黃 鑫,劉文龍,張 勇,劉淑瑩,2
(1.長(zhǎng)春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長(zhǎng)春 130117;2.中國(guó)科學(xué)院長(zhǎng)春應(yīng)用化學(xué)研究所,長(zhǎng)春質(zhì)譜中心,吉林 長(zhǎng)春 130022)
敞開式離子化質(zhì)譜技術(shù)在中草藥研究中的應(yīng)用
黃 鑫1,劉文龍1,張 勇1,劉淑瑩1,2
(1.長(zhǎng)春中醫(yī)藥大學(xué),吉林省人參科學(xué)研究院,吉林 長(zhǎng)春 130117;2.中國(guó)科學(xué)院長(zhǎng)春應(yīng)用化學(xué)研究所,長(zhǎng)春質(zhì)譜中心,吉林 長(zhǎng)春 130022)
敞開式離子化質(zhì)譜(ambient ionization mass spectrometry, AIMS)是近年來(lái)興起的一種無(wú)需(或稍許)樣品前處理步驟,在敞開的大氣環(huán)境下實(shí)現(xiàn)離子化的質(zhì)譜分析技術(shù)。近年來(lái),各種AIMS技術(shù)的研制與應(yīng)用成為質(zhì)譜領(lǐng)域備受關(guān)注的焦點(diǎn)之一。本工作綜述了AIMS技術(shù)在中草藥研究中的應(yīng)用,對(duì)典型的分析策略進(jìn)行了討論,闡述了AIMS技術(shù)的基本原理、特點(diǎn)和分類,并展望了該技術(shù)在中醫(yī)藥研究領(lǐng)域的發(fā)展趨勢(shì)和可能影響。
敞開式離子化;質(zhì)譜;中草藥;綜述
敞開式離子化質(zhì)譜(ambient ionization mass spectrometry, AIMS)是一種能在敞開的常壓環(huán)境下直接對(duì)樣品或樣品表面物質(zhì)進(jìn)行分析的新型質(zhì)譜技術(shù),此技術(shù)無(wú)需(或者只需簡(jiǎn)單的)樣品前處理,便可實(shí)現(xiàn)對(duì)樣品的分析,具有實(shí)時(shí)、原位、高通量、簡(jiǎn)便快速、環(huán)保、可以與各種質(zhì)譜儀器聯(lián)用等一系列優(yōu)點(diǎn),同時(shí)兼具傳統(tǒng)質(zhì)譜的分析速度快、靈敏度高等特點(diǎn)。2004年Cooks 課題組[1]在電噴霧電離基礎(chǔ)上首次提出解吸電噴霧電離(desorption electrospray ionization, DESI)技術(shù);2005年Cody等[2]在大氣壓化學(xué)電離基礎(chǔ)上研制出實(shí)時(shí)直接檢測(cè)的DART(direct analysis in real time)技術(shù);幾乎同時(shí),謝建臺(tái)等[3]也研制出類似的電噴霧輔助激光解吸電離質(zhì)譜技術(shù)。繼而,AIMS的研發(fā)引起了廣泛關(guān)注,各類新技術(shù)不斷涌現(xiàn),目前該技術(shù)的種類已有40余種[4-8]。為促進(jìn)AIMS技術(shù)的創(chuàng)新和發(fā)展,由中國(guó)質(zhì)譜學(xué)會(huì)和華質(zhì)泰科生物技術(shù)(北京)有限公司共同主辦的“AIMS國(guó)際學(xué)術(shù)年會(huì)”從2013年至今已經(jīng)成功舉辦4次,引領(lǐng)著AIMS技術(shù)迅速向各個(gè)行業(yè)逐層滲透,影響著下一代分析檢測(cè)技術(shù)的開發(fā)和利用。與經(jīng)典的電噴霧、大氣壓化學(xué)電離和大氣壓光電離等電離方式相比,AIMS具有溶劑消耗少、耐鹽和抗基質(zhì)干擾能力強(qiáng)等優(yōu)點(diǎn)[5],同時(shí),AIMS的敞開結(jié)構(gòu)和模塊化設(shè)計(jì)使其可以方便的與各種質(zhì)譜連接,從而大大降低了儀器購(gòu)置成本。這一技術(shù)在醫(yī)學(xué)、藥學(xué)、食品安全、環(huán)境污染物監(jiān)控、爆炸物檢測(cè)、生物分子及代謝物表征、分子成像等諸多領(lǐng)域已展現(xiàn)出廣泛的應(yīng)用前景[5-6,8-9]。因此,AIMS的基礎(chǔ)和應(yīng)用研究備受質(zhì)譜學(xué)家的關(guān)注,基礎(chǔ)研究主要圍繞構(gòu)建開發(fā)新型的AIMS離子源,探討相應(yīng)的離子化機(jī)理;應(yīng)用研究主要是對(duì)各種實(shí)際樣品進(jìn)行定性和定量分析。本工作著重綜述AIMS在中草藥研究中的應(yīng)用,通過(guò)對(duì)典型的分析策略進(jìn)行討論,闡述AIMS技術(shù)的基本原理、特點(diǎn)和分類,并展望該技術(shù)在中醫(yī)藥研究領(lǐng)域的發(fā)展趨勢(shì)和可能影響。
