• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence

    2023-09-05 08:48:22LeiHuang黃磊KaiRen任凱HuanpingZhang張煥萍andHuasongQin覃華松
    Chinese Physics B 2023年7期
    關(guān)鍵詞:黃磊

    Lei Huang(黃磊), Kai Ren(任凱),?, Huanping Zhang(張煥萍), and Huasong Qin(覃華松)

    1School of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China

    2Laboratory for Multiscale Mechanics and Medical Science,SV LAB,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: two-dimensional,molecular dynamics,mechanical property,heat transport

    1.Introduction

    By using a micromechanical stripping method,graphene has been successfully separated.[1]Due to their remarkable characteristics and numerous possible applications, twodimensional(2D)materials have garnered extensive attention and research interest.[2,3]For example, graphene has excellent electronic,[4]thermal,[5,6]catalytic,[7]mechanical[8]and magnetic[9]properties.Single-layer graphene’s bipolar electric field effect demonstrates that the charge carriers are more mobile than in semiconductors.[10]Graphene also has high thermoelectric power[10,11]and excellent nonlinear optical characteristics combined with fast response and wide wavelength range in optoelectronic and photonic applications.[12]Inspired by such exciting behaviors of graphene and its successful application in various advanced nanotechnology, research on other 2D materials has been explored.[13]Although they present a large specific surface area, these graphene-like materials possess different mechanical,thermal,electrical,optical and catalytic properties.[14–16]

    The electronic, mechanical and thermal performances of the 2D materials have a critical role in the development of atomic devices.For instance, the mechanical properties of borophene are highly anisotropic: in comparison to the armchair direction, the zigzag direction (also known as the buckled direction) has a substantially lower Young’s modulus and fracture strength.[17]The thermal conductance of pure black and blue phosphorene nanoribbons is sensitively affected by edge shape and breadth, and they both have a distinctly anisotropic thermal performance.[18]The mechanical properties of MoS2can determine the fracture strength and fracture strain of MoS2/WSe2lateral heterostructures.These properties are highly temperature sensitive, and when compared to the graphene–hBN heterostructure, the MoS2/WSe2heterostructure exhibits an order of magnitude lower interfacial thermal conductivity.[19]The properties of materials with negative Poisson’s ratio are very necessary for many advanced applications because they typically have enhanced toughness and shear resistance,along with enhanced sound and vibration absorption, such as the puckered atomic structure of singlelayer black phosphorus and B4N monolayer material.Materials that have a negative Poisson ratio are named auxetic materials.They represent an exciting prospect for enhancing mechanical properties and are necessary for many advanced applications.For example, the Poisson ratios of the puckered atomic structure of black phosphorus[20]and B4N[21]are calculated as?0.267 and?0.032, respectively, and these materials can be considered for future nanomechanical devices.Additionally, due to their excellent properties, silicon carbide (SiC) and germanium carbide (GeC) have garnered a lot of interest.[22,23]SiC possesses a large bandgap of about 3.354 eV,[24]a high saturation electron drift velocity (3×107cm/s), a strong electric breakdown field (3×106V/cm),and is used in high-temperature devices suitable for DC to microwave frequencies.[25]SiC is also a potential electromagnetic shielding material and it can be used for electronic packaging of highly integrated circuits, wireless communication,electronic base stations and other electronic equipment.[26,27]Besides,the defects in a SiC monolayer can induce a sizeable spin effect and strong spin–phonon coupling.[28]Furthermore,GeC also acts as a semiconductor with a bandgap of about 2.515 eV,[22]indicating that it is a promising candidate for application in semiconductor devices, crystal diodes, and photovoltaic systems.[29]Due to the exceptional optical performance of 2D GeC, it has undergone substantial research for prospective use in heterostructure devices and solar cells.[30]In comparison to graphene,the mechanical characteristics of a GeC monolayer indicate a low in-plane stiffness(143.8 N/m)and a high Poisson ratio(0.281).[31]Although there have been a large number of studies on the applications of tSiC and GeC monolayers, their mechanical and thermal characteristics are rarely reported and these are crucial properties to explore for further advanced functional nanodevices.

    To explore the mechanical characteristics of SiC and GeC monolayers under uniaxial stress in the armchair and zigzag directions,we conduct molecular dynamics simulations(MD)in this work.The impacts of temperature and already-existing fractures on mechanical characteristics are discussed.Additionally,the heat transport capabilities of SiC and GeC monolayers are investigated.Adjustable mechanical and thermal characteristics of SiC and GeC monolayers point to possible usage in nanodevices.

