王紅琴,王亞明,蔣麗紅,張家華,鞠江月
?
[Rh(COD)Cl]2催化劑的制備及催化-蒎烯不對(duì)稱加氫反應(yīng)
王紅琴1,2,王亞明1,蔣麗紅1,張家華1,2,鞠江月1
(1昆明理工大學(xué)化學(xué)工程學(xué)院,云南昆明 650500;2貴研鉑業(yè)股份有限公司,云南昆明 650106)
以RhCl3·3H2O和1,5-環(huán)辛二烯為原料制備了[Rh(COD)Cl]2催化劑,并利用傅里葉變換紅外光譜儀(FTIR)和X射線光電子能譜(XPS)對(duì)其進(jìn)行了表征。以-蒎烯加氫為探針?lè)磻?yīng),考察了COD/Rh摩爾比、回流溫度及回流時(shí)間對(duì)催化劑催化性能的影響,并通過(guò)正交試驗(yàn)確定了催化劑適宜的制備條件:COD/Rh摩爾比(1,5-環(huán)辛二烯與三水合氯化銠摩爾比)3.5:1,回流溫度75℃,回流時(shí)間3.5h。將該條件下制備的[Rh(COD)Cl]2催化劑用于-蒎烯加氫反應(yīng),-蒎烯轉(zhuǎn)化率達(dá)97.3%以上,順式蒎烷對(duì)映選擇性高于97.5%,順式蒎烷收率達(dá)95.0%以上。與文獻(xiàn)報(bào)道的其他工藝相比,該工藝特點(diǎn)是加氫條件比較溫和,選擇性高,催化效率高,能耗低。
-蒎烯;催化作用;加氫;銠催化劑;選擇性
配體的設(shè)計(jì)與合成是不對(duì)稱催化反應(yīng)過(guò)程中重要的研究課題之一,配體對(duì)催化反應(yīng)的反應(yīng)活性和立體選擇性起著決定性作用[1]。最初,不對(duì)稱催化反應(yīng)中應(yīng)用較多的配體主要是P配體和N配 體[2-4]。近年來(lái),由于人們對(duì)手性物質(zhì)需求的大大增加,不對(duì)稱催化成為研究的熱門(mén)課題之一,對(duì)配體的研究也不僅限于P或N配體而逐漸轉(zhuǎn)移到烯烴上。烯烴配體與傳統(tǒng)的雜原子配體不同,是通過(guò)烯烴的雙鍵與過(guò)渡金屬來(lái)進(jìn)行絡(luò)合。在某些不對(duì)稱反應(yīng)中,烯烴配體因表現(xiàn)出比傳統(tǒng)配體更高的反應(yīng)活性和選擇性而受關(guān)注。烯烴配體最初由HAYASHI課題組和CARREIRA課題組報(bào)道,分別為1,4-環(huán)己二烯和1,5-環(huán)辛二烯結(jié)構(gòu),作者將其成功用于不對(duì)稱催化反應(yīng)中,并獲得了優(yōu)良的選擇性[5-9]。
不對(duì)稱催化加氫反應(yīng)是不對(duì)稱催化反應(yīng)中最受青睞的不對(duì)稱合成技術(shù)之一。烯烴的不對(duì)稱加氫反應(yīng)在藥物有機(jī)合成中占有至關(guān)重要的位置,其加氫產(chǎn)物可作為具有生物活性的手性靶向藥物的前體,因而一直備受青睞。多數(shù)過(guò)渡金屬催化劑在烯烴加氫反應(yīng)中表現(xiàn)出較高的催化活性,反應(yīng)條件溫和、選擇性好。其中,[Rh(COD)Cl]2化合物在空氣中不易被氧化,可用于烯烴加氫反應(yīng)、氫甲?;磻?yīng)[10-12]、環(huán)加成反應(yīng)[13]、硅氫加成反應(yīng)[14]等,尤其在烯烴不對(duì)稱加氫反應(yīng)中表現(xiàn)出的選擇性和穩(wěn)定性是其他過(guò)渡金屬催化劑無(wú)法比擬的,將其用于不對(duì)稱加氫反應(yīng)具有重要意義。