AIMS集成了樣品原位解吸附、待測(cè)物實(shí)時(shí)離子化和離子傳輸至質(zhì)量分析器三個(gè)核心步驟。下面,以DART為例,介紹離子化的基本原理:利用He或者N2作為工作氣通過(guò)放電室,放電室內(nèi)部的陰極和陽(yáng)極之間施加一個(gè)高達(dá)幾千伏的電壓導(dǎo)致高壓輝光放電,使工作氣電離成為含激發(fā)態(tài)氣體原子或分子、離子、電子的等離子體氣流。等離子體氣流流經(jīng)圓盤電極,選擇性地移除某些離子后被加熱,加熱后的等離子體氣流從DART口噴出至樣品表面,完成熱輔助的解吸附和離子化過(guò)程。一般認(rèn)為離子化機(jī)理包括周圍氣體被激發(fā)態(tài)工作氣體彭寧(Penning)電離、進(jìn)而發(fā)生質(zhì)子轉(zhuǎn)移以及其他類型的氣相離子分子反應(yīng)等過(guò)程。AIMS技術(shù)不僅可在常壓下對(duì)待測(cè)樣品離子化,而且離子源的敞開結(jié)構(gòu)易于實(shí)現(xiàn)物體表面的直接離子化及質(zhì)譜分析。這類離子源操作簡(jiǎn)便、快捷,無(wú)需復(fù)雜的樣品前處理。AIMS技術(shù)的另一重要特征是速度快、通量高,通常每個(gè)樣品的分析時(shí)間不超過(guò)5 s,充分展現(xiàn)了質(zhì)譜快速分析的優(yōu)勢(shì),為高通量分析提供了一種新的有效途徑。因此,常壓敞開式離子源開辟了質(zhì)譜技術(shù)在無(wú)需樣品前處理的直接、快速分析,表面與原位分析等領(lǐng)域的廣闊應(yīng)用。
AIMS離子源按照其離子化過(guò)程和機(jī)理可以分為三大類[6]:1)直接電離離子源。樣品直接進(jìn)入高壓電場(chǎng)被電離,如在ESI源基礎(chǔ)上發(fā)展起來(lái)的眾多離子源,包括直接電噴霧探針(direct electrospray probe ionization, DEPI)、探針電噴霧電離(probe electrospray ionization, PESI)、紙噴霧電離(paper spray ionization, PSI)、場(chǎng)致液滴電離(field-induced droplet ionization, FIDI)和超聲波電離(ultrasound ionization, USI)等;2)直接解吸電離離子源,起到對(duì)樣品解吸和電離的作用。包括解吸電噴霧電離(desorption electrospray ionization, DESI)、電場(chǎng)輔助解吸電噴霧電離(electrode-assisted desorption electrospray ionization, EADESI)、簡(jiǎn)易敞開式聲波噴霧電離(easy ambient sonic spray ionization, EASI)、解吸大氣壓化學(xué)電離(desorption atmospheric pressure chemical ionization, DAPCI)、介質(zhì)阻擋放電電離(dielectric barrier discharge ionization, DBDI)、等離子體輔助解吸電離(plasma-assisted desorption ionization, PADI)、大氣壓輝光放電電離(atmospheric glow discharge ionization, APGDI)、解吸電暈束電離(desorption corona beam ionization, DCBI)、激光噴霧電離(Laser spray ionization, LSI)等;3)解吸后電離離子源。這是一種兩步機(jī)理離子源,第1步先對(duì)被分析物進(jìn)行解吸附,第2步實(shí)現(xiàn)被分析物的電離過(guò)程,包括氣相色譜-電噴霧質(zhì)譜(gas chromatography electrospray ionization, GC-ESI)、二次電噴霧電離(secondary electrospray ionization, SESI)、熔融液滴電噴霧電離(fused droplet electrospray ionization, FD-ESI)、萃取電噴霧電離(extractive electrospray ionization, EESI)、液體表面彭寧電離質(zhì)譜(liquid surface Penning ionization, LPI)、大氣壓彭寧電離(atmospheric pressure Penning ionization, APPeI)、電噴霧激光解吸電離(electrospray laser desorption ionization, ELDI)、基質(zhì)輔助激光解吸電噴霧電離(matrix-assisted laser desorption electrospray ionization, MALDESI)、激光消融電噴霧電離(laser ablation electrospray ionization, LAESI)、紅外激光輔助解吸電噴霧電離(infrared laser-assisted desorption electrospray ionization, IR-LADESI)、激光電噴霧電離(laser electrospray ionization, LESI)、激光解吸噴霧后離子化(laser desorption spray