    2.Simulation methods

    In our work, the zigzag and armchair directions of the SiC and GeC monolayers are oriented along thexandydirections, respectively, as shown in Fig.1.Both the zigzag and armchair directions use periodic boundary conditions, which means a nanosheet structure is obtained.The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)was used for all MD simulations.[32]It uses OVITO software for structural visualization.[33]To ensure the stability of the values and the correctness of the energy conservation,the time step of all MD simulations is set to 1.0 fs.Initially,the whole system is relaxed at a constant temperature and constant pressure for 200 ps through the Nose–Hoover thermostat.The Tersoff potential,which is often employed and taken into consideration owing to correct parameterization,is utilized to represent the interatomic interactions to achieve agreement with the DFT computations and experimental data.

    In the mechanical calculations,all the simulations are performed using a 194.5 ?A×198.1 ?A supercell that contains periodic boundary conditions applied in any direction along the plane.Here, the fix/deform method as defined in LAMMPS is used to apply in-plane uniaxial tension with a strain rate of 2×108s?1.The system’s temperature is maintained at a constant level during the tensile deformation process, while the other directions are maintained at zero pressure.During the MD simulations,we examine the normal corresponding forces in the zigzag and armchair directions to obtain the mechanical properties of the two material structures.

    Fig.1.The tensile simulation model of the SiC (or GeC) monolayers with dimensions of 194.5 ?A×198.1 ?A.The figure shows the top and side views, and the zoomed-in views (top and side views) of the interface.Both zigzag and armchair directions use periodic boundary conditions.

    Non-equilibrium molecular dynamics (NEMD) simulations are used in the thermal simulations to calculate the thermal conductivity with the length and the width of the SiC(or GeC)monolayers at about 200.23 ?A and 99.09 ?A,respectively.The studied system was first equilibrated with an NPT ensemble for 100 ps and then the system was relaxed with an NVE ensemble for 2000 ps.The kinetic energy of the hottest atom in the heat sink slab and the coldest atom in the heat source slab are exchanged for 6 ns to produce the heat flux(J).

    3.Results and discussion

    3.1.Mechanical behavior

    Structural integrity is maintained after the total relaxation of the SiC and GeC monolayers,suggesting thermal stability.Next,we investigate the zigzag and armchair direction fracture behaviors of the SiC and GeC monolayers under tensile pressure at 300 K.The obtained deformation and initial crack of the SiC and GeC monolayers are shown in Figs.2(a)and 2(b),where one can see that the atomic stress near the crack has been released, and the fracture strains of SiC and GeC along the zigzag direction are larger than those along the armchair one.Furthermore,the fracture strength of SiC is greater than GeC in both directions, and conversely, the maximal strain that GeC can withstand is greater than SiC in both directions,which is demonstrated by the stress–strain curve of SiC and GeC in Fig.3.

    Fig.2.Deformation and initial crack of zigzag and armchair (a) SiC and (b) GeC structures under tensile loading.The color contour in the image shows how the normal stress is distributed along the direction of tensile tension.

    Fig.3.The mechanical characteristics of SiC and GeC structures: the stress–strain curves for SiC(a),(c)and GeC(b),(d)in the zigzag(a),(b)and armchair(c),(d)directions.

    In Fig.3, it can be seen that the strain in SiC increases from 0 to 39.16% along the zigzag direction, corresponding to the stress increasing from 0 to 103.55 GPa.At the same time,the strain increasing from 0 to 27.54%can induce stress increases from 0 to 73.59 GPa along the armchair direction.Besides, when an external strain is applied to GeC in the zigzag(armchair)direction of up to 42%(29.74%),the stress increases will increase to 87.64 GPa (67.9 GPa).As shown in the stress–strain curves,both materials exhibit much greater zigzag fracture strengths and strain than armchair fracture strengths and strain, indicating anisotropy in their mechanical properties.The strongest 2D material is graphene,which has a fracture strength of 100–130 GPa and a Young’s modulus of about 1.0 TPa.[34]On comparison, SiC and GeC are much weaker than graphene but far more robust than other 2D materials, such as borophene (23.45–55.9 GPa),[19]silicene(12.5 GPa)[35]and MoS2(11–13 GPa).[17]The effect of temperature on the stress–strain curves of SiC and GeC is also addressed in Fig.3.One can see that SiC and GeC behave mechanically similarly in zigzag (or armchair) directions at various temperatures before fracture, which means that the temperature mainly changes the ultimate fracture performance.

