鄒明靜,王 娜
(1.菏澤醫(yī)學(xué)專科學(xué)校中心實(shí)驗(yàn)室,山東菏澤 274030;2.商丘醫(yī)學(xué)高等??茖W(xué)校,河南商丘 476000)
基于納米金等離子體共振光散射法測(cè)定阿米卡星
鄒明靜1,王 娜2
(1.菏澤醫(yī)學(xué)??茖W(xué)校中心實(shí)驗(yàn)室,山東菏澤 274030;2.商丘醫(yī)學(xué)高等??茖W(xué)校,河南商丘 476000)
為簡(jiǎn)便、快速地對(duì)阿米卡星的注射液進(jìn)行檢測(cè),基于納米金顆粒的等離子體共振效應(yīng)建立了一種檢測(cè)阿米卡星的新方法。在適宜pH值的KH2PO4-Na2HPO4緩沖溶液中,利用阿米卡星與納米金相互作用,使反應(yīng)體系在640 nm處共振光散射信號(hào)顯著增強(qiáng),且共振光散射強(qiáng)度增強(qiáng)值ΔI640 nm與阿米卡星質(zhì)量濃度在1.5~500 ng/mL范圍內(nèi)線性相關(guān),檢出限為0.52 ng/mL。在確定的實(shí)驗(yàn)條件下,阿米卡星可誘導(dǎo)納米金顆粒聚集,納米金顆粒之間距離的變化使其等離子體共振效應(yīng)發(fā)生明顯改變,聚集的納米金顆粒表面等離子體耦合產(chǎn)生了較強(qiáng)的共振光散射信號(hào),且共振光散射信號(hào)增強(qiáng)值與阿米卡星的濃度變化值呈現(xiàn)良好的線性關(guān)系。實(shí)驗(yàn)表明,該方法可用于快速測(cè)定阿米卡星。
光譜分析;納米金;阿米卡星;等離子體效應(yīng);共振光散射
阿米卡星為氨基糖苷類抗生素,對(duì)多數(shù)腸桿菌科細(xì)菌、銅綠假單胞菌及部分其他假單胞菌、產(chǎn)堿桿菌屬等具有較好的抗菌活性,臨床上用于抗感染治療,是一種廣譜抗生素[1]。目前測(cè)定阿米卡星的方法主要有微生物法、高效液相色譜法、熒光法、化學(xué)發(fā)光法、毛細(xì)管電泳法等[2-6]。微生物法可真實(shí)反映生物效價(jià),但操作復(fù)雜,靈敏度低且耗時(shí)。由于阿米卡星結(jié)構(gòu)缺乏生色基團(tuán),熒光法在測(cè)定前多需采用熒光試劑或其他試劑進(jìn)行衍生,導(dǎo)致操作方法繁瑣,實(shí)驗(yàn)干擾因素較多。高效液相色譜法靈敏,結(jié)果可靠,但仍采用柱前衍生,繁瑣的檢測(cè)過(guò)程及較為昂貴的檢測(cè)成本限制了其應(yīng)用。納米金顆粒具有量子效應(yīng)和表面效應(yīng),在化學(xué)、醫(yī)藥和材料學(xué)等諸多領(lǐng)域中得到了廣泛應(yīng)用[7-8]。
納米金顆??梢蛘T導(dǎo)作用發(fā)生聚集,納米顆粒之間距離的變化會(huì)使其等離子體共振效應(yīng)發(fā)生改變,金屬納米粒子的顏色隨之改變并產(chǎn)生強(qiáng)烈的光散射信號(hào)[9-11]。據(jù)此,可將利用藥物分子誘導(dǎo)納米金顆粒聚集所建立的光散射分析法用于藥物小分子的測(cè)定。共振光散射光譜法具有快速、簡(jiǎn)便、靈敏等特點(diǎn),已廣泛應(yīng)用于痕量無(wú)機(jī)物和有機(jī)物的分析[12-15],而將納米金等離子體共振光散射分析法用于阿米卡星的檢測(cè)目前尚未見(jiàn)報(bào)道。本研究發(fā)現(xiàn),在適宜pH值條件的Na2HPO4-KH2PO4緩沖溶液中,阿米卡星可誘導(dǎo)納米金顆粒聚集形成更大的金顆粒,產(chǎn)生較強(qiáng)的等離子體共振光散射信號(hào),并據(jù)此建立了一種測(cè)定阿米卡星的共振光散射光譜分析新方法,用于阿米卡星注射液的檢測(cè),方法簡(jiǎn)便、快速,結(jié)果比較滿意。
1.1 儀器和試劑
CRT970型熒光分光光度計(jì)(上海精密科學(xué)儀器有限公司提供);UV2100型紫外-可見(jiàn)分光光度計(jì)(北京瑞利分析儀器(集團(tuán))有限責(zé)任公司提供); H-600 透射電鏡(日本電子株式會(huì)社提供);TP-350S磁力加熱攪拌器(杭州米歐儀器有限公司提供);MTC-100振蕩型恒溫金屬浴(杭州米歐儀器有限公司提供);RU-T25超純水儀(上海同田生物技術(shù)有限公司提供);LC-20AT高效液相色譜儀(日本島津公司提供)。
阿米卡星標(biāo)準(zhǔn)品(Sigma公司提供):4 μg/mL;1.0%(質(zhì)量分?jǐn)?shù),下同)HAuCl4(國(guó)藥集團(tuán)上?;瘜W(xué)試劑有限公司提供);1.0%(質(zhì)量分?jǐn)?shù),下同)檸檬酸鈉;pH值為2.6~8.0的檸檬酸-Na2HPO4溶液;pH值為4.49~9.18的 KH2PO4-Na2HPO4緩沖溶液:取一定量(0.067 mol/L)的KH2PO4溶液,與一定量(0.067 mol/L)的Na2HPO4溶液按一定比例配制;所用試劑均為分析純;實(shí)驗(yàn)用水為超純水(18.2 MΩ·cm)。