post-ionization, LDSPI)、激光誘導(dǎo)聲波解吸電噴霧電離(laser-induced acoustic desorption electrospray ionization, LIAD-ESI)、激光解吸-大氣壓化學(xué)電離(laser desorption-atmospheric pressure chemical ionization, LD-APCI)、激光二極管熱解吸電離(laser diode thermal desorption, LDTD)、電噴霧輔助熱解吸電離(electrospray-assisted pyrolysis ionization, ESA-Py)、大氣壓熱解吸-電噴霧電離(atmospheric pressure thermal desorption-electrospray ionization, AP-TD/ESI)、基于熱解吸敞開式電離(thermal desorption-based ambient ionization, TDAI)、大氣壓固態(tài)分析探針(atmospheric pressure solids analysis probe, ASAP)、實(shí)時(shí)直接分析(direct analysis in real time, DART)、解吸大氣壓光致電離(desorption atmospheric pressure photoionization, DAPPI)等。
建立一種新的方法,能夠?qū)χ胁菟幹械乃幮С煞趾碗s質(zhì)進(jìn)行分析,這對(duì)于中草藥的質(zhì)量評(píng)價(jià)和質(zhì)量控制有重要意義。敞開式離子化質(zhì)譜技術(shù)的發(fā)展為中草藥分析提供了一種快速、直接的手段。本文綜述了不同類型敞開式離子化質(zhì)譜在中草藥分析中的應(yīng)用,并對(duì)典型分析案例加以討論,總結(jié)的應(yīng)用詳情列于表1。
2.1 直接電離離子源
直接電離離子源是基于電噴霧原理的直接電離敞開式離子化質(zhì)譜技術(shù),對(duì)樣品組織中的分析物直接電離進(jìn)行質(zhì)譜分析。這項(xiàng)技術(shù)快速、直接、實(shí)時(shí)、原位,無(wú)需樣品前處理,適用于中藥材直接分析。主要應(yīng)用技術(shù)包括:直接電離(direct ionization)[10]、組織噴霧電離(tissue spray)[11]、葉片噴霧(leaf spray)[12-14]、直接植物噴霧(direct plant spray)[15]、場(chǎng)致直接電離(field-induced DI)[16]、內(nèi)部萃取電噴霧電離(internal extractive electrospray ionization mass spectrometry, iEESI)[17]等。雖然這些技術(shù)的名稱不同,但它們的原理和分析策略是相似的,都是將樣品本身作為固體基質(zhì),應(yīng)用溶劑和高電壓使分析物溶解或萃取到溶劑中,液相分析物分子在高電場(chǎng)作用下直接電離、噴霧,產(chǎn)生帶電液滴和離子進(jìn)行質(zhì)譜分析。
姚鐘平課題組[18-21]在固體基質(zhì)下的電噴霧離子化機(jī)理與應(yīng)用方面做了大量的研究工作。固體基質(zhì)電噴霧電離是將中草藥的粉末、混懸液、提取液附著于固體基質(zhì)上用于直接電離分析,可用的固體基質(zhì)包括:純金屬探針、紙三角、木片、鋁箔、移液器頭等。因鋁箔具有惰性、不滲透性、相對(duì)剛性等特點(diǎn),可以折疊承載溶劑,實(shí)現(xiàn)對(duì)粉末樣品有目的性的提取,在敞開式的環(huán)境下進(jìn)行電噴霧質(zhì)譜分析。鋁箔電噴霧質(zhì)譜已經(jīng)成功應(yīng)用于西洋參和附子等中藥粉末樣品中主要成分的測(cè)定。移液器頭模式的分析是將移液器頭與質(zhì)譜進(jìn)樣器和進(jìn)樣泵連接,在線提取進(jìn)樣器頭中的中藥粉末,加以高電壓使帶電有機(jī)溶劑通過(guò)中藥粉末將分析物提取后電離,經(jīng)由質(zhì)譜分析。這種移液器頭模式的分析已成功應(yīng)用于人參、西洋參和三七中皂苷類成分,南、北五味子中木脂素類成分和多種藥材中生物堿類成分的測(cè)定。
表1 敞開式離子化質(zhì)譜在中草藥研究中的應(yīng)用Table 1 Application of AIMS in Chinese herbal medicine research
續(xù)表1
2.2 直接解吸電離離子源
自DESI問世以來(lái),其在中草藥分析中的應(yīng)用已被陸續(xù)報(bào)道[22-31]。采用的主要方式包括:分析物的表面解吸電離[22,24-27]、反應(yīng)直接解吸電離、分析物的表面成像[23,28-29]、薄層色譜與直接解吸電離質(zhì)譜聯(lián)用[25,30-31]等,其中應(yīng)用最廣泛的是分析物的表面解吸電離,中藥材無(wú)需樣品的前處理,可直接分析。