    Fig.4.Trends of(a)fracture strength and(b)fracture strain at different temperatures for SiC and GeC.

    Then,we investigated the effect of the mechanical characteristics of the SiC and GeC monolayers at different temperatures.The fracture strength and strain of SiC and GeC possess an obvious dependence on the temperature between 50 K and 500 K, as shown in Fig.4.Besides, nonlinear elastic behavior is observed for SiC and GeC.As shown in Fig.4(a), as the temperature rises, both the fracture strength and fracture strain of SiC (or GeC) considerably decline.In more detail,the fracture strength of SiC reduces by 42.5%and 41.59%in zigzag and armchair directions,respectively,when the temperature rises from 50 K to 500 K.The fracture strength of GeC along the zigzag and armchair directions are likewise reduced by around 41.69%and 39.27%, respectively.In addition, the fracture strain of the SiC decreases by 71.2% and 56.9% for zigzag and armchair directions, respectively, while the GeC reduces by about 70.1%and 59.2%along zigzag and armchair directions,respectively.All of these results show that SiC and GeC are more temperature sensitive in terms of their fracture strength in a zigzag direction.At higher temperatures,the vibrations of atoms are greater,and it is easier for local chemical bonds to attain critical bond lengths and break as a result.This phenomenon is known as temperature-induced softening.This resembles the mechanical characteristics of certain common 2D materials,such as MoS2,[36]graphene[34]and silicene,[35]at different temperatures.

    Defect engineering is a common technique to modify the characteristics of 2D materials,[6,37,38]and defects also can be introduced easily in SiC and GeC during their fabrication processes.Thus,the response of the mechanical behaviors of SiC and GeC to the initial crack is investigated along zigzag and armchair directions,as shown in Fig.5.We perform MD simulations at 300 K and the obtained fracture strain and fracture strength for various crack lengths (L) in SiC and GeC, ranging up to 5 nm,are shown in Figs.5(a)and 5(b),respectively.Interestingly, SiC and GeC fracture strengths can be significantly reduced by a pre-existing crack in both zigzag and armchair orientations.Evidently,the shorter crack length can tune the fracture strength and strain of the SiC and GeC more effectively.

    Fig.5.(a)Schematic of applied stress on SiC(or SiC)with defective structure; the calculated (b) fracture strength and (c) the fracture strain of the SiC and GeC as a function of crack length(L)under tensile loading.

    3.2.Thermal properties

    The SiC and GeC monolayers possess semiconductor characteristics, suggesting desirable applications in nanoelectronics and thermoelectric devices, therefore, their heat transport properties are also critical.The thermal conductivities of SiC and GeC are discussed using NEMD simulations.As shown in Fig.6(a), both ends of the SiC (or GeC) monolayer are fixed, and hot and cold baths are located near the fixed parts.Thus, the heat flux is along thexdirection.The thermal properties in zigzag and armchair directions are investigated by setting them as thexdirection.The temperature profiles, after reaching a steady state, of SiC and GeC in the zigzag direction are demonstrated in Fig.6(b).For pure SiC and GeC,by fitting the linear area(depicted by a straight line)on the temperature profile,the temperature gradient(dT/dx)is derived.Following that, Fourier’s law is used to compute the thermal conductivity(κ)

    whereArepresents the region in cross-section through which the heat flux flows.In order to obtain the thermal conductivity at room temperature (300 K), the hot and cold baths fixed at both ends in Fig.6(a) were set to 320 K and 280 K, respectively.Therefore, the thermal conductivity of pure SiC at a temperature of 300 K is calculated as 16.89 W·m?1·K?1and 18.99 W·m?1·K?1along the zigzag and armchair directions,respectively, which are higher than those of transition metal dichalcogenides materials, such as MoS2(5.93 W·m?1·K?1)and WSe2(7.09 W·m?1·K?1).[19]Additionally,pure GeC has a thermal conductivity of 3.89 W·m?1·K?1in the zigzag direction and 4.49 W·m?1·K?1in the armchair direction.Compared to BCN, which has a thermal conductivity of 28–46 W·m?1·K?1, SiC and GeC exhibit a much lower thermal conductivity.[39]

    Fig.6.(a) Schematic diagram of the heat transfer model and (b) the calculated temperature profiles of pure SiC and GeC monolayers along the zigzag direction.

