tests of a mono-column platform with a semi-closed moon pool, the results show that the motion of the water column is smaller for smaller moon pool opening. Hence, the moon pool can be used as an effective device to reduce the vertical motion of a mono-column platform. Faltinsen et al.[12]studied the two-dimensional piston-like motions of the water inside a moon pool with a vertical harmonic motion by the domain-decomposition method. The model experiments were carried out to compare with the analytical results. By applying Newton’s second law, Gupta et al.[13]developed a 2-DOF (degree of freedom) coupled motion equations for the heave of a Spar platform and the vertical oscillation of the water column inside a moon pool. Using the CFD method, Kristiansen and Faltinsen[14,15]investigated the influence of the nonlinear free surface, the damping of the boundary layersand the flow separation on the piston motion of water in a moon pool. It is found that the flow separation is the main cause of the discrepancies between the measured results and those estimated by the linear theory. Tonje[16]studied the influence of the water inside a moon pool on the installation of the cargo oil pump. The results show that in the resonance region, the amplitude of the water movement inside the moon pool is greater than that outside the moon pool. Based on the Navier-Stokes equations and the volume of fluid (VOF) method, Sun et al.[17]developed a 3-DOF numerical wave tank. The interaction between the hull and the water motion inside a moon pool was also analyzed. Liu et al.[18,19]studied the influence of the water motion inside a moon pool on the heave motion of a Spar platform. The model experimental results were used to verify the analytical results.

    The present work studies the three-dimensional natural vibration characteristics of water inside a moon pool, as well as the influences of moon pool’s dimensional parameters on the natural frequencies and the modal shapes of the water motion inside the moon pool. Using the Galerkin method, the semi-analytical solution is obtained.

    1. Solution of governing equations of water in moon pool

    1.1Governing equations

    The Cartesian coordinates and a schematic diagram of a three-dimensional moon pool are shown in Fig.1, wherel,bandhrepresent the length, the width and the water depth of the moon pool, respectively. The main structure is assumed to be motionless, since its scale is much larger than that of the moon pool. Therefore, it is assumed the length and the width of the main structure are infinite. The values ofl,bandhare mainly based on the parameters of the drilling units given in the following sections.

    Fig.1 Coordinates of the three-dimensional moon pool

    Assuming that the flow is incompressible, inviscid, irrotational, and the motion of water inside the moon pool can be described by the boundary value problem of Laplace’s equation. At the free surface, the velocity potential function can be expressed in terms of time and space, as follows

    whereΦ(x,y,z,t)is the velocity potential function,ωis the natural frequency of the liquid motion in the moon pool,?(x,y,z)is the velocity potential function in space. According to the potential flow theory, the governing equation of the water motion in a moon pool is

    For a moon pool with impermeable vertical walls, the boundary conditions are

    The linear free surface condition is expressed as

    By taking the fictitious bottom as the boundary condition proposed by Molin[10], the influence of the outlet at the bottom of the moon pool can be described by the following formula

    1.2Semi-analytical solution

    Equations (1)-(4) are solved using the method of separation of variables. Assuming that the fluid velocity potential?can be written as

    Substituting Eq.(6) into Eq.(1), a series of ordinary differential equations are obtained, as follows:

    The general solutions of Eq.(7) can be written as

    With the boundary condition as described by Eq.(3) and the condition of the nontrivial solutions, one obtains

    The general solution of?(x,y,z)can be written as

    Substituting Eq.(14) into the bottom boundary condition Eq.(5), one obtains

    The Galerkin method is then used to integrate Eq.(15). Integrating the left and right sides of Eq.(15) with respect toxandy, respectively, and settingν00=1/h, one obtains

    Multiplying both sides of Eq.(15) with cosλmx?cosμpy, and integrating the left and right sides of the resultant equation with respect toxandy, respectively, we have

    Fig.2 Comparison of the integration values

    Eqs.(16) and (17) can then be rewritten as

    Table 1 Integration results oftmnpq

    whereκ=1/2πbl. Substituting Eq.(14) into the free surface condition Eq.(4), one obtains

    whereωijis the natural frequency of each mode, whereiandjdenote the model orders in length and width directions, respectively. Rewrite Eqs.(21) and (22) into the matrix form, as follows:

    Solving Eq.(23) for the eigenvector matrixesC(2), and substitutingC(2)into Eq.(24), we obtain an expression forC(1). SubstitutingC(1)andC(2)into Eq.(14), and solving it for the fluid velocity potential?, the wave elevationζcan be obtained in the following form

    With Eq.(25), the shape of the free surface will be used to discuss the vibration characteristics of the water inside a moon pool in Section 3.