DAPCI是應(yīng)用大氣壓電暈放電從化學(xué)試劑中產(chǎn)生電子、質(zhì)子、亞穩(wěn)態(tài)原子、水合氫離子和質(zhì)子化溶劑離子,通過(guò)解吸電離樣品表面的分析物進(jìn)行質(zhì)譜分析,主要用于分析低分子質(zhì)量的揮發(fā)性或半揮發(fā)性化合物。已報(bào)道的研究有南、北五味子中萜品烯類成分[32]和人參、紅參中皂苷類成分[33]的分析。
DCBI是將高直流電壓加在尖針上引發(fā)氦原子電暈放電,在電暈針附近產(chǎn)生激發(fā)態(tài)離子,與分析物在樣品表面發(fā)生反應(yīng),產(chǎn)生單電荷分析物離子,進(jìn)行質(zhì)譜分析。應(yīng)用DCBI分析中草藥中低極性成分是極具挑戰(zhàn)性的。為了解決這一難點(diǎn),文獻(xiàn)[34]報(bào)道了一種設(shè)計(jì)方案,將反應(yīng)試劑(飽和氫氧化鈉與甲醇溶液,3∶7,V/V)加入樣品中以提高DCBI的電離效率,并將該方法成功應(yīng)用于6種中藥材中生物堿的測(cè)定,還將其與TLC聯(lián)用測(cè)定生物堿的含量。
2.3 解吸后電離離子源
DART-MS是在中草藥分析中應(yīng)用較為廣泛的一種敞開式離子化質(zhì)譜技術(shù),目前已有商品化的離子源產(chǎn)品。DART-MS的主要分析策略包括:分析物的表面解吸電離,將樣品置于DART源與質(zhì)譜進(jìn)口之間[35-40];對(duì)于粉末樣品的分析,將填充樣品的玻璃毛細(xì)管(棒)置于DART源加熱的氣體束中電離[41-44];對(duì)于液態(tài)樣品分析,將樣品滴在熔點(diǎn)管(浸管)[45-49]、金屬篩網(wǎng)(不銹鋼金屬網(wǎng)格)上面,置于DART源與質(zhì)譜進(jìn)口之間[50];TLC與DART-MS聯(lián)用分析[41,51-52],是將化合物在薄層板上分離后,將薄層板置于DART源與質(zhì)譜進(jìn)口之間,分析物經(jīng)加熱氣體的熱解吸附,通過(guò)離子-分子反應(yīng)使其電離再引入質(zhì)譜進(jìn)行分析。
EESI和nano-EESI是基于電噴霧電離的敞開式離子化質(zhì)譜技術(shù),發(fā)明最初主要被應(yīng)用于液態(tài)和氣態(tài)樣品分析,被分析物從溶液相或氣相樣品中萃取出來(lái),經(jīng)由電噴霧電離產(chǎn)生離子進(jìn)行質(zhì)譜分析。陳煥文課題組[53]將nano-EESI-MS技術(shù)成功應(yīng)用于人參中人參皂苷的測(cè)定。激光解吸(或消融)與電噴霧結(jié)合的敞開式離子化技術(shù)(LAESI)適用于固體樣品分析,在中草藥分析中的應(yīng)用主要有:孔雀草根、莖、葉中的成分分析[54]和鼠尾草葉中萜類成分的測(cè)定[55]。將敞開式離子化技術(shù)與光致電離原理相結(jié)合應(yīng)用于中草藥研究中,主要有兩種方式:解吸大氣壓化學(xué)電離(DAPPI)和激光消融大氣壓光致電離(LAAPPI)。這兩種方式可以使樣品表面非極性和中性分析物有效電離進(jìn)行質(zhì)譜分析,另外,這兩種方式還具有表面成像功能,例如,DAPPI-MS[56]和LAAPPI-MS[55]技術(shù)在鼠尾草葉成分表面成像研究中的應(yīng)用,以及枳殼葉中主要藥效成分的DAPPI-MS分析[57]等。等離子體輔助激光解吸質(zhì)譜(PALDI-MS)已被成功用來(lái)研究黃芩中黃芩素和漢黃芩素成像,結(jié)果顯示,此成分集中分布于根的表皮維管束邊緣[58]。
2.4 在中草藥質(zhì)量評(píng)價(jià)和質(zhì)量控制中的應(yīng)用
隨著敞開式離子化質(zhì)譜技術(shù)的不斷發(fā)展,其在中草藥質(zhì)量快速評(píng)價(jià)和控制中的應(yīng)用日益廣泛。敞開式離子化質(zhì)譜指紋分析方法能夠給出中草藥成分的整體化學(xué)輪廓,可用于評(píng)價(jià)中草藥質(zhì)量的穩(wěn)定性、追溯基源、鑒別真?zhèn)?。?yīng)用敞開式離子化質(zhì)譜方法評(píng)價(jià)和控制中草藥質(zhì)量,首先要選擇一種適合的敞開式離子化技術(shù),建立指紋圖譜分析方法,進(jìn)而對(duì)樣品進(jìn)行分析,將獲得的數(shù)據(jù)采用多變量統(tǒng)計(jì)分析方法處理,例如主成分分析(PCA)、偏最小二乘判別分析(PLS-DA)、聚類分析(HCA)等。
目前,應(yīng)用DART-MS技術(shù)結(jié)合多種統(tǒng)計(jì)分析方法,成功區(qū)分了蔞葉的不同栽培品種[36];區(qū)分了曼陀羅[39]、蘿芙木[40]、蓽澄茄[42]以及傘形科中藥[43]的不同品種,并鑒定了其中標(biāo)志性化學(xué)成分;區(qū)分了不同來(lái)源的當(dāng)歸[44];鑒定了川烏中標(biāo)志性化學(xué)成分,并區(qū)分了其炮制程度[47]。將DAPCI-MS技術(shù)結(jié)合PCA分析應(yīng)用于南、北五味子研究,成功區(qū)分了不同栽培品種和野生品種,并區(qū)分了不同炮制品種[32]。應(yīng)用Wooden-tip ESI-MS結(jié)合PCA和PLS-DA技術(shù),鑒定了川貝母粉末的品種,并區(qū)分了其中摻偽品[18]。