    Then, to explore the effect of size on the tunable thermal property of SiC and GeC,we fixed the value of the width and changed the length from 200 ?A to 2000 ?A at 300 K.The calculated thermal property of SiC and GeC with different lengths is given in Fig.7(a), which shows that the thermal conductivity of SiC sheet increases from 16.89 W·m?1·K?1to 85.67 W·m?1·K?1along the zigzag direction and from 18.99 W·m?1·K?1to 82.79 W·m?1·K?1along the armchair direction.The thermal conductivity of pure GeC sheet is enhanced from 3.89 W·m?1·K?1to 34.37 W·m?1·K?1along the zigzag direction and from 4.49 W·m?1·K?1to 32.74 W·m?1·K?1along the armchair direction.These results indicate an obvious size dependence of the thermal property of SiC and GeC.

    Fig.7.(a) Thermal conductivity measured in pure SiC and GeC at various lengths; (b)the relationships between the inverse thermal conductivity and the inverse sample length for pure SiC and GeC.

    When the length of the 2D material is shorter than the phonon mean free path(MFP),which is a common approach to optimizing the heat transport performance of 2D materials,the system size has a significant impact on the thermal conductivity of these materials.[40]The following connection between the inverse thermal conductivity and the inverse sample lengthL?1are used to calculate the effective MFP:[41]

    wherelis MFP andκ∞is the thermal conductivity of an infinitely long sample.From the fitting curve shown in Fig.7(b), the obtained effective MFPs for pure SiC and GeC are 109.97 nm and 321.21 nm, respectively.The thermal conductivity of a pure SiC (GeC) infinite-length sample is 126.46 W·m?1·K?1(85.30 W·m?1·K?1).

    Besides, we also calculate the thermal property of SiC and GeC at different temperatures ranging from 100 K to 500 K,as shown in Fig.8(a).One can see that the thermal conductivity of both SiC and GeC in the zigzag and the armchair directions are still almost the same, and the simulation results of SiC show that its thermal conductivity decreases from 29.50 W·m?1·K?1to 13.92 W·m?1·K?1along the zigzag direction, and from 28.60 W·m?1·K?1to 15.23 W·m?1·K?1along the armchair direction,indicating a negative temperature dependence.However,the thermal conductivity of GeC shows no significant difference with temperature.The obtained tunable thermal property of SiC and GeC suggests a promising use for thermoelectric applications.

    In Fig.8(a), the SiC monolayer shows a strong temperature-dependent thermal conductivity, which is related to phonon anharmonicity.To explore the potential physical mechanism of temperature-dependent thermal conductivity in the SiC monolayer, we calculate the vibrational density of states(VDOS)in the SiC monolayer at 100–500 K from

    whereωis the angular frequency andC(t) represents the velocity autocorrelation function.For total VDOS,C(t) =(t)is the velocity of atomjand the symbol〈〉represents the ensemble average.[42]The calculated results are shown as Fig.8(b)with the phonon frequency ranging from 0 to 40 THz.The peak frequency for the SiC monolayer at 300 K is around 11.5 THz.The peak value of VDOS near 25–40 THz varies significantly with temperature,thus, we focus on this range.As shown in Fig.8(b), the increased temperature causes a significant redshift in the high frequency peaks of SiC, induced by an enhanced phonon anharmonicity, reducing the thermal conductivity and therefore exhibiting a temperature dependence.This phenomenon has also been explored in Janus MoSSe and WSSe monolayers.[43]Our simulations are an important reference for the future development of thermal devices and thermoelectric energy conversion.

    4.Conclusion and perspectives

    In this study,molecular dynamics simulations were used to systematically examine the in-plane mechanical and thermal transport characteristics of pure SiC and GeC.Both SiC and GeC demonstrate an excellent toughness with fracture strain of about 0.43 and 0.47 in the zigzag direction at 300 K, respectively, which can be decreased by temperature and the introduced crackle.Furthermore, the thermal conductivities of pure SiC (GeC) are calculated as 16.89 W·m?1·K?1(3.89 W·m?1·K?1)and 18.99 W·m?1·K?1(4.49 W·m?1·K?1) along zigzag and armchair directions, respectively,by a non-equilibrium molecular dynamics method.Additionally,the thermal conductivity of SiC(GeC)can reach 85.67 W·m?1·K?1(34.37 W·m?1·K?1) due to a size effect,although an increase in temperature will reduce that.The obtained size and temperature-tunable mechanical and thermal characteristics of SiC and GeC suggest promising applications as thermoelectric and flexible nanodevices.