    2. Numerical results and analyses

    The coefficient matrixtmnpqis calculated numerically by using the Simpson’s method. Calculatingtmnpqis the most important step in the total process. For the two-dimensional coefficient matrixtmn, the dimensionless results calculated in this paper are compared with those of Molin’s[10], as shown in Fig.2. Good agreement can be seen.

    Table 1 shows part of the integration results. It is seen that when both the sum ofmandn, and that ofpandqare even numbers, the integration result is nonzero. Substituting the integration results into Eq.(23), we obtain the matrixC(2)and the natural frequencyωijfor each mode, whereiandj, respectively, denote the model order in the length and width directions of the moon pool. The coefficient matrixC(1)is then determined by solving Eq.(24). The matricesC(1)andC(2)are diagonally dominated, and the velocity potential?of each mode is dominated by the main diagonal elements ofC(1)andC(2).

    2.1Comparing semi-analytical results with CFD results

    To verify the validity of the semi-analytical results, the CFD method is used. To save the calculation time, as shown in Fig.3, a two-dimensional CFD model is developed. In the model, the width of the moon pool,b, is 20 m, the tank’s width is 160 m and the water depth takes values of 2 m and 10 m in the simulation.

    Fig.3 (Color online) CFD model

    Moving the moon pool structure in the vertical direction with a period of 2π/ω0, whereω0is the piston natural period of the water motion in the moon pool, the piston resonance of the water in the moon pool is expected to be excited. Figure 4 shows the comparisons of the free surface calculated by the semianalytical and the CFD methods forh=2 mandh=10 m, where S-A denotes the results calculated by the semi-analytical method. It is apparent that for the piston mode, the free surfaces estimated by the semianalytical method generally agree well with those estimated by the CFD method. There are small differences at the center and at the two boundaries of the moon pool. This is because in the CFD method, the viscosity is included, while in the semi-analytical method, it is not.

    Fig.4 Comparisons of free surface elevation results from semianalytical and CFD methods for the piston mode

    Fig.5 Semi-analytical results vs. CFD results for the first order sloshing mode

    Moving the moon pool structure in the horizontal direction with a period of 2π/ω1, whereω1is the first order sloshing natural frequency of water in the moon pool, the first order sloshing resonance of the water in the moon pool is expected to be excited. Figure 5 shows the comparisons of the first order sloshing mode calculated by the semi-analytical and theCFD methods forh=2 mandh=10 m. It is apparent that for the first order sloshing mode, the free surfaces estimated by the semi-analytical method generally agree well with those estimated by the CFD method.

    2.2Natural frequencies

    The water inside a moon pool has two forms of motion, the piston mode and the sloshing mode, in the length and the width directions.?00is defined as the spatial velocity potential function of the piston mode, which only depends on the variablez, as expressed in Eq.(13). While?nq(nandqcannot be both zero at the same time) relates tox,yandz, as expressed in Eq.(12), and is defined as the sloshing modes. According to the work of Monlin[10], the sloshing modes can be categorized as follows:

    (1) Withm,n,pandqall being even numbers, it is the full symmetric mode. In this mode, the modal shape is symmetrical in both width and the length directions.

    (2) Withmandnbeing odd numbers, andpandqbeing even numbers, it is the longitudinal asymmetric mode. In this mode, the modal shape is symmetrical in the width direction but asymmetrical in the length direction.

    (3) Withmandnbeing even numbers, andpandqbeing odd numbers, it is the transverse asymmetric mode. In this mode, the modal shape is asymmetrical in the width direction but symmetrical in the length direction.

    (4) Withm,n,pandqall being odd numbers, it is the full asymmetric mode. In this mode, the modal shape is asymmetrical in both width and length directions.

    Further, Tables 2 and 3 show some natural frequencies of water motions inside a moon pool of a square cross section and a rectangle cross section, respectively.

    The influences of moon pool’s parameters, such as the lengthl, the widthband the depth of water in the moon poolh, on the natural frequencies of the piston mode and the first three orders of sloshing modes are analyzed. The results are shown in Figs.6-9.