蒎烯加氫產(chǎn)物蒎烷是一種重要的醫(yī)藥及香料工業(yè)原料,是制備維生素A、K1、E和冰片的重要原料,也是制備香茅醇等香料的重要中間體[15-19]。目前,用于蒎烯催化加氫制備順式蒎烷的催化劑多以鎳催化劑為主[20-22],雖然其生產(chǎn)成本低,但反應(yīng)溫度、壓力均較高,對(duì)反應(yīng)設(shè)備要求高,操作條件苛刻,安全可靠性差,且產(chǎn)物中順式蒎烷含量較低,對(duì)映選擇性較差。本文以1,5-環(huán)辛二烯為配體,制備了[Rh(COD)Cl]2催化劑,采用FTIR、XPS對(duì)催化劑進(jìn)行了表征,并以-蒎烯加氫為探針?lè)磻?yīng)評(píng)價(jià)其催化性能。
RhCl3·3H2O,AR,北京新潭科技有限公司;1,5-環(huán)辛二烯(簡(jiǎn)寫(xiě)為COD),AR,阿拉丁試劑公司;無(wú)水乙醇,AR,廣東光華科技股份有限公司;蒎烯,工業(yè)級(jí),昆明市弘邦工貿(mào)有限公司,經(jīng)GC分析-蒎烯質(zhì)量分?jǐn)?shù)為79.09%,氫氣(剛瓶裝氫氣)>99.99%,氮?dú)猓▌偲垦b氮?dú)猓?9.99%。
采用美國(guó)Nicolet公司的Magna-IR 750傅里葉變換紅外光譜儀(FTIR)和日本島津-KRATOS公司生產(chǎn)AXIS Ultra DLD型X射線光電子能譜儀(XPS)對(duì)催化劑進(jìn)行表征。采用意大利FISONS公司生產(chǎn)的8340型GC-8000氣相色譜儀對(duì)加氫產(chǎn)物進(jìn)行定量分析,色譜柱為SE-30型毛細(xì)管柱,F(xiàn)ID檢測(cè)器,載氣為高純N2,燃?xì)鉃楦呒僅2,助燃?xì)鉃榭諝?,檢測(cè)器溫度為250℃,色譜柱初溫為50℃,以8℃/min升至120℃,再以2℃/min升至135℃,停留1min。采用歸一化法計(jì)算各組分的含量,并計(jì)算蒎烯轉(zhuǎn)化率及產(chǎn)物對(duì)映選擇性和收率。
稱取一定量RhCl3·3H2O溶解于適量無(wú)水乙醇中,按一定摩爾比加入適量1,5-環(huán)辛二烯,于一定溫度下加熱攪拌一定時(shí)間后,經(jīng)冷卻、過(guò)濾、洗滌、烘干,即可得到均相催化劑[Rh(COD)Cl]2。
取一定量蒎烯置于高壓反應(yīng)釜中,然后按催化劑質(zhì)量為蒎烯質(zhì)量的3%加入自制均相催化劑,上蓋密封,分別用N2及H2于0.3MPa各置換3次后將反應(yīng)釜內(nèi)氫氣壓力調(diào)至3MPa,保壓檢漏,若氣密性良好,則開(kāi)始升溫,控制溫度為40℃,轉(zhuǎn)速為800r/min,反應(yīng)時(shí)間為3h。反應(yīng)結(jié)束后停止加熱與攪拌,待其冷卻至室溫后卸壓開(kāi)釜,取出加氫產(chǎn)物。
2.1.1 COD/Rh摩爾比對(duì)催化劑性能的影響
在回流溫度80℃、回流時(shí)間3h條件下,以1,5-環(huán)辛二烯和三水合氯化銠不同的摩爾比制備[Rh(COD)Cl]2催化劑,考察COD/Rh摩爾比對(duì)-蒎烯加氫反應(yīng)的影響,結(jié)果如圖1所示。
由圖1可知,隨著COD/Rh摩爾比的增加,[Rh(COD)Cl]2收率、-蒎烯轉(zhuǎn)化率和順式蒎烷收率均呈先增大后趨于穩(wěn)定的趨勢(shì)。在COD/Rh摩爾比為4時(shí),[Rh(COD)Cl]2收率、-蒎烯轉(zhuǎn)化率和順式蒎烷收率均達(dá)到最大值,分別為64.2%、98.39%、97.27%。而COD/Rh摩爾比對(duì)順式蒎烷對(duì)映選擇性沒(méi)有顯著影響,對(duì)映選擇性均為97%左右。1,5-環(huán)辛二烯在該反應(yīng)中起到了配體和還原劑的雙重作用,一般情況下,該反應(yīng)要求1,5-環(huán)辛二烯過(guò)量。但1,5-環(huán)辛二烯過(guò)量太大,會(huì)造成原料的浪費(fèi)和催化劑純度降低。因此,適宜的COD/Rh摩爾比為 4∶1。