    Acknowledgements

    All the authors would like to thank the support of the Natural Science Foundation of Jiangsu(Grant No.BK20220407),the National Natural Science Foundation of China (Grant Nos.12102323, 11890674), the China Postdoctoral Science Foundation (Grant No.2021M692574), and the Fundamental Research Funds for the Central Universities (Grant No.sxzy012022024).This work is also supported by the HPC Center,Nanjing Forestry University,China.

    猜你喜歡
    黃磊
    黃磊:穿越人山人海,仍是文藝青年
    黃磊、何炅的千飯之誼
    黃磊 熟男的坐標(biāo)
    北廣人物(2020年22期)2020-06-19 08:09:12
    編讀往來(lái)
    黃磊:我的“麻煩”來(lái)得剛剛好
    金色年華(2017年11期)2017-07-18 11:08:43
    黃磊 愛(ài)需要好好經(jīng)營(yíng)
    海峽姐妹(2017年3期)2017-04-16 03:06:33
    Study of the natural vibration characteristics of water motion in the moon pool by the semi-analytical method*
    失去了盛世美顏的胖子黃磊為何還是男神
    意林(2016年21期)2016-11-30 17:05:38
    贊揚(yáng)出來(lái)的大明星
    愿意為你做一輩子的黃小廚
    又黄又粗又硬又大视频| 18禁美女被吸乳视频| 亚洲成人国产一区在线观看| 少妇粗大呻吟视频| www日本在线高清视频| 久久午夜综合久久蜜桃| 可以免费在线观看a视频的电影网站| 午夜精品在线福利| 高清黄色对白视频在线免费看| 国产亚洲欧美在线一区二区| 岛国视频午夜一区免费看| 欧美黑人精品巨大| 国产成人系列免费观看| 成人国产一区最新在线观看| 国语自产精品视频在线第100页| 久久精品亚洲精品国产色婷小说| 亚洲精品av麻豆狂野| 99精品在免费线老司机午夜| 亚洲情色 制服丝袜| 成熟少妇高潮喷水视频| 女人精品久久久久毛片| 久久久精品国产亚洲av高清涩受| 在线观看日韩欧美| tocl精华| 熟女少妇亚洲综合色aaa.| 精品欧美国产一区二区三| 老鸭窝网址在线观看| 亚洲av第一区精品v没综合| 亚洲中文av在线| 在线天堂中文资源库| 日本精品一区二区三区蜜桃| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品第一综合不卡| 亚洲 国产 在线| 老汉色∧v一级毛片| 久久精品91蜜桃| 一区二区三区激情视频| 国产精品1区2区在线观看.| 欧美绝顶高潮抽搐喷水| 韩国av一区二区三区四区| 咕卡用的链子| 国产亚洲精品一区二区www| 免费在线观看日本一区| 免费在线观看日本一区| 一级毛片精品| 一级毛片精品| 丝袜美足系列| 99久久99久久久精品蜜桃| 波多野结衣巨乳人妻| 国产1区2区3区精品| 啦啦啦韩国在线观看视频| 久久人人爽av亚洲精品天堂| 最近最新中文字幕大全电影3 | 少妇粗大呻吟视频| 久久人人97超碰香蕉20202| 麻豆久久精品国产亚洲av| 精品国产超薄肉色丝袜足j| 亚洲中文字幕一区二区三区有码在线看 | 性色av乱码一区二区三区2| 成人免费观看视频高清| 国产一区二区在线av高清观看| 人人妻人人爽人人添夜夜欢视频| 91精品三级在线观看| 变态另类丝袜制服| 亚洲熟妇中文字幕五十中出| 欧美黄色片欧美黄色片| 88av欧美| 国产一区二区在线av高清观看| 黄色视频不卡| 亚洲av日韩精品久久久久久密| 国产一区二区在线av高清观看| av有码第一页| 91成年电影在线观看| 午夜福利免费观看在线| 国内毛片毛片毛片毛片毛片| 精品国产乱码久久久久久男人| 亚洲精品中文字幕一二三四区| 国产av精品麻豆| 国产精品精品国产色婷婷| 亚洲九九香蕉| 日本免费a在线| 亚洲七黄色美女视频| 免费人成视频x8x8入口观看| 色播亚洲综合网| 亚洲国产欧美一区二区综合| 18禁裸乳无遮挡免费网站照片 | 搡老岳熟女国产| 婷婷六月久久综合丁香| 男人舔女人下体高潮全视频| 国产真人三级小视频在线观看| 国产不卡一卡二| 少妇被粗大的猛进出69影院| 黄片小视频在线播放| 人人妻人人爽人人添夜夜欢视频| 天堂√8在线中文| 亚洲无线在线观看| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av高清一级| av超薄肉色丝袜交足视频| 日韩大码丰满熟妇| 真人一进一出gif抽搐免费| 国产精品美女特级片免费视频播放器 | 欧美黄色片欧美黄色片| 亚洲精品美女久久久久99蜜臀| 国产高清激情床上av| 午夜福利,免费看| 啦啦啦 在线观看视频| 俄罗斯特黄特色一大片| 国产高清有码在线观看视频 | 免费久久久久久久精品成人欧美视频| 色综合欧美亚洲国产小说| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 