    Table 3 Natural frequencies (l=20 m,b=10 m,h=10 m)

    Fig.6 Effect of moon pool’s parameters onω00

    Fig.7 Effect of moon pool’s parameters onω22

    Figure 6 shows the influences of moon pool’s parameters on the natural frequencies of the piston mode. It is apparent thatω00decreases with the increase of the lengthland the widthb. Forh=10 m andl=40 m,ω00is 0.74 rad/s (corresponding to the natural period of 8.49 s), 0.68 rad/s (corresponding to the natural period of 9.24 s) and 0.58 rad/s (corresponding to the natural period of 10.83 s) forb=10 m, 20 m and 40 m, respectively. Forb=10 mandh= 10 m, iflincreases from 10 m to 40 m,ω00decreases from 0.82 rad/s (corresponding to the natural period of 7.66 s) to 0.72 rad/s (corresponding to thenatural period of 8.72 s).ω00decreases with the increase ofh.The influences oflandbonω00become indistinct for highh.With the increase ofl,bandh,the natural frequency of the piston mode of water in the moon pool approaches the characteristic wave frequency of the rough sea. As such, the large amplitude piston motion of water in the moon pool may be excited. In the design of the moon pool, appropriate values ofl,bandhshould be used so as to avoid the large amplitude piston motion of water in the moon pool and to reduce the influence of moon pool’s water motion on the motion of the floating body.

    Fig.8 Effects of moon pool’s parameters on the natural frequencies of the longitudinal asymmetric modes

    Figures 7-9 show the influences of the moon pool’s parameters on the natural frequencies of the sloshing modes. It can be seen that the natural frequencies of the sloshing modes are higher than that of the piston mode. Figure 7 shows thatω22decreases slightly with the increase ofhforh≤3m. It mainly depends on the lengthland the widthbof the moon pool forh>3m. Figure 8 shows the influences of moon pool’s parameters on the natural frequenciesω10andω12of the longitudinal asymmetric modes. Figure 9 shows the influences of moon pool’s parameters on the natural frequenciesω11andω13of the full asymmetric modes. As shown in Figs.8 and 9, it is apparent that whenhis small, the natural frequencies decrease with the increase ofh. However, whenhis large enough, the natural frequencies of the sloshing modes mainly depends on the lengthland the widthbof the moon pool.

    Fig.9 Effects of moon pool’s parameters on the natural frequencies of the full asymmetric modes

    2.3Modal shapes

    By using Eq.(25), the modal shapes of the piston mode and some sloshing modes are analyzed. For the piston mode, the free surface oscillates up and down with respect to the equilibrium position. The sloshing modes are classified into four types: (1) fully symmetric mode, (2) longitudinal asymmetric mode, (3) transverse asymmetric mode, and (4) fully asymmetric mode. The influences of moon pool’s parameters, including the lengthl, the widthb, and the heighthof water in the moon pool on the modal shapes are analyzed in this section. The results are shown in Figs.10-17.

    Figure 10 shows the shapes of the piston mode ofω00for different moon pool’s parameters. It is apparent that the depth of water in the moon pool influences the modal shape significantly. Forh=1m, as shown in Fig.10(a), the modal shape of the piston mode has a peak in the center of the moon pool. The peak value decreas es with the i ncrea se ofh.F orh=5 m, as showninFig.10(b),thepeakvalueisverysmall.Fig.10(d) shows that the shape of the piston mode is symmetrical both inxandydirections.

    As shown in Fig.11, for a moon pool of rectangular cross-section, the modal shapes ofω02andω20are fully symmetrical. Figure 12 shows the second sloshing mode of water in the moon pool. It can be seen that the modal shape ofω22is symmetrical in bothxandydirections.

    Fig.10 (Color online) Shapes of piston mode ofω00

    Fig.11 (Color online) Shapes of fully symmetric mode ofω02andω20(l=20 m,b=10 m,h=1m)

    Fig.12 (Color online) Shapes of fully symmetric modes ofω22(l=20 m,b=10 m,h=1m)

    Figures 13 and 14 show the influences of moon pool parameters on the modal shape ofω10. It is appa-rent that the modal shape ofω10is asymmetrical inxdirection and symmetrical inydirection. For the largerh, the curve of the two-dimensional mode along the longitudinal direction of the moon pool is close to that of the trigonometric function. As such, the function can be determined by the analytical method similar to that for the problem of liquid tank sloshing[20]. With the decrease ofh, as shown in Fig.14(a), the curve becomes irregular near the boundaries ofx= 0 m andx=80 m, which cannot be determined analytically. Figure 14(b) shows the amplitude of the twodimensional modal curve along the transverse direction of the moon pool, which decreases with the increase ofh.