1.2 實(shí)驗(yàn)方法
采用檸檬酸鈉還原法制備膠體金[16]:取超純水100 mL,放入錐形瓶中,煮沸;加入1.0%的檸檬酸鈉溶液5.00 mL,保持沸騰5 min;快速加入1.0%的HAuCl4溶液1.00 mL,磁力攪拌并持續(xù)加熱保持沸騰15 min;冷卻至室溫并定容至100 mL,于4 ℃保存。用透射電鏡觀察制備的納米金顆粒形貌及粒徑大小,發(fā)現(xiàn)金顆粒為球形,粒徑約為12 nm,詳見(jiàn)圖1。
圖1 納米金透射電鏡圖Fig.1 Transmission electron microscopy of gold nanoparticles
在1.5 mL的EP管中,依次加入0.10 mL pH值為6.24的KH2PO4-Na2HPO4緩沖溶液、一定量的阿米卡星標(biāo)準(zhǔn)溶液、0.60 mL的納米金膠,準(zhǔn)確稀釋至1.00 mL,振蕩混勻后反應(yīng)5 min。用UV2100型紫外-可見(jiàn)分光光度計(jì)記錄其吸收光譜。用熒光分光光度計(jì),采用微量石英比色皿,設(shè)置λex=λem條件下同步掃描,獲得該體系的共振光散射光譜。在640 nm 波長(zhǎng)處測(cè)定產(chǎn)物的共振光散射強(qiáng)度I640 mm,并測(cè)定其空白值(I640 mm)b,計(jì)算ΔI640 mm=I640 mm-(I640 mm)b。
1.3 條件選擇
1.3.1pH值、緩沖溶液用量
實(shí)驗(yàn)考察了pH值為2.6~8.0的檸檬酸-Na2HPO4及pH值為4.49~9.18的KH2PO4-Na2HPO4緩沖溶液對(duì)體系ΔI640 mm的影響。結(jié)果表明:采用檸檬酸-Na2HPO4緩沖溶液,空白值高但ΔI640 mm較小,緩沖溶液的離子強(qiáng)度對(duì)納米金顆粒的聚集有明顯的影響;在pH值為5.91~7.17的KH2PO4-Na2HPO4緩沖溶液中,ΔI640 mm均較為穩(wěn)定,當(dāng)pH值為 6.24時(shí),體系的ΔI640 mm最大(見(jiàn)圖2)。故本文選用pH值為6.24的KH2PO4-Na2HPO4緩沖溶液,其用量為0.15mL。
圖2 pH值對(duì)ΔI640 mm的影響Fig.2 Effect of pH value on ΔI640 mm
1.3.2 納米金膠用量
納米金膠用量對(duì)體系ΔI640 mm的影響如圖3所示。結(jié)果表明:ΔI640 mm隨納米金膠加入量的增加而相應(yīng)增大。當(dāng)納米金膠用量為0.40~0.70mL(ρ(Au)=22.4~40.6μg/mL)時(shí),ΔI640 mm較大。本文選擇0.60 mL納米金膠,即34.8 μg/mL的納米金膠。
圖3 納米金膠用量對(duì)ΔI640 mm的影響Fig.3 Effect of colloidal gold on ΔI640 mm
1.3.3 溫度與時(shí)間
本文選擇10,20,30,40 ℃體系,考察溫度對(duì)體系ΔI640 mm的影響。結(jié)果表明:ΔI640 mm在10~40 ℃的恒溫金屬浴條件下均較為穩(wěn)定,5min后即趨于穩(wěn)定。可見(jiàn),溫度對(duì)該反應(yīng)體系的影響較小,本文選擇在常溫條件下反應(yīng)5min后用于測(cè)定。
納米金顆粒具有表面等離子共振耦合效應(yīng),相比分散的膠體金顆粒,聚集的納米金顆??僧a(chǎn)生較強(qiáng)的散射光信號(hào)[17]。阿米卡星為氨基糖苷類抗生素,在適宜的pH值條件下,阿米卡星的氨基與檸檬酸鈉還原法制備的納米金顆??梢蜢o電作用結(jié)合[18],導(dǎo)致納米金顆粒發(fā)生聚集,使共振光散射信號(hào)增強(qiáng)。再者,阿米卡星在一定濃度范圍內(nèi)與散射光強(qiáng)度增強(qiáng)值之間存在良好的線性關(guān)系,據(jù)此可建立基于納米金等離子體共振光散射測(cè)定阿米卡星的新方法。
2.1 吸收光譜
將阿米卡星溶液加入納米金膠中,隨著阿米卡星加入量的增加,反應(yīng)產(chǎn)物溶液的顏色由酒紅色逐漸轉(zhuǎn)變?yōu)樯钭仙瑢?duì)于質(zhì)量濃度為0,100,200,400 ng/mL的阿米卡星,最強(qiáng)的吸收峰位置分別為521,532,539,553 nm。反應(yīng)產(chǎn)物最強(qiáng)吸收峰隨阿米卡星質(zhì)量濃度的增大出現(xiàn)了紅移(見(jiàn)圖4)。有研究報(bào)道,納米金微粒的吸收峰隨其粒徑增大而紅移[19],據(jù)此表明阿米卡星能夠誘導(dǎo)納米金顆粒發(fā)生聚集,形成粒徑更大的顆粒。