午夜日韩欧美国产| 精品一区二区三区av网在线观看| 最新在线观看一区二区三区| 精品午夜福利视频在线观看一区| 校园春色视频在线观看| 中文字幕色久视频| 免费久久久久久久精品成人欧美视频| 成人18禁在线播放| 91老司机精品| 久久久久久久久中文| 成年版毛片免费区| 国产99白浆流出| 成人国产一区最新在线观看| 国产成人系列免费观看| 婷婷六月久久综合丁香| 久久精品人人爽人人爽视色| 搡老妇女老女人老熟妇| 亚洲成av人片免费观看| 国内精品久久久久久久电影| 可以免费在线观看a视频的电影网站| 色尼玛亚洲综合影院| 窝窝影院91人妻| 不卡av一区二区三区| 一级a爱视频在线免费观看| 一区二区三区激情视频| 嫩草影视91久久| 久久狼人影院| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| 亚洲欧美一区二区三区黑人| 午夜福利视频1000在线观看 | 欧美精品亚洲一区二区| 变态另类成人亚洲欧美熟女 | 两个人视频免费观看高清| 嫁个100分男人电影在线观看| 国产国语露脸激情在线看| 性欧美人与动物交配| 欧美大码av| 日韩大尺度精品在线看网址 | 婷婷精品国产亚洲av在线| 在线观看www视频免费| 亚洲精品一区av在线观看| 丝袜人妻中文字幕| 99香蕉大伊视频| 91麻豆av在线| 黄片播放在线免费| 99久久99久久久精品蜜桃| 黄色成人免费大全| 午夜福利高清视频| 99re在线观看精品视频| 深夜精品福利| 日本a在线网址| 制服诱惑二区| 最近最新免费中文字幕在线| 99香蕉大伊视频| 可以免费在线观看a视频的电影网站| 黄片播放在线免费| 99国产精品一区二区三区| 亚洲五月色婷婷综合| 欧美一区二区精品小视频在线| 99re在线观看精品视频| 十八禁网站免费在线| 51午夜福利影视在线观看| 一本久久中文字幕| 性欧美人与动物交配| 黄色a级毛片大全视频| 久久精品亚洲精品国产色婷小说| 少妇 在线观看| 一边摸一边做爽爽视频免费| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 国产一区二区在线av高清观看| 高清黄色对白视频在线免费看| 真人一进一出gif抽搐免费| 人妻久久中文字幕网| 中文字幕久久专区| 激情在线观看视频在线高清| 国产高清视频在线播放一区| 国产高清激情床上av| 国产成年人精品一区二区| 日本a在线网址| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 色播在线永久视频| 久久香蕉精品热| 国产野战对白在线观看| 亚洲av美国av| 欧美日韩乱码在线| 一本久久中文字幕| 国产单亲对白刺激| 日日夜夜操网爽| 欧美不卡视频在线免费观看 | 人成视频在线观看免费观看| x7x7x7水蜜桃| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 国产av在哪里看| 国产精品二区激情视频| 狠狠狠狠99中文字幕| 国产熟女午夜一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 日韩大尺度精品在线看网址 | 久久久久久大精品| a在线观看视频网站| 精品久久蜜臀av无| 欧美日本视频| 色婷婷久久久亚洲欧美| 国产av在哪里看| 国产三级黄色录像| 麻豆av在线久日| 欧美一级毛片孕妇| 久久久久久久久中文| 欧美日韩黄片免| 日韩欧美一区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品美女久久av网站| 一级,二级,三级黄色视频| 亚洲成国产人片在线观看| 国产成人免费无遮挡视频| 免费无遮挡裸体视频| 成人三级黄色视频| 黄色视频不卡| 大香蕉久久成人网| 最新在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全免费视频| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 又黄又爽又免费观看的视频| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线| 亚洲精品中文字幕一二三四区| 99久久精品国产亚洲精品| 91老司机精品| 黑人巨大精品欧美一区二区mp4| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲中文av在线| 成人手机av| 欧美国产日韩亚洲一区| 又黄又粗又硬又大视频| 自线自在国产av| 亚洲精品粉嫩美女一区| 日韩高清综合在线| 亚洲精品国产一区二区精华液| 色播在线永久视频| 亚洲专区中文字幕在线| 中文字幕人妻丝袜一区二区| av网站免费在线观看视频| 欧美中文日本在线观看视频| 久久精品国产综合久久久| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 日本 欧美在线| 成熟少妇高潮喷水视频| 欧美乱色亚洲激情| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 男人的好看免费观看在线视频 | 村上凉子中文字幕在线| 欧美日本中文国产一区发布| 午夜福利视频1000在线观看 | 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 成年人黄色毛片网站| 午夜成年电影在线免费观看| 欧美日韩瑟瑟在线播放| 国产av在哪里看| 极品教师在线免费播放| 99久久国产精品久久久| 亚洲精品av麻豆狂野| 