2.1.2 回流溫度對(duì)催化劑性能的影響
以4∶1的COD/Rh摩爾比在不同回流溫度下制備[Rh(COD)Cl]2催化劑,考察回流溫度對(duì)-蒎烯加氫反應(yīng)的影響,結(jié)果如圖2所示。
由圖2可以看出,隨著回流溫度的增加,[Rh(COD)Cl]2收率無(wú)明顯變化,而-蒎烯轉(zhuǎn)化率、順式蒎烷對(duì)映選擇性和收率均呈現(xiàn)先升后降的趨勢(shì),且順式蒎烷對(duì)映選擇性變化不大,均為97%左右。在70~80℃之間,-蒎烯轉(zhuǎn)化率趨于穩(wěn)定,繼續(xù)升高溫度,轉(zhuǎn)化率有所下降,這可能是由于催化劑制備過(guò)程中溶劑無(wú)水乙醇劇烈沸騰,部分揮發(fā)所造成的。在回流溫度為75℃時(shí),-蒎烯的轉(zhuǎn)化率為98.38%,產(chǎn)物對(duì)映選擇性達(dá)到最大,為97.64%。因此,以-蒎烯轉(zhuǎn)化率、順式蒎烷對(duì)映選擇性和收率為評(píng)價(jià)指標(biāo),適宜的回流溫度為75℃。
表1 正交試驗(yàn)設(shè)計(jì)及結(jié)果分析
2.1.3 回流時(shí)間對(duì)催化劑性能的影響
在COD/Rh摩爾比為4∶1,回流溫度為75℃條件下,以不同回流時(shí)間制備[Rh(COD)Cl]2催化劑,考察回流時(shí)間對(duì)-蒎烯加氫反應(yīng)的影響,結(jié)果見(jiàn)圖3。
圖3 回流時(shí)間對(duì)催化劑性能的影響
由圖3可見(jiàn),隨著回流時(shí)間的增加,-蒎烯轉(zhuǎn)化率、順式蒎烷對(duì)映選擇性和順式蒎烷收率均無(wú)顯著變化。在回流時(shí)間為4h時(shí),轉(zhuǎn)化率達(dá)最大為98.30%,順式蒎烷收率為95.20%,順式蒎烷對(duì)映選擇性為96.85%。反應(yīng)時(shí)間過(guò)短時(shí),1,5-環(huán)辛二烯與三水合氯化銠反應(yīng)不充分,[Rh(COD)Cl]2收率較低,再綜合考慮到時(shí)間成本及經(jīng)濟(jì)性,適宜的回流時(shí)間為4h。
2.1.4 催化劑適宜制備條件的確定
為尋求催化劑制備的較佳條件,選擇COD/Rh摩爾比()、回流溫度()、回流時(shí)間()3個(gè)因素設(shè)計(jì)了正交試驗(yàn),水平設(shè)計(jì)及結(jié)果見(jiàn)表1。
由表1的極差分析結(jié)果可知,以-蒎烯轉(zhuǎn)化率為指標(biāo)時(shí),適宜催化劑制備條件為121,即COD/Rh摩爾比為4.5∶1,回流溫度為75℃,回流時(shí)間3.5h;以對(duì)映選擇性為指標(biāo)時(shí),適宜催化劑制備條件為322,即COD/Rh摩爾比為3.5∶1,回流溫度為80℃,回流時(shí)間3.5h;以順式蒎烷收率為分析指標(biāo)時(shí),適宜催化劑制備條件為321,即COD/Rh摩爾比為3.5∶1,回流溫度為75℃,回流時(shí)間3.5h。
對(duì)于不同指標(biāo)而言,不同因素的影響程度均不一樣。因素,對(duì)3個(gè)指標(biāo)來(lái)說(shuō)均是最主要的因素,就對(duì)映選擇性和順式蒎烷收率兩個(gè)指標(biāo)而言都是取3好,就轉(zhuǎn)化率而言取1好,根據(jù)多數(shù)傾向和降低催化劑成本的原則,選取3。因素,對(duì)轉(zhuǎn)化率和順式蒎烷收率而言都是取1好,就對(duì)映選擇性而言取3好,本著節(jié)能降耗和多數(shù)傾向的原則,選取1。因素,是除主要因素外的首位次要因素,且對(duì)3個(gè)指標(biāo)而言,因素均是以2水平為較佳水平,故取2。綜上所述,確定312為催化劑制備的適宜條件,即COD/Rh摩爾比為3.5∶1,回流溫度為75℃,回流時(shí)間為3.5h。