    Fig.13 (Color online) Shapes of longitudinal asymmetric modes ofω10(l=80 m,b=20 m,h=1m)

    Fig.14 Two-dimensional modal shapes ofω10for differenth(l=80 m,b=20 m)

    Fig.15 (Color online) Shapes of longitudinal asymmetric modes ofω12andω30(l=80 m,b=20 m,h=1m)

    Fig.16 (Color online) Shapes of transverse asymmetric modes ofω01andω21(l=20 m,b=20 m,h=1m)

    Fig.17 (Color online) Shapes of fully symmetric modes ofω11,ω31,ω13andω33(l=20 m,b=20 m,h=1m)

    Figure 15 shows the shapes of the longitudinal asymmetric modes ofω12andω30forl=80 m,b=20 mandh=1m. Figure 16 shows the shapes of the transverse asymmetric modes ofω01andω21. Figure 17 shows the shapes of fully asymmetric modes ofω11,ω31,ω13andω33.

    3.Conclusions

    Using the semi-analytical method, the natural vibration characteristics of water inside a moon pool are studied. The influences of moon pool’s dimensional parameters on the natural frequencies and the modal shapes are also investigated. The modal shapes of the sloshing motion are presented and the influence of moon pool’s structural parameters is analyzed. The conclusions are as follows:

    (1) The natural frequency of the piston mode of water in the moon pool approaches the characteristic wave frequency of the rough sea with the increase ofl,bandh. As such, the large amplitude piston motion of water in the moon pool may be excited in the rough sea. In the design of the moon pool, appropriate values ofl,bandhshould be used so as to avoid the large amplitude piston motion of water in the moon pool.

    (2) The shape of the piston mode is symmetrical both inxandydirections. The depthhinfluences the modal shape significantly. The piston mode has a noticeable peak in the center of the moon pool for smallh,and the peak value decreases with the increase ofh.

    (3) The natural frequencies of the sloshing modes are higher than that of the piston mode. Whenhis small the natural frequencies of the sloshing modes decrease with the increase ofh. However, whenhis high the natural frequencies of the sloshing modes mainly depend on the lengthland the widthbof the moon pool.

    [1]FaltinsenO. M. Hydrodynamics of marine and offshore structures [J].Journal of Hydrodynamics, 2015, 26(6): 835-847.

    [2] Zhang H. S., Zhou H. W.Wave radiation and diffraction by a two-dimensional floating body with an opening near a side wall[J].China Ocean Engineering, 2013, 27(4): 437-450.

    [3] Dong Y. Q. Wave loads and response of the oil-extraction platform in deep ocean [M]. Tianjin, China: Tianjin University Press, 2005(in Chinese).

    [4] Drobyshevski Y. Hydrodynamic coefficients of a twodimensional, truncated rectangular floating structure in shallow water [J].Ocean Engineering, 2004, 31(3-4): 305-341.

    [5] Wei Y., Yang J. and Chen G. et al. Experimental study on the hydrodynamic performance of FDPSO and SRV [J].Ships Offshore Structure, 2012, 7(4): 1-13.

    [6] Faltinsen O. M., Timokha A. Sloshing [M]. Cambridge,UK: Cambridge University Press, 2009.

    [7] Yang S. H., Lee S. B., Park J. H. et al.Experimental study on piston-and sloshing-mode moonpool resonances[J].Journal of Marine Science and Technology, 2016, 21(4): 715-728.

    [8] Servan C. B., Cercos Pita J. L., Colom Cobb J.Time domain simulation of coupled sloshing-seakeeping problems by SPH-FEM coupling[J].Ocean Engineering, 2016, 123: 383-396.

    [9] Aalbers A. The water motions in a moon pool [J].Ocean Engineering, 1984, 11(6): 557-579.

    [10] Molin B. On the piston and sloshing modes in moon pools [J].Journal of Fluid Mechanics, 2001, 430: 27-50.

    [11] Sphaier S., Torres F., Masetti I. et al. Mono-column behavior in waves: Experimental analysis [J].Ocean Engineering, 2007, 34(11-12): 1724-1733.

    [12] Faltinsen O. M., Rognebakke O. F., Timokha A. N. Twodimensional resonant piston-like sloshing in a moon pool [J].Journal of Fluid Mechanics, 2007, 575: 359-397.

    [13] Gupta H., Blevins R., Banon H. Effect of moon pool hydrodynamics on Spar heave [C].Proceedings of the ASME 2008 27th International Conference on Ocean, Offshore and Arctic Engineering. New York, USA: American Society of Mechanical Engineers, 2008, 275-282.

    [14] Kristiansen T., Faltinsen O. M. A two-dimensional numerical and experimental study of resonant coupled ship and piston-mode motion [J].Applied Ocean Research, 2010, 32(2): 158-176.

    [15] Kristiansen T., Faltinsen O. M. Gap resonance analyzed by a new domain-decomposition method combining potential and viscous flow DRAFT [J].Applied Ocean Research, 2012, 34(1): 198-208.