少妇粗大呻吟视频| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 国产男靠女视频免费网站| 91精品三级在线观看| 久久久久九九精品影院| 天堂影院成人在线观看| 国产精品一区二区精品视频观看| av中文乱码字幕在线| 极品教师在线免费播放| aaaaa片日本免费| 亚洲中文日韩欧美视频| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 大香蕉久久成人网| 国产人伦9x9x在线观看| 欧美成人午夜精品| 亚洲激情在线av| 青草久久国产| 日韩欧美国产在线观看| 一级黄色大片毛片| 日本 av在线| 免费看十八禁软件| 级片在线观看| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 久久久久久久久久久久大奶| 久久伊人香网站| 在线观看免费视频日本深夜| 精品国产美女av久久久久小说| 69av精品久久久久久| 午夜福利成人在线免费观看| 岛国在线观看网站| 中文字幕人成人乱码亚洲影| 国产精品av久久久久免费| 最新在线观看一区二区三区| 亚洲一区二区三区不卡视频| 人人妻人人澡欧美一区二区 | 午夜免费鲁丝| 久久精品91蜜桃| 岛国视频午夜一区免费看| 男人操女人黄网站| 欧美最黄视频在线播放免费| 好男人电影高清在线观看| 国产一区二区三区在线臀色熟女| 亚洲人成伊人成综合网2020| 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区 | 丝袜人妻中文字幕| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 99国产精品免费福利视频| 国产精品,欧美在线| 午夜a级毛片| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 欧美日本中文国产一区发布| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 国产野战对白在线观看| 18禁美女被吸乳视频| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 一本综合久久免费| 一a级毛片在线观看| 久久精品成人免费网站| 黄色a级毛片大全视频| 亚洲 国产 在线| 香蕉丝袜av| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 国产麻豆成人av免费视频| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜 | 在线观看免费视频网站a站| 亚洲国产欧美一区二区综合| 久久人人爽av亚洲精品天堂| 一进一出抽搐gif免费好疼| 99国产综合亚洲精品| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 人人妻人人澡人人看| 韩国av一区二区三区四区| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 制服人妻中文乱码| 老汉色∧v一级毛片| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 在线观看午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 天天添夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线播放欧美日韩| 在线天堂中文资源库| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 精品无人区乱码1区二区| 精品国产国语对白av| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 亚洲av成人一区二区三| 日韩精品免费视频一区二区三区| a在线观看视频网站| 色播在线永久视频| 久久狼人影院| 好男人在线观看高清免费视频 | 精品久久久久久久人妻蜜臀av | 国产精品av久久久久免费| 日本在线视频免费播放| 999久久久精品免费观看国产| 亚洲精品美女久久av网站| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 婷婷丁香在线五月| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 精品少妇一区二区三区视频日本电影| 亚洲激情在线av| 一区二区三区精品91| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 色在线成人网| 18禁裸乳无遮挡免费网站照片 | 国产熟女午夜一区二区三区| av电影中文网址| 岛国视频午夜一区免费看| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 久久久久国产一级毛片高清牌| 欧美日本视频| 久久中文看片网| 国产精品免费一区二区三区在线| 在线观看免费日韩欧美大片| 9191精品国产免费久久| 在线观看免费视频网站a站| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 琪琪午夜伦伦电影理论片6080| 欧美另类亚洲清纯唯美| 久久婷婷成人综合色麻豆| av网站免费在线观看视频| 脱女人内裤的视频| 一a级毛片在线观看| 久9热在线精品视频| 国产精品98久久久久久宅男小说| АⅤ资源中文在线天堂| 成人三级做爰电影| 免费在线观看影片大全网站| 两个人视频免费观看高清| 午夜免费鲁丝| 两个人免费观看高清视频| 久久香蕉激情| 国产精品国产高清国产av| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 国产三级在线视频| a在线观看视频网站| 亚洲自偷自拍图片 自拍| 久久精品影院6| 国产精品久久电影中文字幕| www.