2.1.5 重現(xiàn)實(shí)驗(yàn)
為了考察適宜制備條件下制備出的[Rh(COD)Cl]2催化劑在-蒎烯加氫反應(yīng)中的重現(xiàn)效果,在催化劑制備條件(COD/Rh摩爾比為3.5∶1,回流溫度為75℃,回流時(shí)間為3.5h)下制備出[Rh(COD)Cl]2催化劑,并用于-蒎烯加氫反應(yīng),進(jìn)行了4次重現(xiàn)實(shí)驗(yàn),結(jié)果如圖4所示。
由圖4可見(jiàn),采用適宜制備條件下制備出的[Rh(COD)Cl]2催化劑催化-蒎烯加氫反應(yīng)時(shí),-蒎烯轉(zhuǎn)化率均達(dá)97.3%以上,順式蒎烷的對(duì)映選擇性均達(dá)97.5%以上,順式蒎烷收率均達(dá)95.0%以上,說(shuō)明此條件下制備的催化劑催化-蒎烯加氫反應(yīng)具有良好的重現(xiàn)性。
2.2.1 紅外光譜分析
采用KBr壓片法制備試樣,在掃描波長(zhǎng)范圍4000~400cm–1對(duì)催化劑進(jìn)行紅外表征,結(jié)果如圖5所示。
從圖5中可以看出,2990cm–1、2930cm–1處的吸收譜帶分別為==C—H上C—H不對(duì)稱伸縮振動(dòng)和對(duì)稱伸縮振動(dòng)吸收峰;2870cm–1、2825cm–1處的吸收峰分別為—CH2上C—H不對(duì)稱伸縮振動(dòng)和對(duì)稱伸縮振動(dòng);1599cm-1處吸收峰為C==C伸縮振動(dòng)吸收峰;959cm–1、869cm–1、816cm–1、775cm–1處為C—H彎曲振動(dòng)吸收峰。紅外分析結(jié)果與文獻(xiàn)所給結(jié)果基本吻合[23]。
2.2.2 催化劑的XPS分析
采用AXIS Ultra DLD型X射線光電子能譜儀對(duì)催化劑表面元素進(jìn)行分析,分析結(jié)果如圖6所示。
由圖6(a)可知,[Rh(COD)Cl]2催化劑中含有C、O、Rh、Cl等元素。圖6(b)為O1s的XPS圖,O元素來(lái)源于儀器或樣品表面引入的含氧有機(jī)物。圖6(c)為C1s的XPS圖,C1s峰歸屬于C—C、C=C特征峰,結(jié)合能為284.8eV。圖6(d)為Rh3d的XPS圖,結(jié)合能為313.4eV的特征峰歸屬于Rh3d3/2峰,結(jié)合能為308.6V的特征峰歸屬于Rh3d5/2峰。圖6(d)為Cl2p的XPS圖,結(jié)合能為200.6的特征峰為Cl2p1/2峰,結(jié)合能為199.0eV的特征峰為Cl2p3/2峰,與文獻(xiàn)中[Rh(COD)Cl]2配合物的結(jié)合能值相吻合[24-25]。
LIU等[26]報(bào)道O2可加速Suzuki偶聯(lián)反應(yīng)。在有氧條件下,O2可促進(jìn)Pd納米粒子的原位生成從而加速反應(yīng)的進(jìn)行。WANG等[27]推測(cè)O2也可促進(jìn)Rh納米粒子的形成,從而導(dǎo)致芳烴加氫反應(yīng)加速進(jìn)行。據(jù)以上報(bào)道,將本反應(yīng)的反應(yīng)機(jī)理作以下推斷:-蒎烯加氫反應(yīng)體系中未置換完全的O2促使[Rh(COD)Cl]2中Rh(Ι)原位生成Rh(0)納米粒子,從而加速了反應(yīng)的進(jìn)行。根據(jù)大多研究者對(duì)[Ir(COD)Cl]2催化機(jī)理的報(bào)道[28-30],可推測(cè)1,5-環(huán)辛二烯在[Rh(COD)Cl]2催化劑中能使銠金屬中心可逆地形成配位位點(diǎn),并在催化反應(yīng)過(guò)程中脫離銠金屬催化中心,為氫分子及底物提供結(jié)合空位,且-蒎烯加氫是在離開(kāi)胞二甲基橋的位置進(jìn)行的,傾向于雙鍵位阻較小的一邊,從而誘導(dǎo)生成順式蒎烷和反式蒎烷。