    [16] Tonje C. S. Assessment of critical factors when running and relieving Framo pump modules through moon pool [D]. Master Thesis, Stavanger, Norway: Norway University of Stavanger, 2011.

    [17]Sun C. W., Yang J. M., Lv H. N. Numerical investigation on motions of vessel with moon pool in wave conditions [J].The Ocean Engineering, 2013, 31(4): 21-29(in Chinese).

    [18]Liu L., Incecik A., Zhang Y. Analysis of heave motions of a truss spar platform with semi-closed moon pool [J].Ocean Engineering, 2014, 92: 162-174.

    [19] Liu L., Qiu Y., Li Y.Effects of water inside semiclosed moon pool on the hydrodynamic coefficients and heaving damping of a truss spar platform[J].Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(4): 041302.

    [20] Ibrahim Raouf A. Liquid sloshing dynamics theory and application [M]. Cambridge, UK: Cambridge University Press, 2005.

    * Project supported by the Natural Science Foundation of China (Grant No. 51179125), the Greative Research Groups of the Natural Science Foundation of China (Grant No. 51621092) and the Natural Science Foundation of Tianjin (Grant No. 16JCYBJC21200).

    Biography:Li-qin Liu (1977-), Female, Ph. D., Associate Professor

    猜你喜歡
    李妍黃磊
    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
    黃磊:穿越人山人海,仍是文藝青年
    時代郵刊(2021年8期)2021-07-21 07:52:30
    論一顆蛀牙的長成
    大眾健康(2019年9期)2019-10-11 04:06:12
    M id-infrared supercontinuum generation and itsapp lication on all-opticalquantization with different inputpulses*
    Sine-Gordon Solitons and Breathers in Rod-like Magnetic Liquid Crystals under External Magnetic Field?
    黃磊:我的“麻煩”來得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    抬頭看看天
    小說月刊(2017年7期)2017-07-10 07:47:58
    黃磊 愛需要好好經(jīng)營
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    What’s the Future of Paper Books(節(jié)選)
    The Broken of the American Dream
    国产激情久久老熟女| 自线自在国产av| 日本欧美视频一区| 日日干狠狠操夜夜爽| 真人一进一出gif抽搐免费| 欧美国产日韩亚洲一区| 色婷婷久久久亚洲欧美| 涩涩av久久男人的天堂| 欧美激情 高清一区二区三区| 两个人视频免费观看高清| 国产麻豆69| 精品久久久久久久久久免费视频| 欧美亚洲日本最大视频资源| 天堂动漫精品| 欧美色视频一区免费| 亚洲成av人片免费观看| 丰满人妻熟妇乱又伦精品不卡| 精品国产国语对白av| 丝袜在线中文字幕| 91麻豆精品激情在线观看国产| 69av精品久久久久久| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 在线观看免费视频网站a站| 国内毛片毛片毛片毛片毛片| 亚洲成国产人片在线观看| 在线观看舔阴道视频| 一区二区三区高清视频在线| 亚洲男人天堂网一区| 中亚洲国语对白在线视频| 亚洲av电影不卡..