2.5 本實(shí)驗(yàn)室的研究工作
中藥成分的確認(rèn)和定量分析是近年來(lái)AIMS重要的發(fā)展方向之一,本實(shí)驗(yàn)室選用商品化的DART為離子源,開發(fā)的方法具有較強(qiáng)的可重復(fù)性和實(shí)際應(yīng)用價(jià)值。研究?jī)?nèi)容主要包括5個(gè)方面。
1) 中藥成分的快速分析:研究了8種中藥的化學(xué)成分,實(shí)現(xiàn)了生物堿類、黃酮類和部分人參皂苷的快速、直接分析;并對(duì)DART的電離機(jī)制進(jìn)行了較深入的討論[45,59]。
2) 中藥成分的DART定量分析:針對(duì)中藥延胡索的功效成分延胡索甲素和乙素進(jìn)行DART定量分析[60];利用甲基化衍生和氘代內(nèi)標(biāo)實(shí)現(xiàn)了人參皂苷的DART定量分析[61]。
3) 對(duì)DART技術(shù)不易電離成分的分析:本實(shí)驗(yàn)室首次采用瞬時(shí)衍生化試劑四甲基氫氧化銨對(duì)皂苷和寡糖類成分進(jìn)行DART源內(nèi)的瞬時(shí)甲基化,通過(guò)甲基化衍生增加皂苷成分的揮發(fā)性,生成銨加合物離子,實(shí)現(xiàn)了多羥基化合物(如人參皂苷和寡糖)的DART分析檢測(cè)。其中,四甲基氫氧化銨不僅發(fā)揮了衍生化的作用,同時(shí)還作為輔助電離試劑增強(qiáng)了皂苷成分在DART中的靈敏度[62]。因?yàn)樵摲磻?yīng)屬于自由基反應(yīng),反應(yīng)控制難度較大,重復(fù)性還有待提高。
4) DART用于農(nóng)藥殘留的檢測(cè):針對(duì)100余種農(nóng)殘成分開展了DART快速檢測(cè)研究,發(fā)現(xiàn)多種農(nóng)藥成分在DART電離過(guò)程中不僅有加合離子(離子-分子反應(yīng)產(chǎn)物),還產(chǎn)生碎片(過(guò)剩能量產(chǎn)生)。此外,實(shí)驗(yàn)發(fā)現(xiàn)有機(jī)磷農(nóng)藥會(huì)發(fā)生氧硫交換的氧化反應(yīng),并對(duì)其反應(yīng)機(jī)制進(jìn)行了深入探討。
5) 開展DART電離機(jī)理研究:研究發(fā)現(xiàn),不同的工作氣體(氦氣、氬氣、氮?dú)獾?因其不同的電離能和氮?dú)獾恼駝?dòng)自由度影響,使得其在電離過(guò)程中展現(xiàn)出不同的特性,雖然氦氣因具有更高的電離能應(yīng)用范圍更廣,但是在某些場(chǎng)合下使用電離能較低的氬氣和氮?dú)?較氦氣價(jià)格低廉)產(chǎn)生的待測(cè)化合物碎片較少,再適當(dāng)引入輔助試劑可有效地提高待測(cè)物的靈敏度。經(jīng)過(guò)研究發(fā)現(xiàn),具有較低電離能的氟苯和丙酮等作為輔助試劑能明顯地提高待測(cè)物的分析靈敏度[63]。
中藥品質(zhì)的安全有效主要取決于其中所含的藥效成分和雜質(zhì),這就要求應(yīng)用快速、可靠的分析方法來(lái)評(píng)價(jià)和控制中藥材的質(zhì)量。目前,多種敞開式離子化質(zhì)譜技術(shù)已成功應(yīng)用于中藥中多種類型化學(xué)成分的檢測(cè),實(shí)現(xiàn)多種中藥品質(zhì)的綜合評(píng)價(jià)和質(zhì)量控制。一般來(lái)講,對(duì)于揮發(fā)性較好或質(zhì)子親合能較高的成分,如生物堿、黃酮類等,電離可以直接發(fā)生在植物組織表面附近而不需借助溶劑和其他基質(zhì)。為了獲得較好的分析結(jié)果,對(duì)于皂苷類等組分需溶劑輔助,對(duì)于糖類組分的分析甚至需要簡(jiǎn)單的衍生化。敞開離子化源的原理之一是被分析物周圍的氣相離子-分子反應(yīng),這些反應(yīng)很難達(dá)到經(jīng)典的密閉CI源平衡條件,因此,在實(shí)驗(yàn)條件控制,數(shù)據(jù)的重復(fù)性方面還存在一些困難,尚需技術(shù)本身不斷完善。另外,對(duì)分析物的準(zhǔn)確定量方法也有待開發(fā)及改進(jìn)。以上這些問題需要分析化學(xué)家和質(zhì)譜學(xué)家的持續(xù)關(guān)注和潛心研究。相信在不遠(yuǎn)的將來(lái),敞開式離子化技術(shù)與小型質(zhì)譜儀結(jié)合的分析方法能應(yīng)用到中藥生產(chǎn)的田間地頭、成品藥生產(chǎn)線、中醫(yī)診斷的輔助等更多的中醫(yī)藥領(lǐng)域,為推動(dòng)傳統(tǒng)中醫(yī)藥的現(xiàn)代發(fā)展發(fā)揮更大的作用。
[2] CODY R B, LARAMEE J A, DURST H D. Versatile new ion source for the analysis of materials in open air under ambient conditions[J]. Analytical Chemistry, 2005, 77 (8): 2 297-2 302.