將自制催化劑催化-蒎烯氫化反應(yīng)工藝與文獻(xiàn)報(bào)道的幾種工藝進(jìn)行比較,結(jié)果見(jiàn)表2。
表2 本工藝與文獻(xiàn)報(bào)道氫化α-蒎烯工藝的比較
由表2可知,本研究具有以下特點(diǎn):①該工藝加氫反應(yīng)條件比較溫和,尤其將反應(yīng)溫度由文獻(xiàn)報(bào)道的110~160℃降低至40℃,該催化劑仍具有較高的催化效率,-蒎烯轉(zhuǎn)化率達(dá)98.30%,順式蒎烷對(duì)映選擇性達(dá)98.17%;②對(duì)設(shè)備要求低,操作過(guò)程中安全性高,有利于節(jié)能。與Raney Ni催化劑相比,該工藝反應(yīng)過(guò)程中未添加溶劑,無(wú)需進(jìn)行溶劑的回收處理,簡(jiǎn)化了工藝流程。由以上文獻(xiàn)對(duì)比可見(jiàn),本研究中-蒎烯轉(zhuǎn)化率與其他方法的相當(dāng),但順式蒎烷對(duì)映選擇性較其他方法的高。
(1)本文制備了[Rh(COD)Cl]2催化劑,以-蒎烯為探針?lè)磻?yīng),考察了COD/Rh摩爾比、回流溫度及回流時(shí)間對(duì)催化劑性能的影響,結(jié)果表明各因素對(duì)催化劑催化性能均有顯著影響。
(2)通過(guò)正交試驗(yàn)及影響因素分析,確定適宜催化劑制備條件為:COD/Rh摩爾比為3∶5∶1,回流溫度為75℃,回流時(shí)間為3.5h。將該條件下制備的[Rh(COD)Cl]2催化劑用于-蒎烯加氫反應(yīng),-蒎烯轉(zhuǎn)化率均達(dá)97.3%以上,順式蒎烷的對(duì)映選擇性均達(dá)97.5%以上,順式蒎烷收率均達(dá)95.0%以上。
(3)與文獻(xiàn)報(bào)道的其他工藝相比,該加氫工藝反應(yīng)條件溫和,有利于節(jié)能,選擇性高,催化效率高。
[1] JACOBSEN E N,PFALTZ A,YAMAMOTO H.Comprehensive asymmetric catalysis[M]. Berlin:Springer-Verlag,1999:1-3.
[2] 王紅琴,蔣麗紅,王亞明.銠催化劑催化烯烴不對(duì)稱加氫反應(yīng)研究進(jìn)展[J].化工進(jìn)展,2016,35(2):485-492.
WANG H Q,JIANG L H,WANG Y M.Research progress of olefins asymmetric hydrogenation catalyzed by rhodium catalysts[J].Chemical Industry and Engineering Progress,2016,35(2):485-492.
[3] 吳躍,薛屏.多相手性催化劑的制備及其對(duì)不對(duì)稱加氫反應(yīng)的催化作用[J].化工進(jìn)展,2006,25(11):1301-1308.
WU Y,XUE P.Preparation of heterogeneous chiral catalysts and their application to asymmetric hydrogenation[J].Chemical Industry and Engineering Progress,2006,25(11):1301-1308.