在线观看| 国产乱人伦免费视频| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区| e午夜精品久久久久久久| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 欧美日韩乱码在线| 成人三级做爰电影| 亚洲色图av天堂| 亚洲国产看品久久| 久久精品91无色码中文字幕| 国产高清videossex| 欧美日韩精品网址| 久久天堂一区二区三区四区| 在线观看午夜福利视频| 久久青草综合色| 欧美日韩黄片免| 亚洲成av片中文字幕在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲男人的天堂狠狠| 美国免费a级毛片| 18禁观看日本| 欧美日韩中文字幕国产精品一区二区三区 | 99香蕉大伊视频| 精品国产乱子伦一区二区三区| 成人特级黄色片久久久久久久| 亚洲视频免费观看视频| 精品欧美国产一区二区三| 国产激情久久老熟女| 99国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲一区二区三区不卡视频| 在线视频色国产色| 久久亚洲真实| 久久热在线av| 中文字幕高清在线视频| 午夜精品国产一区二区电影| videosex国产| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 欧美日韩一级在线毛片| 美国免费a级毛片| 久久欧美精品欧美久久欧美| 欧美成人性av电影在线观看| 欧美国产日韩亚洲一区| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 别揉我奶头~嗯~啊~动态视频| 窝窝影院91人妻| 老汉色∧v一级毛片| АⅤ资源中文在线天堂| 日韩有码中文字幕| 一本综合久久免费| av欧美777| av网站免费在线观看视频| 婷婷丁香在线五月| 一二三四在线观看免费中文在| 在线观看免费视频网站a站| 国产精品久久视频播放| 国产1区2区3区精品| www.自偷自拍.com| 国产精品av久久久久免费| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 女警被强在线播放| 国产亚洲精品综合一区在线观看 | 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| 99精品久久久久人妻精品| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 亚洲人成77777在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲av成人一区二区三| 日韩精品免费视频一区二区三区| 欧美乱妇无乱码| 50天的宝宝边吃奶边哭怎么回事| 村上凉子中文字幕在线| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜精品一区,二区,三区| 国产免费av片在线观看野外av| 日韩大码丰满熟妇| 成人精品一区二区免费| 国产不卡一卡二| 日本 欧美在线| 久久久久精品国产欧美久久久| 777久久人妻少妇嫩草av网站| 日韩欧美一区二区三区在线观看| 日韩有码中文字幕| 9热在线视频观看99| 久久精品国产清高在天天线| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 一级,二级,三级黄色视频| 九色国产91popny在线| 老司机靠b影院| 久久精品人人爽人人爽视色| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 无人区码免费观看不卡| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 国产精品秋霞免费鲁丝片| 搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 久9热在线精品视频| 久久香蕉激情| 欧美精品啪啪一区二区三区| 亚洲av成人av| 老司机午夜十八禁免费视频| 一边摸一边做爽爽视频免费| 极品教师在线免费播放| 午夜久久久久精精品| 成人av一区二区三区在线看| av视频在线观看入口| 最新美女视频免费是黄的| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址 | 日本三级黄在线观看| 动漫黄色视频在线观看| 18禁美女被吸乳视频| 国产人伦9x9x在线观看| 免费看a级黄色片| 夜夜爽天天搞| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 亚洲av熟女| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 国产av精品麻豆| 多毛熟女@视频| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 久久午夜综合久久蜜桃| 91字幕亚洲| 亚洲欧美一区二区三区黑人| 成人欧美大片| 久久亚洲精品不卡| 好男人在线观看高清免费视频 | 亚洲精品一区av在线观看| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清 | √禁漫天堂资源中文www| 亚洲精品国产区一区二| 大型av网站在线播放| 午夜免费鲁丝| 国产真人三级小视频在线观看| 国产亚洲av嫩草精品影院| 99国产精品99久久久久| 一区二区日韩欧美中文字幕| x7x7x7水蜜桃| 999久久久精品免费观看国产| 亚洲人成77777在线视频| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 1024视频免费在线观看| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 国产精品亚洲美女久久久| 亚洲成人久久性| а√天堂www在线а√下载| 极品人妻少妇av视频| 精品久久久精品久久久| 天堂√8在线中文| 欧美中文日本在线观看视频| 少妇粗大呻吟视频| 日本 欧美在线| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 99久久国产精品久久久| 一级黄色大片毛片| 日本免费a在线| 久久热在线av| 日韩欧美一区视频在线观看| 欧美中文日本在线观看视频| 伊人久久大香线蕉亚洲五| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av | e午夜精品久久久久久久| 亚洲欧美激情在线| а√天堂www在线а√下载| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看| 亚洲av电影不卡..