a—pH值為6.24的 KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-0 ng/mL阿米卡星;b—pH值為6.24的 KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-100 ng/mL阿米卡星;c—pH值為6.24 的KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-200 ng/mL阿米卡星;d—pH值為6.24 的KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-400 ng/mL阿米卡星。圖4 納米金與阿米卡星體系吸收光譜圖Fig.4 Absorption spectra of Amikacin with gold nanoparticles
2.2 共振光散射光譜
阿米卡星的共振光散射信號(hào)很弱。納米金膠溶液在620 nm和640 nm處存在較為明顯的共振光散射峰。納米金膠溶液中加入阿米卡星后,在470,620,640 nm處均出現(xiàn)了明顯的散射峰,散射峰的強(qiáng)度顯著增強(qiáng),亦表明阿米卡星能誘導(dǎo)納米金發(fā)生明顯聚集。本研究選擇測(cè)定了640 nm的共振光散射強(qiáng)度,見(jiàn)圖5。
a—400 ng/mL阿米卡星;b—pH值為6.24 的KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-0 ng/mL阿米卡星;c—pH值為6.24的 KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-100 ng/mL阿米卡星;d—pH值為6.24的KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-200 ng/mL阿米卡星;e—pH值為6.24的 KH2PO4-Na2HPO4緩沖溶液-33.6 μg/mL納米金膠-400 ng/mL阿米卡星。圖5 納米金與阿米卡星體系共振光散射光譜圖Fig.5 Resonance light scattering spectra of Amikacin with gold nanoparticles
2.3 工作曲線
按實(shí)驗(yàn)方法確定最佳實(shí)驗(yàn)條件,測(cè)定不同質(zhì)量濃度阿米卡星對(duì)應(yīng)的共振光散射強(qiáng)度ΔI640 mm。以阿米卡星質(zhì)量濃度ρ對(duì)ΔI640 mm作圖,阿米卡星在1.5~500 ng/mL范圍內(nèi)與ΔI640 mm之間存在良好的線性關(guān)系?;貧w方程為ΔI640 mm=1.97ρ+16.31(n=7,R2=0.995 4),檢出限為0.52 ng/mL。表明本方法簡(jiǎn)便快速,靈敏度高。
2.4 共存物質(zhì)的影響
按實(shí)驗(yàn)方法,考察了共存物質(zhì)對(duì)測(cè)定200 ng/mL 阿米卡星的干擾情況,控制相對(duì)誤差為±5%。結(jié)果表明:常見(jiàn)的金屬離子(如Na+,K+,Ca2+,Zn2+),非金屬離子(如F-,Br-,I-)及葡萄糖、蔗糖等均不干擾測(cè)定,故該方法具有較好的選擇性。
2.5 樣品分析
取市售不同廠家阿米卡星注射液5 μL,放入25 mL容量瓶中,稀釋至刻度。準(zhǔn)確移取20 μL,按實(shí)驗(yàn)方法測(cè)定,并與高效液相色譜法進(jìn)行比較[20],結(jié)果見(jiàn)表1。由表1可以看出,實(shí)驗(yàn)結(jié)果與廠家標(biāo)示值一致,表明數(shù)據(jù)可靠。
表1 阿米卡星注射液測(cè)定結(jié)果
針對(duì)不同廠家的阿米卡星注射液,加入一定量的阿米卡星標(biāo)準(zhǔn)品,采用標(biāo)準(zhǔn)加入法測(cè)定其回收率,測(cè)得回收率為96.5 %~107.5 %(見(jiàn)表2),結(jié)果滿意。實(shí)驗(yàn)表明,該方法可用于準(zhǔn)確測(cè)定阿米卡星注射液中阿米卡星的含量。
表2 阿米卡星注射液回收率測(cè)定
通過(guò)對(duì)納米金膠和阿米卡星反應(yīng)體系的吸收光譜和共振光散射光譜分析可知,阿米卡星可誘導(dǎo)納米金顆粒聚集,聚集的納米金顆粒因表面等離子體的耦合,在640 nm處可產(chǎn)生很強(qiáng)的共振光散射信號(hào),該散射信號(hào)的增強(qiáng)值與阿米卡星的質(zhì)量濃度呈現(xiàn)良好的線性關(guān)系。該方法已用于市售阿米卡星注射液的測(cè)定,并完成了樣本的回收實(shí)驗(yàn),結(jié)果均較滿意。因此,依據(jù)阿米卡星對(duì)納米金顆粒的誘導(dǎo)聚集作用,基于納米金顆粒表面等離子體效應(yīng)的改變所建立的檢測(cè)方法,可簡(jiǎn)便、快速地對(duì)阿米卡星的注射液進(jìn)行檢測(cè)。