[4] 何年志,張學(xué)勤,肖美添.手性修飾催化劑在多相不對(duì)稱氫化中的研究進(jìn)展[J].化工進(jìn)展,2012,31(12):2694-2701,2719.
HE N Z,ZHANG X Q,XIAO M T.Progress of heterogeneous asymmetric hydrogenation on chirally modified catalysts[J].Chemical Industry and Enegineering Progress,2012,31(12):2694-2701,2719.
[5] HAYASHI T,UEYAMA K,TOKUNAGA N,et al.A chiral chelating diene as a new type of chiral ligand for transition metal catalysts:its preparation and use for the rhodium-catalyzed asymmetric1,4-addition[J].J.Am.Chem.Soc.,2003,125(38):11508-11509.
[6] CARREIRA E M,F(xiàn)ISCHER C,DEFIEBER C,et al.Readily available[2.2.2]-bicyclooctadienes as new chiral ligands for Ir(Ⅰ):catalytic,kinetic resolution of allyl carbonates[J].J.Am.Chem.
Soc.,2004,126(6):1628-1629.
[7] SMITH B T,WENDT J A,AUBE J.First asymmetric total synthesis of(+)-sparteine[J].Org.Lett.,2002,4(15):2577-2579.
[8] RUGGLES E L,MALECZKA R E J.Bleach/acetic acid-promoted chlorinative ring expansion of [2.2.1]-and [2.2.2]-bicycles[J].Org.
Lett.,2002,4(22):3899-3902.
[9] EVANS P A,LEAHY D K.Regioselective and enantiospecific rhodium-catalyzed intermolecular allylic etherification with ortho-substituted phenols[J].J.Am.Chem.Soc.,2000,122(20):5012-5013.
[10] DíAZ-AU?óN A,ROMáN-MARTíNEZ M C,DE LECEA C S M.[Rh(μ-Cl)(COD)]2supported on activated carbons for the hydroformylation of 1-octene:effects of support surface chemistry and solvent[J].Journal of Molecular Catalysis A:Chemical,2001,170(1/2):81-93.
[11] ROMáN-MARTíNEZ M C,DíAZ-AU?óN J A,DE LECEA C S M,et al.Rhodium-diphosphine complex bound to activated carbon an effective catalyst for the hydroformylation of 1-octene[J].Journal of Molecular Catalysis A:Chemical,2004,213(2):177-182.
[12] HU J R,YAN W H,LUO N H,et al.Synthesis,crystal structure and catalytic activity of a bimetallic rhodium complex with 1,5-cyclooctadiene and 2,2'-bipyridine[J].Chinese J.Struct.Chem.,2015,34(5):1107-1112.
[13] 徐粉,康位粉,孟彥羽,等.水相[Rh(COD)Cl]2/BINAP催化二炔與腈[2+2+2]環(huán)加成反應(yīng)合成吡啶衍生物[J].新疆大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,33(3):323-326.
XU F,KANG W F,MENG Y Y,et al.[Rh(COD)Cl]2/BINAP catalyzed[2+2+2] cycloaddition of diyne and nitrile to pyridine derivatives in aqueous phase[J].Journal of Xinjiang University(Natural Science Edition),2016,33(3):323-326.
[14] 厲嘉云,陳鋒,彭家建,等.亞胺基咪唑離子液體合成及其銠配合物催化烯烴硅氫加成反應(yīng)[J].杭州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,15(3):225-229.
LI J Y,CHEN F,PENG J J,et al.Effect of amino imidazole ionic liquid on the rhodium catalyzed hydrosilylation of alkene[J].Journal of Hangzhou Normal University(Natural Science Edition),2016,15(3):225-229.
[15] 楊益琴,王石發(fā),李艷蘋(píng),等.-蒎烯含氮衍生物的合成及其殺松材線蟲(chóng)活性的研究[J].化學(xué)學(xué)報(bào),2009,67(21):2463-2474.
YANG Y Q,WANG S F,LI Y P,et al.Synthesis of nitrogen-containing derivatives from α-pinene and their nematieidal activity against pinewood nematode[J].Acta Chimica Sinica,2009,67(21):2463-2474.
[16] 毛麗秋,尹篤林,李謙和,等.從蒎烷合成二氫月桂烯醇的催化新技術(shù)[J].林產(chǎn)化學(xué)與工業(yè),2000,20(4):20-24.