在线观看| 午夜福利18| 大香蕉久久成人网| 欧美绝顶高潮抽搐喷水| or卡值多少钱| 中文字幕久久专区| 久久中文看片网| 性欧美人与动物交配| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 深夜精品福利| 亚洲精品国产色婷婷电影| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 欧美不卡视频在线免费观看 | 美女高潮喷水抽搐中文字幕| 午夜久久久在线观看| 自线自在国产av| www.www免费av| 欧美 亚洲 国产 日韩一| 亚洲成av片中文字幕在线观看| 精品午夜福利视频在线观看一区| 国产三级在线视频| 久久久精品国产亚洲av高清涩受| 欧美日韩黄片免| 日本免费a在线| 日日夜夜操网爽| 国产免费av片在线观看野外av| av片东京热男人的天堂| 97碰自拍视频| 午夜福利视频1000在线观看 | 久久午夜亚洲精品久久| 少妇 在线观看| av在线天堂中文字幕| 国内精品久久久久精免费| 亚洲片人在线观看| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 午夜免费激情av| 国产成+人综合+亚洲专区| 啦啦啦 在线观看视频| www.熟女人妻精品国产| 美女免费视频网站| 女警被强在线播放| 国产精品综合久久久久久久免费 | av电影中文网址| 免费在线观看完整版高清| 少妇的丰满在线观看| 欧美日韩精品网址| 18禁国产床啪视频网站| 午夜亚洲福利在线播放| 岛国在线观看网站| 黄色女人牲交| 精品国产一区二区久久| 欧美激情久久久久久爽电影 | 久久草成人影院| 国产精品免费视频内射| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 日本 av在线| 精品一区二区三区四区五区乱码| 777久久人妻少妇嫩草av网站| 国产一区二区激情短视频| 美女扒开内裤让男人捅视频| 国产99白浆流出| 精品国产乱码久久久久久男人| 日韩av在线大香蕉| 女人精品久久久久毛片| 亚洲av五月六月丁香网| 国产精品香港三级国产av潘金莲| 老鸭窝网址在线观看| xxx96com| 日韩欧美国产一区二区入口| 制服丝袜大香蕉在线| 日韩欧美在线二视频| 丝袜在线中文字幕| 大陆偷拍与自拍| 欧美成人免费av一区二区三区| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 中出人妻视频一区二区| 黄网站色视频无遮挡免费观看| 亚洲av日韩精品久久久久久密| www国产在线视频色| 女同久久另类99精品国产91| or卡值多少钱| 国产片内射在线| 波多野结衣高清无吗| 国产成人精品无人区| 看片在线看免费视频| 人人妻人人爽人人添夜夜欢视频| 亚洲在线自拍视频| 亚洲久久久国产精品| 久久人妻av系列| 在线永久观看黄色视频| 国产精品永久免费网站| 亚洲片人在线观看| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 国产单亲对白刺激| 在线视频色国产色| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 国产麻豆69| 自线自在国产av| 在线观看免费午夜福利视频| 老熟妇仑乱视频hdxx| 波多野结衣一区麻豆| 日本黄色视频三级网站网址| 午夜精品在线福利| 亚洲国产高清在线一区二区三 | 欧美色视频一区免费| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 国产高清有码在线观看视频 | 大码成人一级视频| 午夜福利欧美成人| www.精华液| 国产精品香港三级国产av潘金莲| 日韩欧美在线二视频| 亚洲片人在线观看| 国产人伦9x9x在线观看| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 欧美老熟妇乱子伦牲交| 黄色a级毛片大全视频| 国产精品,欧美在线| 级片在线观看| 日韩欧美三级三区| 一级毛片女人18水好多| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 香蕉丝袜av| 国产成人精品久久二区二区免费| 免费高清在线观看日韩| 久久 成人 亚洲| 国产不卡一卡二| 波多野结衣一区麻豆| 亚洲国产精品合色在线| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 国产av一区二区精品久久| 国产精品永久免费网站| 黄片小视频在线播放| 久久热在线av| 在线天堂中文资源库| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 欧美日韩瑟瑟在线播放| 1024视频免费在线观看| 亚洲中文字幕一区二区三区有码在线看 | 男男h啪啪无遮挡| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久人妻精品电影| 又黄又爽又免费观看的视频| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 麻豆国产av国片精品| 日韩免费av在线播放| 热99re8久久精品国产| 99国产极品粉嫩在线观看| 亚洲免费av在线视频| 精品久久久久久,| 精品午夜福利视频在线观看一区| 午夜福利一区二区在线看| 午夜久久久久精精品| 欧美黑人欧美精品刺激| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| 激情在线观看视频在线高清| 丝袜人妻中文字幕| 丝袜在线中文字幕| 欧美色欧美亚洲另类二区 | 久久草成人影院| 18禁观看日本| 久久久久久久精品吃奶| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 别揉我奶头~嗯~啊~动态视频| 国产精品免费视频内射| 亚洲七黄色美女视频| 欧美日韩精品网址| 桃红色精品国产亚洲av| 91字幕亚洲| 女人精品久久久久毛片| 