[1] 張鳳妹,王帆,王建. 非衍生化HPLC法測(cè)定硫酸阿米卡星及注射液的有關(guān)物質(zhì)和含量[J].中國(guó)抗生素雜志, 2014, 39(8): 608-614. ZHANG Fengmei, WANG Fan, WANG Jian.The derivatization HPLC determination of the related substances and content of Amikacin sulfate and its injection[J].Chinese Journal of Antibiotics, 2014, 39(8): 608-614.
[2] United States Pharmacopeial. The United States Pharmacopeia ConventionInc[M].[S.l.]:XXII Easton Mack Printing Company, 1989.
[3] MOHAMED N E,ERWIN A,ANN V S. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection(CE-C4D) for the analysis of Amikacin and its related substances[J]. Electrophoresis, 2012, 33(17): 2777-2782.
[4] MAHMOUD A,MOHAMED A H,DALIA M,et al. Development of spectrofluorimetric method for determination of certain aminoglycoside drugs in dosage forms and human plasma through condensation with ninhydrin and phenyl acetaldehyde [J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 136: 1760-1766.
[5] YANG Chunyan, ZHANG Zhujun, WANG Jinli. New luminol chemiluminescence reaction using diperiodatoargentate as oxidate for the determination of Amikacin sulfate[J]. Luminescence, 2010, 25(1): 36-42.
[6] OVALLES J F, BRUNETTO M D R, GALLIGNANI M.A new method for the analysis of Amikacin using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization and high-performance liquid chromatography with UV-detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(1): 294-298.
[7] VERISSIMOT V,SANTOS N T,AZEVEDO R B,et al. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy[J]. Materials Science and Engineering C:Materials for Biological Applications, 2016, 65: 199-204.
[8] 賀海兵,陳葳.表面增強(qiáng)拉曼光譜檢測(cè)金納米粒子表面配體取向[J].河北科技大學(xué)學(xué)報(bào), 2014, 35(2): 144-148. HE Haibing, CHEN Wei. Detection of ligand orientation on gold nanoparticles by SERS[J]. Journal of Hebei University of Science and Technology, 2014, 35(2):144-148.
[9] YANG Yachun, TSENG W L. 1,4-benzenediboronic-acid-induced aggregation of gold nanoparticles: Application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with Naked-Eye detection[J]. Analytical Chemistry, 2016, 88(10): 5355-5362.