MAO L Q,YIN D L,LI Q H,et al.New technology of catalytic synthesis of dihydromyrcenol from pinane[J].Chemistry and Industry of Forest Products,2000,20(4):20-24.
[17] 趙振東,劉先章.松節(jié)油的精細(xì)化學(xué)利用(Ⅵ)——松節(jié)油合成農(nóng)用及家用生物活性物[J].林產(chǎn)化工通訊,2001,35(6):41-45.
ZHAO Z D,LIU X Z.Fine chemical utilization of turpentine (Ⅵ)——synthesis of agricultural and household biologically activesubstances from turpentine[J].Journal of Chemical Industry of Forest Products,2001,35(6):41-45.
[18] 趙振東,劉先章.松節(jié)油的精細(xì)化學(xué)利用(Ⅶ)——松節(jié)油合成功能材料[J].林產(chǎn)化工通訊,2002,36(1):36-41.
ZHAO Z D,LIU X Z.Fine chemical utilization of turpentine(Ⅶ)——synthesis of functional materialfrom turpentine[J].
Journal of Chemical Industry of Forest Products,2002,36(1):36-41.
[19] 趙振東,劉先章.松節(jié)油的精細(xì)化學(xué)利用(Ⅴ)——松節(jié)油合成藥理活性物質(zhì)[J].林產(chǎn)化工通訊,2001,35(5):35-40.
ZHAO Z D,LIU X Z.Fine chemical utilization of turpentine(Ⅴ)——synthesis of pharmacological activity substances from turpentine[J].Journal of Chemical Industry of Forest Products,2001,35(5):35-40.
[20] BAZHENOV Y P.The study on the hydrogenation of pinene by Ni catalyst[J].Org. Khim.,2004,49:34-41.
[21] 李凝,馬慶豐,劉偉,等.負(fù)載型NiB非晶態(tài)合金上α-蒎烯催化加氫性能研究[J].精細(xì)化工,2010,27(11):1073-1077.
LI N,MA Q F,LIU W,et al.Study on catalytical performance of supported nib amorphous alloy on hydrogenation of-pinene[J].Fine Chemicals,2010,27(11):1073-1077.
[22] 任世彪,邱金恒,王春燕,等.Ni2+在γ-Al2O3上的分散狀態(tài)及負(fù)載型Ni/γ-Al2O3催化劑的-蒎烯加氫活性[J].無(wú)機(jī)化學(xué)學(xué)報(bào),2007,23(6):1021-1028.
REN S B,QIU J H,WANG C Y,et al.Dispersion state of nickel ions on γ-Al2O3and catalytic activity of derived nickel catalysts for hydrogenation of-pinene[J].Chinese Journal of Inorganic Chemistry,2007,23(6):1021-1028.
[23] CHATT J,VENANZ L M.Olefin-ordinatin compounds.Part Ⅵ.Dienecomplexes of rhodium (Ⅰ)[J].J.Chem.Soc.,1957,12:4735-4741.
[24] TERREROS P,PASTOR E,F(xiàn)IERRO J L G.Hept-1-ene hydroformylation on phosphinated polystyrene-anchored rhodium complexes[J].Journal of Molecular Catalysis,1989,53(3):359-369.
[25] TERREROS P,PASTOR E,F(xiàn)IERRO J L G,et al.Radial distribution of heterogenized hydroformylation Rh complexes in phosphinated polystyrene beads[J].Surface and Interface Analysis,1990,15(4):279-285.
[26] HAN W,LIU C,JIN Z L.generation of palladium nanoparticles:a simple and highly active protocol for oxygen-promoted ligand-free suzuki coupling reaction of aryl chlorides[J].Org.Lett.,2007,9(20):4005-4007.
[27] WANG D W,LU S M,ZHOU Y G.A simple and highly effective method for hydrogenation of arenes by [Rh(COD)Cl]2[J].Tetrahedron Letters,2009,50(12):1282-1285.
[28] FAN Y B,CUI X H,BURGESS K,et al.Electronic effects steer the mechanism of asymmetric hydrogenations of unfunctionalized aryl-substituted alkenes[J].J.Am.Chem.Soc.,2004,126(51):16688-16689.
[29] DIETIKER R,CHEN R.Gas-phase reactions of the [(PHOX)IrL(2)](+)ion olefin-hydrogenation catalyst support an Ir(I)/Ir(III)cycle[J].Angew.Chem.Int.Ed.,2004,43(41):5513-5516.