久久亚洲精品不卡| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 美国免费a级毛片| 国产成人精品无人区| 麻豆成人av在线观看| 成年人黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 午夜久久久久精精品| 国产不卡一卡二| 两人在一起打扑克的视频| 在线观看www视频免费| av网站免费在线观看视频| 国产成+人综合+亚洲专区| 欧美日韩中文字幕国产精品一区二区三区 | www国产在线视频色| 日韩欧美国产一区二区入口| 久久久国产成人免费| 侵犯人妻中文字幕一二三四区| av视频在线观看入口| 老司机深夜福利视频在线观看| 狠狠狠狠99中文字幕| 国语自产精品视频在线第100页| 久久久久国内视频| 天天躁夜夜躁狠狠躁躁| 国产精品美女特级片免费视频播放器 | 色精品久久人妻99蜜桃| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 久久人人爽av亚洲精品天堂| 免费高清在线观看日韩| 亚洲色图av天堂| 在线观看免费日韩欧美大片| 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| 两个人免费观看高清视频| 久久热在线av| 国产精品自产拍在线观看55亚洲| 欧美日韩精品网址| 日韩三级视频一区二区三区| 久久精品国产综合久久久| cao死你这个sao货| 黄色 视频免费看| 97超级碰碰碰精品色视频在线观看| 一a级毛片在线观看| 黄色丝袜av网址大全| 久久久水蜜桃国产精品网| 9191精品国产免费久久| a级毛片在线看网站| 欧美日韩黄片免| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 亚洲色图综合在线观看| а√天堂www在线а√下载| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 美女大奶头视频| 日韩欧美国产在线观看| 国产一区二区激情短视频| 不卡av一区二区三区| 午夜免费激情av| 国产一级毛片七仙女欲春2 | 91九色精品人成在线观看| 老鸭窝网址在线观看| 悠悠久久av| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 久久 成人 亚洲| av视频在线观看入口| 国产99白浆流出| 夜夜夜夜夜久久久久| 国产精品久久久人人做人人爽| 免费在线观看日本一区| 国产伦人伦偷精品视频| 亚洲人成网站在线播放欧美日韩| 国内精品久久久久久久电影| 亚洲片人在线观看| 亚洲精品av麻豆狂野| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 操美女的视频在线观看| 亚洲激情在线av| 丝袜美足系列| 麻豆av在线久日| 97碰自拍视频| 国产精品永久免费网站| 91成年电影在线观看| 一边摸一边抽搐一进一出视频| 成人手机av| 久久久国产欧美日韩av| 国产在线精品亚洲第一网站| 国产av精品麻豆| 女同久久另类99精品国产91| 免费在线观看亚洲国产| 久久精品国产清高在天天线| 欧美日本视频| 嫁个100分男人电影在线观看| 日本免费一区二区三区高清不卡 | 亚洲男人天堂网一区| 香蕉久久夜色| 国产精华一区二区三区| 国产亚洲精品第一综合不卡| 亚洲精品国产色婷婷电影| 一个人免费在线观看的高清视频| 麻豆成人av在线观看| 国内精品久久久久久久电影| 久久婷婷人人爽人人干人人爱 | 搡老妇女老女人老熟妇| 亚洲精品在线美女| 女人被狂操c到高潮| 99精品欧美一区二区三区四区| 无限看片的www在线观看| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区 | 久久精品人人爽人人爽视色| 一级a爱视频在线免费观看| 国产精品秋霞免费鲁丝片| 色综合亚洲欧美另类图片| 精品国产国语对白av| 午夜免费激情av| 亚洲成人精品中文字幕电影| 精品一区二区三区av网在线观看| 日本a在线网址| 亚洲精品国产区一区二| 精品日产1卡2卡| 老汉色av国产亚洲站长工具| 欧美性长视频在线观看| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 欧美大码av| 变态另类丝袜制服| 国产免费男女视频| 欧美乱妇无乱码| 午夜福利18| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| 9191精品国产免费久久| 国产精华一区二区三区| 日本欧美视频一区| 日日摸夜夜添夜夜添小说| 国产精品久久视频播放| 涩涩av久久男人的天堂| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 自线自在国产av| 国产精品一区二区在线不卡| 久久人妻熟女aⅴ| 久久久久久人人人人人| 国产片内射在线| 制服丝袜大香蕉在线| 99久久久亚洲精品蜜臀av| √禁漫天堂资源中文www| 亚洲人成77777在线视频| 亚洲国产高清在线一区二区三 | 国产成人啪精品午夜网站| 久久久精品欧美日韩精品| 精品一区二区三区视频在线观看免费| 婷婷丁香在线五月| 成人亚洲精品一区在线观看| 亚洲欧美激情在线| 精品午夜福利视频在线观看一区| 91精品三级在线观看| 国语自产精品视频在线第100页| 亚洲人成伊人成综合网2020| 亚洲男人天堂网一区| 成人国产综合亚洲| 亚洲欧美激情综合另类| 国产精品一区二区三区四区久久 | 精品国产超薄肉色丝袜足j| 性欧美人与动物交配| 男女床上黄色一级片免费看| 亚洲一区二区三区不卡视频| 亚洲一卡2卡3卡4卡5卡精品中文| av视频免费观看在线观看| 亚洲专区字幕在线| 操出白浆在线播放| 亚洲第一青青草原| 久久久久国产精品人妻aⅴ院| 一进一出抽搐动态| 日韩欧美三级三区| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 国产欧美日韩精品亚洲av| 久久国产精品影院| 欧美一级毛片孕妇| 亚洲狠狠婷婷综合久久图片|