[10]CHEN C C, YU C C, LIANG C T. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles [J]. Biosensors and Bioelectronics, 2015, 78: 200-205.
[11]KINOSHITA T,KISO K,LE D Q,et al. Light-scattering characteristics of metal nanoparticles on a single bacterial cell [J]. Analytical Science, 2016, 32(3): 301-305.
[12]YAN Shuguang, DENG Dongyan, LI Li. Glutathione modified Ag2Te nanoparticles as a resonance Rayleigh scattering sensor for highly sensitive and selective determination of cytochrome C[J]. Sensors and Actuators B:Chemical, 2016, 228: 458-464.
[13]LING Yu, CHEN Lingxiao, DONG Jiangxue, et al. A simple and rapid method for direct determination of Al(Ⅲ) based on the enhanced resonance Rayleigh scattering of hemin-functionalized graphene-Al(Ⅲ) system[J].Spectrochimmica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016, 156: 22-27.
[14]QIAO Man, JIANG Junze, LIU Shaopu.Triple-wavelength overlapping resonance Rayleigh scattering method for facile and rapid assay of perfluorooctane sulfonate[J]. Environmental Monitoring and Assessment, 2015, 187(11):1-11.
[15]ESCODA M C, LONG M B. Rayleigh scattering measurements of the gas concentration field in turbulent jets[J]. AIAA Journal, 2015, 21(1):81-84.
[16]朱立平, 陳學(xué)清.免疫學(xué)常用實(shí)驗(yàn)方法[M]. 北京:人民軍醫(yī)出版社, 1999.
[17]CAI Huaihong, JIANG Pi, LIN Xiaoying, et al. Gold nanoprobes based resonance Rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptorexpression[J].Biosensors and Bioelectronics, 2015, 74:165-169.
[18]LIU Qianjin, MU Haibo, SUN Chunli, et al. Highly specific determination of gentamicin by induced collapse of Au-lipid capsules[J]. RSC Advances, 2016, 6(18):14483-14489.
[19]BRUS L. Electronic wave function in semiconductor clusters:Experiment and theory[J].Journal of Physical Chemistry,1986, 90(12): 2555-2560.
[20] 國(guó)家藥典委員會(huì). 中華人民共和國(guó)藥典: 二部[M]. 北京: 中國(guó)醫(yī)藥科技出版社,2010.
Plasmon resonance light scattering spectral assay of Amikacin based on gold nanoparticles
ZOU Mingjing1, WANG Na2
(1.Central Laboratory, Heze Medical College, Heze, Shandong 274030, China;2.Shangqiu Medical College, Shangqiu, Henan 476000, China)
In order to conveniently and fastly test Amikacin injection,a new method for detection of Amikacin is established based on the plasmon resonance effect of gold nanoparticles. In KH2PO4-Na2HPO4buffer with proper pH value, the resonance light scattering intensity at 640 nm is enhanced greatly due to the interaction of gold nanoparticles and amikacin, and ΔI640 nmis linear proportional to the concentration of Amikacin in the range of 1.5~500 ng/mL, and the detection limit is 0.52 ng/mL. Under certain experiment condition, gold nanoparticles are aggregated induced by Amikacin, and the distance variation makes its plasmonic resonance effect change greatly. The aggregated nanoparticles surface plasmon coupling produces strong resonance light scattering signal, and the resonance light scattering signal shows a good linear relationship with the concentration of Amikacin. The experiment shows that the method can be used to detect Amikacin rapidly.
spectroanalysis; gold nanoparticles; Amikacin; plasmonic effect; resonance light scattering
1008-1534(2017)01-0018-05
2016-11-04;
2016-12-08;責(zé)任編輯:張士瑩
山東省高等學(xué)??萍加?jì)劃項(xiàng)目(J11LB01);菏澤醫(yī)學(xué)??茖W(xué)??蒲许?xiàng)目(H14k05)
鄒明靜(1982—),女,重慶梁平人,講師,碩士,主要從事分子光譜分析方面的研究。
E-mail:mingjingzou@126.com
O656.3
A
10.7535/hbgykj.2017yx01004
鄒明靜,王 娜.基于納米金等離子體共振光散射法測(cè)定阿米卡星[J].河北工業(yè)科技,2017,34(1):18-22. ZOU Mingjing,WANG Na.Plasmon resonance light scattering spectral assay of Amikacin based on gold nanoparticles[J].Hebei Journal of Industrial Science and Technology,2017,34(1):18-22.