[30] BRANDT P,HEDBERG C,ANDERSSON P G.New mechanistic insights into the iridium-phosphanooxazoline-catalyzed hydrogenation of unfunctionalized olefins:a DFT and kinetic study[J].Chem.Eur.J.,2003,9(1):339-347.
[31] 郭慧青,王琳琳,陳小鵬,等.廢FCC觸媒負(fù)載鎳催化松節(jié)油加氫特性[J].高?;瘜W(xué)工程學(xué)報(bào),2015,29(4):851-858.
GUO H Q,WANG L L,CHEN X P,et al.Ni-supported FCC spent catalysts for turpentine oil hydrogenation[J].Journal of Chemical Engineering of Chinese Universities,2015,29(4):851-858.
[32] 畢夢(mèng)宇,曾韜.蒎烯催化加氫制備順式蒎烷[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,27(1):41-44.
BI M Y,ZENG T.A study on preparation of-pinane in pinene hydrogenation[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2003,27(1):41-44.
[33] 蔣麗紅.一種松節(jié)油催化加氫制蒎烷的方法:104003835[P].2014-08-27.
JIANG L H.A method for preparation of pinane in catalytic hydrogenation of turpentine :104003835[P].2014-08-27.
[34] 蔣麗紅.一種由-蒎烯不對(duì)稱催化加氫制備順式蒎烷的方法:201410183712.1[P].2014-05-05.
JIANG L H.A method for preparation of-pinane in asymmetric hydrogenation of α-pinene:201410183712.1[P].2014-05-05.
[35] 楊曉,劉仕偉,解從霞,等.水促進(jìn)的氯化釕催化-蒎烯加氫反應(yīng)[J].催化學(xué)報(bào),2011,32(4):643-646.
YANG X,LIU S W,XIE C X,et al.Hydrogenation of α-pinene over ruthenium chloride promoted by water[J].Chinese Journal of Catalysis,2011,32(4):643-646.
[36] HOU S L,WANG X Y,HUANG C R,et al.Highly selective hydrogenation of α-pinene catalyzed by ru nanoparticles in aqueous micellar microreactors[J].Catalysis Letters,2016,143(3):1-7.
Preparation of [Rh(COD)Cl]2catalyst and its activity for asymmetric hydrogenation of-pinene
WANG Hongqin1,2,WANG Yaming1,JIANG Lihong1,ZHANG Jiahua1,2,JU Jiangyue1
(1Faculty of Chemical Engineering,Kunming University of Science and Technology,Kunming 650500,Yunnan,China;2Sino-platinum Metals Co.,Ltd.,Kunming 650106,Yunnan,China)
[Rh(COD)Cl]2catalyst was prepared by using RhCl3·3H2O and 1,5-cyclooctadiene as raw materials and characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Taking-pinene hydrogenation as a probe reaction,we investigated the effects of COD/Rh molar ratio,reflux temperature and reflux time on the catalytic properties. The suitable conditions for preparing the catalysts were proposed through orthogonal experiment,which were COD/Rh molar ratio of 3.5∶1,reflux temperature of 75℃ and reflux time of 3.5h. Then the conversion of-pinene was above 97.3%,the enantioselective of cis-pinane was above 97.5% and the yield of-pinane was above 95.0%. Compared with other processes reported in the literature,the proposed process had features of mild hydrogenation conditions,high enantioselective,high catalytic efficiency and low energy consumption.
-pinene;catalysis;hydrogenation;rhodium catalyst;selectivity
TQ54
A
1000–6613(2017)01–0196–07
10.16085/j.issn.1000-6613.2017.01.025
2016-04-22;修改稿日期:2016-09-14。
國(guó)家自然科學(xué)基金(21266012)及昆明理工大學(xué)分析測(cè)試基金(20150371)項(xiàng)目。
王紅琴(1993—),女,碩士研究生,研究方向?yàn)楣I(yè)催化和植物化工。E-mail:15198787810@163.com。聯(lián)系人:蔣麗紅,博士,教授,研究方向?yàn)樾滦痛呋瘎┰谔烊划a(chǎn)物深加工中的應(yīng)用。E-mail:jlh65@163.com。