[3] SHIEA J, HUANG M Z, HSU H J, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids[J]. Rapid Communications in Mass Spectrometry, 2005, 19(24): 3 701-3 704.
[4] COOKS R G, OUYANG Z, TAKATS Z, et al. Ambient mass spectrometry[J]. Science, 2006, 311(5 767): 1 566-1 570.
[5] HARRIS G A, GALHENA A S, FERNANDEZ F M. Ambient sampling/ionization mass spectrometry: Applications and current trends[J]. Analytical Chemistry, 2011, 83(12): 4 508-4 538.
[6] HUANG M Z, CHENG S C, CHO Y T, et al. Ambient ionization mass spectrometry: a tutorial[J]. Analytica Chimica Acta, 2011, 702(1): 1-15.
[7] 郭寅龍,劉小潘,王昊陽(yáng),等. 一種敞開式火焰離子化裝置[P]. CN201520544461.5.
[8] YANG Y Y, DENG J W. Analysis of pharmaceutical products and herbal medicines using ambient mass spectrometry[J]. Trends in Analytical Chemistry, 2016, 82: 68-88.
[9] CHANG C, XU G, BAI Y, et al. Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry[J]. Analytical Chemistry, 2013, 85(1): 170-176.
[10]HU B, LAI Y H, SO P K, et al. Direct ionization of biological tissue for mass spectrometric analysis[J]. Analyst, 2012, 137(16): 3 613-3 619.
[11]CHAN S L F, WONG M Y M, TANG H W, et al. Tissue-spray ionization mass spectrometry for raw herb analysis[J]. Rapid Communication Mass Spectrometry, 2011, 25(19): 2 837-2 843.
[12]LIU J, WANG H, COOKS R G, et al. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry[J]. Analytical Chemistry, 2011, 83(20): 7 608-7 613.
[13]SARKAR D, SRIMANY A, PRADEEP T. Rapid identification of molecular changes in tulsi (OcimumsanctumLinn) upon ageing using leaf spray ionization mass spectrometry[J]. Analyst, 2012, 137(19): 4 559-4 563.
[14]ZHANG J I, LI X, OUYANG Z, et al. Direct analysis of steviol glycosides from Stevialeaves by ambient ionization mass spectrometry performed on whole leaves[J]. Analyst, 2012, 137(13): 3 091-3 098.
[15]SCHRAGE M, SHEN Y, CLAASSEN F W, et al. Rapid and simple neurotoxin-based distinction of Chinese and Japanese star anise by direct plant spray mass spectrometry[J]. Journal of Chromatography A, 2013, 1317(19): 246-253.
[16]HU B, WANG L, YE W C, et al. In vivo and real-time monitoring of secondary metabolites of living organisms by mass spectrometry[J]. Scientific Reports, 2013, 3(3): 1 019-1 026.
[17]ZHANG H, ZHU L, LUO L, et al. Direct assessment of phytochemicals inherent in plant tissues using extractive electrospray ionization mass spectrometry[J]. Journal of Agricultural & Food Chemistry, 2013, 61(45): 10 691-10 698.
[18]XIN G Z, HU B, SHI Z Q, et al. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry and a strategy to differentiate the bulbs of Fritillaria[J]. Analytica Chimica Acta, 2014, 820: 84-91.
[19]YANG Y, DENG J, YAO Z P. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines[J]. Analytica Chimica Acta, 2015, 887: 127-137.
[20]HU B, SO P K, YAO Z P. Electrospray ionization with aluminum foil: a versatile mass spectrometric technique[J]. Analytica Chimica Acta, 2014, 817: 1-8.
[21]WANG H, SO P K, YAO Z P. Direct analysis of herbal powders by pipette-tip electrospray ionization mass spectrometry[J]. Analytica Chimica Acta, 2014, 809: 109-116.
[22]TALATY N, TAK TS Z, COOKS R G. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization[J]. Analyst, 2005, 130(12): 1 624-1 633.
[23]THUNIG J, HANSEN S H, JANFELT C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry[J]. Analytical Chemistry, 2011, 83(9): 3 256-3 259.
[24]JACKSON A U, TATA A, WU C, et al. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry[J]. Analyst, 2009, 134(5): 867-874.
[25]KENNEDY J H, WISEMAN J M. Direct analysis of Salvia divinorum leaves for salvinorin a by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2010, 24(9): 1 305-1 311.
[26]SRIMANY A, IFA D R, NAIK H R, et al. Direct analysis of camptothecin fromNothapodytesnimmonianaby desorption electrospray ionization mass spectrometry (DESI-MS)[J]. Analyst, 2011, 136(15): 3 066-3 068.
[27]陳煥文,鄭健,王偉萍,等. 電噴霧解吸電離質(zhì)譜快速測(cè)定吳茱萸中生物堿[J]. 分析化學(xué),2009,37(2):237-241.
CHEN Huanwen, ZHENG Jian, WANG Weiping, et al. Desorption electrospray ionization mass spectrometry for fast detection of alkaloids in Fructus Evodiae[J]. Chinese Journal of Analytical Chemistry, 2009, 37(2): 237-241(in Chinese) .