自偷自拍.com| 午夜免费激情av| 天天一区二区日本电影三级 | 欧美中文综合在线视频| 亚洲中文字幕日韩| 亚洲精品美女久久av网站| 国产激情久久老熟女| 好男人电影高清在线观看| 男人的好看免费观看在线视频 | 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 日韩欧美一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 一二三四在线观看免费中文在| 一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 男女下面进入的视频免费午夜 | 亚洲色图 男人天堂 中文字幕| 亚洲最大成人中文| 大陆偷拍与自拍| 亚洲精品av麻豆狂野| 婷婷六月久久综合丁香| 在线av久久热| 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 亚洲av片天天在线观看| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 人人妻,人人澡人人爽秒播| 亚洲五月婷婷丁香| 日韩精品中文字幕看吧| 黄色视频,在线免费观看| 久久久久久久久免费视频了| avwww免费| 亚洲一区高清亚洲精品| 日韩免费av在线播放| 在线观看午夜福利视频| 亚洲专区字幕在线| 成人免费观看视频高清| 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| 无人区码免费观看不卡| 亚洲电影在线观看av| 一个人观看的视频www高清免费观看 | 日本精品一区二区三区蜜桃| 久久伊人香网站| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 亚洲电影在线观看av| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 久久香蕉国产精品| 欧美大码av| av欧美777| 中文字幕色久视频| 午夜影院日韩av| 无人区码免费观看不卡| 999精品在线视频| 一边摸一边抽搐一进一小说| 9热在线视频观看99| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 国产一区二区三区综合在线观看| 国产人伦9x9x在线观看| 男女下面进入的视频免费午夜 | 久久人妻福利社区极品人妻图片| 可以在线观看毛片的网站| 亚洲少妇的诱惑av| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 一级,二级,三级黄色视频| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女| 一级毛片精品| 亚洲av成人av| 91老司机精品| 久久精品国产清高在天天线| 成人18禁在线播放| 亚洲国产看品久久| 国产单亲对白刺激| 国产av在哪里看| 极品人妻少妇av视频| 亚洲专区中文字幕在线| 一级作爱视频免费观看| 一区二区三区激情视频| 亚洲人成电影观看| 午夜激情av网站| 男女下面插进去视频免费观看| 又黄又粗又硬又大视频| 久久中文字幕人妻熟女| 91在线观看av| 日韩视频一区二区在线观看| 波多野结衣巨乳人妻| 国产午夜精品久久久久久| 精品国内亚洲2022精品成人| 亚洲av成人av| 日韩大尺度精品在线看网址 | 午夜福利成人在线免费观看| 国产在线观看jvid| 久久久久国产一级毛片高清牌| 欧美日本亚洲视频在线播放| 很黄的视频免费| www.自偷自拍.com| 美女 人体艺术 gogo| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 香蕉国产在线看| 亚洲精品国产区一区二| 欧美色视频一区免费| 午夜视频精品福利| 日本一区二区免费在线视频| 18禁观看日本| 国产成人一区二区三区免费视频网站| 自线自在国产av| 精品国产一区二区久久| 18禁观看日本| 美女 人体艺术 gogo| 精品人妻1区二区| e午夜精品久久久久久久| 波多野结衣av一区二区av| 免费在线观看亚洲国产| 亚洲精品一区av在线观看| e午夜精品久久久久久久| 人人妻人人澡欧美一区二区 | 亚洲全国av大片| 国产精品美女特级片免费视频播放器 | 91老司机精品| 亚洲av成人av| 啦啦啦观看免费观看视频高清 | 国产区一区二久久| 日韩中文字幕欧美一区二区| 久久亚洲真实| 国产成+人综合+亚洲专区| 91成年电影在线观看| 亚洲在线自拍视频| 在线天堂中文资源库| 热re99久久国产66热| 俄罗斯特黄特色一大片| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 日韩高清综合在线| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 国产伦一二天堂av在线观看| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 国产精品久久电影中文字幕| 日韩三级视频一区二区三区| 欧美国产精品va在线观看不卡| 成人手机av| 亚洲自拍偷在线|