[28]LI B, HANSEN S H, JANFELT C, et al. Direct imaging of plant metabolites in leaves and petals by desorption electrospray ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2013, 348(2): 15-22.
[29]LI B, BJARNHOLT N, HANSEN S H, et al. Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry[J]. Journal of Mass Spectrometry, 2011, 46(12): 653-664.
[30]BERKEL G J V, TOMKINS B A, KERTESZ V. Thin-layer chromatography/desorption electrospray ionization mass spectrometry: investigation of goldenseal alkaloids[J]. Analytical Chemistry, 2007, 79(7): 2 778- 2 789.
[31]BAGATELA B S, LOPES A P, CABRAL E C, et al. High-performance thin-layer chromatography/desorption electrospray ionization mass spectrometry imaging of the crude extract from the peels ofCitrusaurantiumL. (Rutaceae)[J]. Rapid Communications in Mass Spectrometry, 2015, 29(16): 1 530-1 534.
[32]PI Z F, YUE H, MA L, et al. Differentiation of various kinds ofFructusschisandraeby surface desorption atmospheric pressure chemical ionization mass spectrometry combined with principal component analysis[J]. Analytica Chimica Acta, 2011, 706(2): 285- 290.
[33]YUE H, MA L, PI Z, et al. Fast screening of authentic ginseng products by surface desorption atmospheric pressure chemical ionization mass spectrometry[J]. Planta Medica, 2013, 79(2):169-174.
[34]HOU Y, WU T, LIU Y, et al. Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS[J]. Analyst, 2014, 139(20): 5 185-5 191
[35]BANERJEE S, MADHUSUDANAN K P, CHATTOPADHYAY S K, et al. Expression of tropane alkaloids in the hairy root culture of Atropa acuminate substantiated by DART mass spectrometric technique[J]. Biomedical Chromatography, 2008, 22(8): 830-834.
[36]BAJPAI V, SHARMA D, KUMAR B, et al. Profiling ofPiperbetleLinn. cultivars by direct analysis in real time mass spectrometric technique[J]. Biomedical Chromatography, 2010, 24(12): 1 283-1 286.
[37]MUSAH R A, DOMIN M A, WALLING M A, et al. Rapid identification of synthetic cannabinoids in herbal samplesviadirect analysis in real time mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2012, 26(9): 1 109-1 114.
[38]ZHOU F, ZHU H, LIU S, et al. In situ analysis for herbal pieces of Aconitum plants by using direct analysis in real time mass spectrometry[J]. Chinese Journal of Chemistry, 2015, 33(2): 241-246.
[39]LESIAK A D, CODY R B, DANE A J, et al. Plant seed species identification from chemical fingerprints: a high-throughput application of direct analysis in real time mass spectrometry[J]. Analytical Chemistry, 2015, 87(17): 8 748-8 757.
[40]KUMAR S, BAJPAI V, SINGH A, et al. Rapid fingerprinting of Rauwolfia species using direct analysis in real time mass spectrometry combined with principal component analysis for their discrimination[J]. Analytical Methods, 2015, 7(14): 6 021-6 026.
[41]KIM H J, JANG Y P. Direct analysis of curcumin in turmeric by DART-MS[J]. Phytochemical Analysis, 2009, 20(5): 372-377..
[42]KIM H J, BAEK W S, JANG Y P. Identification of ambiguous cubeb fruit by DART-MS based fingerprinting combined with principal component analysis[J]. Food Chemistry, 2011, 129(3): 1 305-1 310.
[43]SANG M L, KIM H J, JANG Y P. Chemometric classification of morphologically similar umbelliferae medicinal herbs by DART-TOF-MS fingerprint[J]. Phytochemical Analysis Pca, 2012, 23(5): 508-512.
[44]KIM H J, YONG T S, PARK S, et al. DART-TOF-MS based metabolomics study for the discrimination analysis of geographical origin of Angelica gigas roots collected from Korea and China[J]. Metabolomics, 2015, 11(1): 1-7.
[45]WANG Y, LI C M, HUANG L, et al. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry[J]. Analytica Chimica Acta, 2014, 845: 70-76.
[46]CHEN Z, TAO H, LIAO L, et al. Quick identification of xanthine oxidase inhibitor and antioxidant fromErycibeobtusifoliabya drug discovery platform composed of multiple mass spectrometric platforms and thin-layer chromatography bioautography[J]. Journal of Separation Science, 2014, 37(16): 2 253-2 259.
[47]ZHU H, WANG C, QI Y, et al. Rapid quality assessment ofRadixAconitiPreparatausing direct analysis in real time mass spectrometry[J]. Analytica Chimica Acta, 2012, 752(21): 69-77.
[48]YAO S, BEEK T A V, CLAASSEN F W, et al. Rapid control of Chinese star anise fruits and teas for neurotoxic anisatin by direct analysis in real time high resolution mass spectrometry[J]. Journal of Chromatography A, 2012, 1 259(19): 179-186.
[49]XU B, ZHANG D Y, LIU Z Y, et al. Rapid determination of 1-deoxynojirimycin inMorusalbaL. leaves by direct analysis in real time (DART) mass spectrometry[J]. Journal of Pharmaceutical & Biomedical Analysis, 2015, 114: 447-454.
[50]CHERNETSOVA E S, CRAWFORD E A, SHIKOV A N, et al. ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves ofBergeniacrassifoliaL[J]. Rapid Communications in Mass Spectrometry, 2012, 26(11): 1 329-1 337.
[51]KIM H J, JEE E H, AHN K S, et al. Identification of marker compounds in herbal drugs on TLC with DART-MS[J]. Archives of Pharmacal Research, 2010, 33(9): 1 355-1 359.
[52]JIN K H, SOOK O M, HONG J, et al. Quantitative analysis of major dibenzocyclooctane lignans in schisandrae fructus by online TLC-DART-MS[J]. Phytochemical Analysis, 2010, 22(3): 258-262.
[53]HU B, YUE H, HUANG K K, et al. Rapid detection of ginsenosides using Nano EESI-MS[J]. Chemical Journal of Chinese Universities, 2011, 32(6): 1 289-1 294.
[54]NEMES P, VERTES A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Analytical Chemistry, 2007, 79(21): 8 098-8 106.
[55]VAIKKINEN A, SHRESTHA B, KOIVISTO J, et al. Laser ablation atmospheric pressure photoionization mass spectrometry imaging of phytochemicals from sage leaves[J]. Rapid Communications in Mass Spectrometry, 2014, 28(23): 2 490-2 496.
[57]VAIKKINEN A, SHRESTHA B, KAUPPILA T J, et al. Infrared laser ablation atmospheric pressure photoionization mass spectrometry[J]. Analytical Chemistry, 2012, 84(3): 1 630-1 636.
[58]FENG B, ZHANG J, CHANG C, et al. Ambient mass spectrometry imaging: plasma assisted laser desorption ionization mass spectrometry imaging and its applications[J]. Analytical Chemistry, 2014, 86(9): 4 164-4 169.
[59]WANG Y, LIU L, MA L, et al. Identification of saccharides by using direct analysis in real time (DART) mass spectrometry[J]. International Journal of Mass Spectrometry, 2014, 357: 51-57.
[60]王洋,李樂樂,李波,等. DART-orbitrap質(zhì)譜法快速定性定量分析延胡索[J]. 中成藥,2015,37(6):1 280-1 284.
WANG Yang, LI Lele, LI Bo, et al. Rapid qualitative and quantitative analysis ofCorydalisyanhusuoby DART-Orbitrap mass spectrometry[J]. Chinese Traditional Patent Medicine, 2015, 37(6): 1 280-1 284(in Chinese).
[61]LIU W L, HE Y F, LI L L, et al. Fast quantitative analysis of ginsenosides in Asian ginseng (PanaxginsengC. A. Meyer) by using solid phase methylation coupled to DART-MS[J]. Rapid Communications in Mass Spectrometry, 2016, 30 (Suppl.1): 1-5.
[62]于擎,于彬彬,越皓,等. 甲基化輔助實(shí)時(shí)直接分析電離的機(jī)理研究[J]. 化學(xué)學(xué)報(bào),2012,70(15):1 650-1 654.
YU Qing, YU Binbin, YUE Hao, et al. Study of mechanism of ionization assisted by methylation in direct analysis in real time ion source[J]. Acta Chimica Sinica, 2012, 70(15): 1 650-1 654(in Chinese).
[63]YANG H M, WAN D B, SONG F R, et al. Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds[J]. Analytical Chemistry, 2013, 85(3): 1 305-1 309.
Application of Ambient Ionization Mass Spectrometry in Chinese Herbal Medicine Research
HUANG Xin1, LIU Wen-long1, ZHANG Yong1, LIU Shu-ying1,2
(1.JilinGinsengAcademy,ChangchunUniversityofChineseMedicine,Changchun130117,China;2.ChangchunCenterofMassSpectrometry,ChangchunInstituteofAppliedChemistry,ChineseAcademyofSciences,Changchun130022,China)
Ambient ionization mass spectrometry (AIMS) is a kind of new techniques which could be performed under ambient conditions (atmosphere) and without more complicated sample pretreatment. The development and application of AIMS has deserved much attention in mass spectrometry field over recent decade. In this review, the applications of AIMS in the study of Chinese herbal medicine were summarized, the typical analytical strategies were discussed and the basic principle, characters and classification were stated. At last, the possible development trend in the future and influence of this technology in the research field of Chinese medicine were foreseen.
ambient ionization; mass spectrometry; Chinese herbal medicine; review
2016-08-31;
2016-12-19
國(guó)家自然科學(xué)基金面上項(xiàng)目(21475012);吉林省科技發(fā)展計(jì)劃項(xiàng)目(20160520181JH);吉林省教育廳“十三五”科學(xué)技術(shù)研究項(xiàng)目(吉教科合字[2016]第30號(hào));公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(20130311106)資助
黃 鑫(1981—),女(漢族),吉林人,助理研究員,從事中藥化學(xué)與質(zhì)譜學(xué)研究。E-mail: huangxinrose@163.com
劉淑瑩(1943—),女(漢族),黑龍江人,研究員,從事質(zhì)譜學(xué)與中藥學(xué)研究。E-mail: syliu@ciac.ac.cn
O657.63
A
1004-2997(2017)01-0001-10
10.7538/zpxb.2017.38.01.0001